优选制壳用耐火材料及粘结剂型壳介绍
- 格式:ppt
- 大小:5.43 MB
- 文档页数:86
熔模铸造型壳制备与质量实验报告熔模铸造在现代工业中被广泛使用,其应用范围主要包括航空航天、汽车制造、机械工程等领域。
而熔模铸造的成功与否,很大程度上取决于熔模铸造型壳的制备质量。
因此,在本次实验中,我们旨在探究熔模铸造型壳的制备方法及其对质量的影响。
实验材料:1. 熔模铸造型壳材料:蜡模、上肥、下肥、浸料、耐火材料、熔模铸造粘结剂。
2. 实验设备:熔模铸造炉、温度计、压力计、电子天平、烘箱等。
实验方法:1. 对熔模铸造原材料进行筛分、称量。
2. 将熔模铸造型壳原材料与粘结剂按比例混合,得到熔模铸造型壳混合物。
3. 将熔模铸造型壳混合物倒入蜡模中,将其加热溶解,使熔模铸造型壳混合物填充整个蜡模,形成熔模铸造型壳。
4. 将熔模铸造型壳置于烘箱中烘干,使其充分干燥。
5. 在熔模铸造型壳内注入熔融金属,待金属凝固冷却后取出熔模铸造件。
实验结果:通过本次实验,我们发现熔模铸造型壳的制备质量与制备方法密切相关。
在制备过程中,我们发现以下几个因素对熔模铸造型壳制备质量有影响:1. 熔模铸造型壳原材料的筛分质量。
如果原材料筛分不均匀,会导致型壳密度不均、孔洞多等现象,影响型壳质量。
2. 熔模铸造型壳混合物的比例。
若比例不当,会使型壳密度过高或过低,导致破损或形成空腔。
3. 烘干时间不足。
若炉膛温度不够高或烘干时间不足,会导致型壳未完全干燥,从而影响铸件的表面质量。
实验结论:综合以上实验结果,我们认为,为确保熔模铸造型壳制备质量,应采取以下措施:1. 在原材料筛分和混合比例方面加强管理,确保原材料质量和比例准确。
2. 控制熔模铸造型壳的干燥时间和温度,确保型壳干燥彻底。
3. 对于特殊的熔模铸造件,应根据实际情况进行调整和优化,以达到最佳的型壳制备质量。
通过本次实验,我们深入了解熔模铸造型壳制备方法和其对产品质量的影响,对于提高熔模铸造的成品率和质量具有指导意义。
耐火材料产品范文耐火材料是一种具有很高耐火性能的材料,能够在高温环境下保持稳定的物理和化学性能。
它们广泛应用于冶金、化工、建筑等行业中的高温设备和装备,起到保护和隔离热能的作用。
常见的耐火材料产品包括耐火砖、耐火石、耐火胶泥、耐火板、耐火刚胶、耐火涂料等。
下面对其中几种常见的耐火材料产品进行详细介绍。
1. 耐火砖(Firebrick):耐火砖是一种由高岭土、石英砂和矾土等原料经过烧制而成的砖块,具有优良的耐高温、耐腐蚀性能。
根据不同的用途和要求,耐火砖可以分为多种不同种类,如高铝耐火砖、硅酸铝耐火砖等。
2. 耐火石(Firestone):耐火石是指一类用于高温环境下的隔热和耐火材料,通常由石英和其他特殊氧化物组成。
耐火石具有高温下的稳定性和耐火性能,广泛应用于火炉、熔炉等高温设备的内衬。
3. 耐火胶泥(Refractory Mortar):耐火胶泥是一种耐火材料的粘接剂,用于耐火材料之间的连接和修补。
它由耐火性能较好的胶凝材料、骨料和适量的添加剂组成,能够在高温环境下保持稳定的粘接性能。
4. 耐火板(Refractory Board):耐火板是一种由高温材料制成的板材,具有较好的耐火性能和隔热性能。
它通常由陶瓷纤维、石墨、石棉等材料经过成型和烧结而成,广泛应用于高温设备的衬垫、隔离等。
5. 耐火刚胶(Refractory Rigidizer):耐火刚胶是一种用于耐火材料的固化剂,能够使其形成硬质的陶瓷结构。
它由特殊的化学成分组成,可以提高耐火材料的耐热性能和抗腐蚀性能。
6. 耐火涂料(Refractory Coating):耐火涂料是一种具有防火和隔热功能的涂料,能够在高温环境下形成一层保护膜。
它通常由高温无机材料和适量的有机胶粘剂等组成,涂在金属表面上能够防止其受热熔化或燃烧。
