石油1-4油气中的稳定同位素讲解
- 格式:ppt
- 大小:574.00 KB
- 文档页数:21
稳定性同位素质谱分析技术在石油地质中的应用与进展摘要:随着现代分析测试技术的提高,稳定性同位素质谱分析技术在油气地球化学中的应用也越来越广泛。
总结了碳同位素、氦同位素、锶同位素以及Re-Os同位素在油气地球化学中的应用,这些应用包括:用同位素研究来鉴别原油的生成环境和母质类型,对天然气进行成因分类和鉴别,判断天然气的成熟度,进行油气源对比,讨论油气的次生变化,研究油气运移,油气藏的成藏年代等。
探讨了这几种同位素在油气地球化学应用研究中存在的和应注意的问题。
关键词:稳定性同位素;石油地质;应用PROCESS AND APPLICATION OF STABLE ISOTOPESIN GEOLOGY OF NATURAL GAS AND PETROLEUMLiming ZhaoResource school, China University of Geosciences, wuhan, 430074, ChinaAbstract: The important roles of stable isotope data in the determination of the origin of natural gases, identification of kerogen precursors, comparison of oil-gas-sources, retracing of second migration of oil and/or gases, exploring the evolution of organic matter, analyzing the secondary change of oil and/or gases and exploitation of heterogeneous oil and/or gases are elucidated; the latest developments in their study and application in production are also introduced.Keywords: stable isotope, petroleum geology, application前言在石油天然气地质工作中,稳定同位素方法日益受到重视。
稳定碳同位素法在油气地球化学分析中的应用李惠平(中国地质大学地球科学学院,湖北武汉,430074)摘要: 随着现代分析测试技术的提高,碳同位素在油气地球化学中的应用也越来越广泛。
总结碳同位素在油气地球化学中的应用,这些应用包括:用碳同位素研究来鉴别原油的生成环境和母质类型,对天然气进行成因分类和鉴别,判断天然气的成熟度,进行油气源对比,讨论油气的次生变化,研究油气运移,研究天然气的混合情况和油藏地球化学。
关键词: 稳定碳同位素;油气地球化学;进展1.鉴别原油的生成环境和油气母质类型稳定碳同位素技术在油气地球化学上应用广泛。
现在普遍认为石油是由古代海相或陆相盆地中的沉积有机质随地层沉降埋深热演化而生成的, 沉积环境决定了有机质的性质, 而有机质的类型影响生成油的碳同位素组成。
因此, 通过原油单体烃碳同位素的研究, 可以确定其生成环境和母质来源。
一般认为原油< - 30‰时, 其烃源岩的沉积环境为海相; 为- 29. 5‰~ - 28‰时, 其烃源岩的沉积环境为湖相; 为- 28‰~ - 24‰时, 其烃源岩的沉积环境为陆相, 与煤系地层有关。
总的来说, 海相来源原油碳同位素比陆相来源的轻。
Bjoroy研究认为湖相来源和陆相来源的原油中正构烷烃和类异戊二烯的同位素值有明显的差别: 在湖相来源的原油中, 类异戊二烯的同位素值与相同碳原子数的正构烷烃的类似; 而在陆相来源的原油中, 类异戊二烯的同位素值比相应的正构烷烃的轻;在湖相来源的原油中, 正构烷烃和类异戊二烯的同位素比值均随着碳原子数的增加变化微弱; 在陆相来源的原油中, 正构烷烃的同位素比值随着碳原子数的增加而变轻, 而类异戊二烯的同位素比值则随着碳原子数的增加而变重。
沈平等将我国主要地区石油分离为饱和烃和芳烃两个馏份进行碳同位素测定, 发现不同来源的石油, 其饱和烃和芳烃的碳同位素组成具有明显差异: 对型或煤系有关的轻质油, 其饱和烃和芳烃都富集较重的碳同位素,型原油与煤系有关的轻质油(或凝析油) 相比, 均具有较轻的饱、芳同位素组成。
文章编号:1001-6112(2007)03-0292-06塔河油田奥陶系油田水同位素特征及地质意义贾存善1,2,马旭杰3,饶 丹2,高仁祥2(1.中国矿业大学资源与安全工程学院,北京 100083; 2.中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所,江苏无锡 214151; 3.中国石化西北分公司勘探开发研究院,乌鲁木齐 830011)摘要:塔河油田奥陶系地层水的 D(SM OW )分布于-44.7 ~-61.0 ,表明为古大气降水和原生沉积水的混合水,并以古大气水为主。
根据油田水的高压物性参数、HC O -3离子碳同位素、锶同位素87Sr/86Sr 比值等的横向变化规律,大致判断出塔里木盆地阿克库勒凸起古大气水的优势流动方向为从阿克库勒凸起的东北构造高地向鼻凸倾伏的西南方向流动,并且在此流动过程中由构造轴部向两翼分流,通过对断裂、裂隙等薄弱带的不断溶蚀扩大,最终形成塔河油田奥陶系复杂的碳酸盐岩岩溶缝洞系统,为油气聚集成藏提供了有效的储集空间。
因此,古大气水流动的方向对岩溶缝洞系统的分布以及缝洞单元的连通性具有重要的控制作用。