以上所述只是耐火材料产品中的一部分,还有其他种类和形式的耐火材料产品。
随着科技的进步和应用需求的改变,耐火材料产品也在不断发展和创新。
熔融石英的性能特点和使用一、熔融石英的性能特点和使用熔融石英材料在精铸型壳的使用上国外发达国家如美国的使用量和日本的使用量不断地逐年增加,特别是在硅溶胶型壳的面层方面有了很有经验的效果,在同锆英材料的使用和价格比上有了较大突破,是目前较为理想的工程应用材料。
熔融石英是用天然高纯度二氧化硅经电炉在高于1760 C以上温度熔融,随后快速冷却而制得的。
此过程将晶型SiO2转变为非晶型的玻璃熔体。
熔融石英熔化温度约1713 C,导热系数低,热膨胀系数几乎是所有耐火材料中最小的,因而它具有极高的热震稳定性。
所以,在焙烧和浇注过程中熔融石英型壳很少因温度剧变而破裂,是理想的熔模铸造制型的耐火材料,可作为面层或背层涂料用的耐火材料,以及撒砂材料。
熔融石英会部分或全面提高型壳性能。
熔融石英热膨胀系数小,有利于防止型壳在脱蜡和焙烧过程中开裂、变形,利于确保铸件尺寸稳定。
熔融石英纯净度高,所配涂料稳定性好;型壳高温抗蠕变能力提高。
熔融石英温度较低时的导热性较差,热容量小,仅为锆砂的一半,大多数金属液对它的润湿性较差,使得金属凝固层与型壳内表面间易产生间隙,热导率进一步减小,有利于壁薄铸件充型。
在高温下熔融石英的透明度高,能通过辐射传热,使其导热能力超过硅酸铝类壳。
而使铸件冷却较快,更易获得健全铸件。
铸件冷却时方石英又从高温型转变为低温型,同时体积产生骤变,使型壳出现无数裂纹,强度剧降,有利于脱壳进行。
熔融石英为酸性,能采用碱煮、碱爆等化学清砂方法去除型壳。
熔模铸造用熔融石英,其中SiO2所占的质量分数应为99.5%,配涂料用的粉料最好是270目或320目细粉占50%(质量分数),200目和120目粉各占25% (质量分数)。
①为0 C〜1200 C间的膨胀系数平均值。
②400 C的热导率。
③1200 C热导率。
熔融石英及制品有三大特点:在所有耐火材料中,线膨胀系数最小(在1000 C的热胀率0.05 );热导率最低,在1000 C热导率0.836W/ (m • K)(0.02cal/cm • s ・C);抗热震性最好(在1200 °C〜水冷的抗震性),10次都不产生裂纹。
第一章、制壳耐火材料一、概述熔模铸造型壳是由粘接剂、耐火材料及附加物组成的。
其中耐火材料占总比重的90%以上,对型壳性能影响很大。
制壳耐火材料应使型壳有足够的常温强度和高温强度,在高温下不发生变形;有良好的透气性、热震稳定性、热化学稳定性、脱壳性等性能。
为此,制壳用耐火材料必须有足够的耐火度、热化学稳定性、小而均匀的热膨胀系数、合适的粒度,并要有利于涂料性能的稳定。
此外,作为制壳材料还应对人体健康无害、货源充足和质量稳定。
用于熔模铸造的耐火材料种类很多,按用途大致可分为:型壳面层用耐火材料、型壳加固层用耐火材料、陶瓷型芯用耐火材料及炉衬用耐火材料等四种类型。
用于型壳加固层材料的有:莫来石、铝矾土及其他铝硅系耐火材料(如耐火粘土、匣钵砂、煤矸石等);以及(英国)莫洛卡特(Molochite)等耐火熟料。
近年来还应用氧化钙等作为制壳用耐火材料。
在一定的温度范围内,有些耐火材料的热膨胀比较均匀(如刚玉、氧化镁)而另有些耐火材料的热膨胀则不均匀(如石英)。
耐火材料在高温下应具有良好的热化学稳定性,以保证铸件表面质量。
常用耐火材料的物理、化学性能见下表所示:另外,制壳用耐火材料还应具有合理的粒度组成,它直接影响型壳的致密度、强度和透气性。
二、石英石英砂(粉)可分为天然的和人造的两种。
前者是堆积在河岸或沙丘上的天然石英砂(粉);后者是将石英岩经机械粉碎、筛选和分级而成的,纯度较高。
熔模铸造通常采用的是人造石英砂(粉)。
熔模铸造用石英粉应有粗有细,粗细相镶,分散分布,最好为双峰分布。
石粉厂已配制出人工级配粉供精铸厂使用,以稳定粉料质量。
讲解老标准目数概念颗粒目数的定义:所谓目数,是指物料的粒度或粗细度,一般定义是指在1英寸长度内有多少个网孔数,即筛网的网孔数,物料能通过该网孔即定义为多少目数:目数越大,说明物料粒度越细,目数越小,说明物料粒度越大。
一般筛网网线宽度占35%,网孔宽度占65%。
在自然界中出现的石英大多是低温型的,且主要是以β石英存在。
2013年6月清华大学熔模精密铸造技术培训总结2013年6月清华大学熔模精密铸造技术培训总结一.模料相关知识:1.模料基本要求(热物理性能、力学性能、工艺性能):①热物理性能:(熔化温度、热膨胀、耐热性)A:熔化温度:常用熔点、滴点、环球软化点等多种方法表示。
B: 热膨胀:有体膨胀和线膨胀二种不同的表现形式,常用线收缩率、体膨胀率来衡量。
说明:收缩率没有标准值,主要根据产品结构和依靠工程技术人员的经验;现在已开始使用计算机模拟软件实验,但还没有取得成功。
C:耐热性:指模料承受较高环境温度而不变形的能力。
常用热变形量或软化点来衡量耐热。
②力学性能:(强度、硬度)A:强度:模料强度通常以抗弯强度(断裂模量)来衡量。
B:硬度(针入度):在设定温度(例如20或25℃)和固定载荷(如100g)作用下,标准针在在规定时间(5s)刺入模料表面的深度(以0.1mm为单位)。
③工艺性能:(蜡液粘度、蜡膏流动性、灰分)A:模料在液态下(例如99℃)的粘滞性。
B:蜡膏流动性:蜡膏充填压型型腔的能力。
通常以设定温度(例如压注温度)和恒定载荷(2kg)作用下,试样的变形程度代表蜡膏的流动性C:灰分:模料经高温(900℃)焙烧后的残留物含量。
说明:铸件的表面质量主要靠原材料保证,一定要把原材料管起来并且确保原材料的质量一定要合格,公司一定要重视原材料的管理,蜡料较为重要(病从口入)。
2.模料常用原材料(蜡质材料、树脂、高分子聚合物):①蜡质材料:在常温下为不透明或半透明的固体,有固定的熔点或狭窄的凝固温度区间,熔化后粘度较小,按来源又分为:A:矿物蜡(如石蜡、微晶蜡、地蜡、褐煤蜡等)。
B:动植物蜡(如蜂蜡、虫白蜡、棕榈蜡等)。
C:人造蜡(如硬脂酸)。
②树脂:指非晶态有机物,在常温下为透明的脆性固体,没有固定的熔点,熔融后粘度较大。
常用的有松香及其衍生物和其他天然或人造树脂(如石油树脂、萜烯树脂等)。
③高分子聚合物(高聚物):指分子量大于1万的高分子聚合物。
熔模精密铸造过程疑难问题解答熔模精密铸造过程疑难问题解答前言三百六十行,行行出人才。
各行各业都有自己的特长。
各从业人员必须熟练地掌握本行业、本岗位的职业技能,具备一定的包括职业技能在内的职业素质,才能胜任工作,把工作做好,为本行业做出应有的贡献,实现自己的人生价值。
熔模铸造业是技术密集型的行业。
本行业对其职工职业素质的要求比较高。
在科学技术迅速发展的今天,更是这样。
精铸业的职工队伍中,大部分是技术员工。
他们是企业的主力军,是振兴和发展本企业的技术力量。
技术人员素质如何,直接关系到本企业的生存和发展。
在市场经济条件下,企业之间的竞争,是质量之竞争;价格之竞争;也是技术之竞争;归根结底是人才的竞争。
优秀的技术员工是企业各类人才中重要的组成部分。
企业必须有这样一支高素质的技术工人队伍,有这样一批技术过硬、技艺精湛的能工巧匠,才能保证产品质量,提高生产效率,降低物料消耗,使企业获得经济效益;才能支持企业不断生产出高难度的产品,去发掘市场、占领市场;才能在激烈的市场竞争中立于不败之地!由于本人水平有限,加之时间仓促,难免存在不足和错误,诚恳希望专家,工程师和同仁批评指正。
吴光来第一章熔模铸件工艺设计与模具设计§1、熔模铸件工艺设计1.1、熔模铸件的尺寸精度受到哪些因素的影响?答:铸件尺寸精度受铸件结构、材质、制模、制壳、焙烧、浇注等多种因素的影响。
1)、铸件结构的影响:(1)、铸件壁厚,收缩率大;铸件壁薄,收缩率小;(2)、自由收缩率大,阻碍收缩率小。
2)、材质的影响:(1)、材料中含碳量越高,线收缩率越小,含碳量越低,线收缩率越大;(2)常见材质的铸造收缩率如下:铸造收缩率K=(LM-LJ)/LJ×100%LM—型腔尺寸;LJ—铸件尺寸K受以下因素的影响:蜡模K1、铸件结构K2、合金种类K3、浇注温度K4。
合金种类收缩率自由收缩受阻收缩铸铁件 0.8% 0.7%碳钢及低合金钢 1.6-2.0% 1.3-1.7%不锈钢 2.0-2.3% 1.7-2.0%3)、制模对铸件线收缩率的影响:(1)蜡(模)料的线收缩率约为0.9-1.1%;(2)蜡模径向(受阻)收缩率仅为长度方向(自由)收缩率的30-40%,射蜡温度对自由收缩率的影响远远大于对受阻收缩率的影响。
无机耐高温粘结剂概述说明以及解释1. 引言1.1 概述无机耐高温粘结剂是一种特殊的粘结材料,能够在高温环境下保持稳定的化学和物理性质,并且具有良好的黏附力和耐热稳定性。
它们被广泛应用于各个领域,如航空航天、能源、冶金等。
1.2 文章结构本文将围绕无机耐高温粘结剂展开详细讨论,主要包括以下几个方面:特点和应用、制备方法、使用效果与评估指标以及结论与展望。
通过系统地介绍这些内容,旨在全面了解无机耐高温粘结剂的特性、制备工艺以及应用前景,并提出可能的问题解决方案和未来发展方向。
1.3 目的本文的目的是对无机耐高温粘结剂进行概述说明和解释。
首先,介绍无机耐高温粘结剂的特点和应用领域,包括其在各个行业中的具体案例分析。
然后,详细阐述无机耐高温粘结剂的制备方法,包括研磨和混合工艺、烧结和固化过程以及添加剂与改性技术等。
接着,介绍无机耐高温粘结剂的使用效果评估指标,包括耐热稳定性测试方法与结果分析、界面黏附力测试与评价方法以及力学性能测量与评估指标选择等。
最后,总结现有研究成果并评估其应用前景,并提出可能的解决方案或未来发展方向。
通过阅读本文,读者将对无机耐高温粘结剂有一个全面的了解,并且能够掌握其制备方法和使用效果评估指标,为相关行业的材料选择和应用提供参考依据。
2. 无机耐高温粘结剂的特点和应用2.1 耐高温特性无机耐高温粘结剂具有出色的耐受高温环境的特性。
它们能够承受极高的温度而不破裂或失去粘结能力。
这些粘结剂通常具有较高的熔点和热稳定性,能够在高温下保持稳定的化学和物理性质。
此外,无机耐高温粘结剂还可以有效地抵御氧化、腐蚀和衰减,因此被广泛应用于各种耐高温工业领域。
2.2 化学成分和物理性质无机耐高温粘结剂通常由一系列含硅或含铝化合物组成。
这些化合物中的主要成分、添加剂以及它们之间的比例将直接影响到粘结剂的物理性质和耐高温特性。
其中,一些常见的无机材料包括硅酸盐、氮化硅、氧化铝等。
这些材料具有优异的热导率、低膨胀系数和良好的尺寸稳定性,使其在高温环境中具有出色的表现。
熔模精密铸造型壳耐火材料的合理选择一.前言制壳是精铸四大生产工序中对精铸质量影响最大的工序,其次才是焙炼浇注后处理及制蜡模。
统计表明精铸件中有60~70℅的返修品或废品是由型壳质量不良而造成的。
例如铸件表面缺陷常见的有:飞翅(披锋)、流纹、毛刺、铁豆和局部穿钢、气孔、针孔、分层、落砂、鼓胀或凹陷、变形、开裂…。
这些缺陷大部分是因型壳表面有裂纹,蚁孔,气泡,局部涂料堆积干燥(硬化)不透或型壳退性,透气性差,焙烧不透,高温吸气等因素产生的。
影响型壳质量的主要因素有:1.制壳原辅材料:包括耐火材料、粘结剂、硬化剂等2.制壳生产环境:包括温度、湿度、风速、风量等3.制壳操作水平:工人操作技术高低、生产经验等4.涂料的质量控制及制壳工艺的合理制定:涂料工艺性能的控制和调整及浇注系统,制壳工艺方法确定。
其中型壳“耐火材料”的合理选用是保证型壳质量的关键因素之一。
正确选用型壳的砂、粉料的基本原则是:高性价比。
目前我国精铸件质量稳定性差、返修率、废品率居高不下。
其中重要原因之一是:盲目选择质量低劣、价格低廉的耐火砂、粉料制壳。
其目的是“节约成本”结果往往适得其反。
不仅由于型壳质量波动造成精铸返修率,废品率上升,而且使后处理工序工时、生产成本大增。
铸件补焊、打磨、抛丸、多次返覆,费工、费料、费时。
其综合成本远超过型壳耐火材料“节约”的差价,得不偿失。
不仅严重影响铸件表面质量和交货期,还使企业信誉受损。
这是我国精铸企业普遍存在的现状。
特别是在国内已有60年生产历史的水玻璃型壳生产企业这一问题更为突出。
二、精铸型壳用耐火材料类别及性能:1、表面层型壳用耐火砂、粉料——主要有:锆英石、电熔白刚玉、熔融石英、精制石英。
少数工厂用优质、低FeO%含量的高岭石砂粉料。
2、背层用铝硅系耐火料类别——{ 石英玻璃{ 透明 { (SiO2≥99.96%)>1713℃ { { 水晶石----石英(SiO2 ≥98%)---------熔融石英--------{| (熔融) { 不透明----(优质石英砂制)SiO2≥99% |||| { 软质粘土--耐火粘土(生料)----------生料或轻烧料(800-900℃) | { (Al2O3=25-32%)铝|----粘土质耐火料----{ { 高岭石(高岭石含量≥95%) | (Al2O325-48%) { { 煤矸石硅| 耐火度t>1580℃) { 硬质粘土—高岭石(熟料)----------{ 焦宝石| { (Al2O332-48%)(1250-1350℃煅烧) { 上店土系| { 莫来卡特(MOLOCHITE英国) | { 雷马斯(REMASIL美国)耐||火|| { 特等------Al2O3:>90%(刚玉质)料| { 一等------Al2O3:80-90%(刚玉-莫来石质)|----高铝质耐火料-----{ 二等甲----Al2O3:70-80%(莫来石-刚玉质)| (铝矾土熟料) { 二等乙----Al2O3:60-70%(莫来石质)| { 三等------Al2O3:48-60%(低莫来石质)| (Al2O345-90%)| (1500-1750℃煅烧)|||---------电熔刚玉(Al2O3≥98.5%)----棕刚玉(Al2O3≥95℃)(白刚玉)(2000-2400℃熔融)3、精铸常用耐火料性能汇总表一项目名单称位锆英石石英石熔融石英耐火粘土高岭石铝矾土电熔刚玉分子式ZrO2·SiO2(ZrSiO4)SiO2SiO2Al2O3·2SiO2·2H20Al2O3·2SiO2·2H20Al2O3·H20α-Al2O3熔点℃2350 1713 17131670-17101750-17871800 2030-2050 耐火度℃>2000 1680 1700 >15801700-1900≥1770 2000膨胀系数X10-7(1/℃)(0-1200℃)46 123 5 50 50-80 86真实密度g/cm3 4.5-4.9 2.6 2.02-2.182.62.62-2.653.1-3.54.0硬度莫氏7-8 7 6-7 1-2 -5 -5 9传热系数w/m2-k2.094(2000℃)0.558(1500-1400℃)1.549(1200℃)5.276(1200℃)化学性质弱酸性酸性酸性酸性弱酸性弱酸性酸性主要化学成分% ZrO265-66SiO2≥98SiO2≥99Al2O325-32Al2O335-48Al2O348-90Al2O3≥98.5杂质Fe2O3 % ≤0.1 ≤0.1≤0.051.0-4.0 0.6-1.2 1-2 ≤0.1三.型壳耐火材料的技术要求1.制壳用耐火材料种类并不多。