关键词:岩溶缝洞系统;同位素;油田水;奥陶系;塔河油田;塔里木盆地中图分类号:T E133 文献标识码:AISOTOPIC CHARACTERISTICS OF OIL FILED WATERSFROM ORDO VICIAN OIL ACCUMULATIONS IN TAHE OILFIELD AND ITS GEOLOGICAL SIGNIFICANCESJia Cunshan 1,2,M a Xujie 3,Rao Dan 2,Gao Renx iang 2(1.College of Resour ce &S af ety Engineer ing ,China Univer sity of M ining &T echnology ,Beij ing 100083,China;2.Wux i Resear ch I nstitute of Petr oleum Geology ,SI N OPEC,W ux i ,J iangsu 214151,China;3.Ex p lor ation &Pr oduction Resear ch I nstitute of N or thw est Br anch Comp any ,SI N OPEC,Ur umq i,X ingj iang 830011,China)Abstract:H y drog en isotope values( D)of oil field waters from the Ordovician oil accum ulations in Tahe oilfield co ver -44.7 ~-61.0 (SM OW),fro m w hich one can conclude that the oilfield w aters ar e mostly paleo atmo spheric w aters mixed w ith orig inal sedim ent seaw ater.Based o n the transv erse chang e tr ends o f the parameters in these oilfield w aters,such as high pr essure physical par am eter,carbon iso to pe o f H CO -3electronegativ e ion and87Sr/86Sr ratio of strontium iso to pe,one can ro ug hly deduce thatthe predom inant flow direction of paleo atmospheric w ater is from the no rtheastern tectonic high po sitio n to the so uthw estern plung e end of the Arkekule no se salient.In this process,the current flow ed from ax is to tw o w ing s of the tectonic,w hich w ould cut through w eakness belt of faults o r cracks and enlarg e the space by carbonates corro sion,finally form ed com plicated karst fracture cavity system o f the Ordovi cian carbonates in Tahe Oilfield.T herefore,the flow direction o f paleo atm ospher ic w ater controled the distribution o f fracture cavity system and connectivity of fr acture cavity cells.Key words:Karst fracture cavity system;isotope;oil field water;the Ordovician;Tahe Oilfield;the Tarim Basin 过去曾认为油田水代表原生水或原始捕集的沉积水。
(1) 各同位素体系简介,包括表达形式及其在地球各储库的分布(2) 各同位素在地质过程中的主要分馏机制(3) 稳定同位素在地质过程中的应用,例举主要应用及其原理。
一、稳定同位素理论及简介1、 同位素(isotope)是同一化学元素的核素,它们具有相同的核外电子排布结构。
由于核外电子数由原子核中质子数决定,因而总的化学性质相同,只是质量不同。
2、 稳定同位素:不具有放射性的同位素称为稳定同位素(Stable isotopes)。
3、 一般传统稳定同位素限于质量数小于40的非金属元素,如CHONS 。
4、 同位素比值R=X*/X ,X*和X 分别表示重同位素和轻同位素含量.5、6、 两种物质间同位素分馏的程度用分馏系数a 表示:7、 ∆ = 103 ln α ; ∆ = (α - 1) × 1038、 振动能是产生同位素分馏的主因——这是理论计算同位素分馏的基础。
9、 自然界存在三种类型的同位素分馏,平衡分馏,动力学分馏和非质量相关分馏。
二、H 、O 同位素1、氧有3种稳定同位素 16O 17O 18O 氢有2种稳定同位素 1H D(2H)2、地球上的岩石有相似的氢同位素组成,平均:-60‰;大气水具有非常轻的氢同位素组成;地幔dD :-90~-60‰;绝大多数火成岩的d18O 变化范围为5~15‰,dD 范围为-40~-100‰。
橄榄岩:d18O =5.5‰ MORB : d18O =5.7‰;M 型花岗岩:δ18O = 6-7.5‰,同正常玄武岩浆分异有关;I 型花岗岩:δ18O = 7.5-10‰,源岩是贫18O 的地壳岩浆岩;S 型花岗岩:δ18O = 10-13‰,是富18O 沉积岩部分熔融产物。
化学沉积岩δ18O 较高,20-403、分馏机制:由于晶体化学差异,矿物不同18O 富集程度也不同。
石英>方解石》角闪石》黑云母》橄榄石。
4、O 同位素应用:古温度计、古气候、示踪陆壳物质再循环、水岩相互作用H 同位素应用:示踪成矿流体来源三、C 同位素1、自然界中碳以12C 、13C 、14C 等多种同位素的形式存在,12C 、13C 相对丰度分别为98.89%、1.11%;14C 只有极微量且具放射性,半衰期为5730年。
单体烃稳定碳同位素在沉积和油气地质中的应用摘要随着科学技术的进步,人们已不满足测定原油总体的δ13C值及原油族组分碳同位素值,而是着眼于研究原油中单体烃分子的碳同位素特征,以便获得更多、更详细烃分子系列碳同位素信息。
因此,单体烃碳同位素分析技术应用而生,原油单体烃碳同位素分析技术主要用于油源对比。
由于碳同位素仪比较复杂,包括的设备多,操作繁琐,国内同行业有这样大型仪器的单位不多,因而对此项技术的开发有很重要的意义。
原油单体烃碳同位素分析技术在油源对比等地质应用方面具有可行性,同时体现出有效的实际应用价值。
关键词单体烃碳同位素油气地质原油分类油源对比单体烃碳同位素能从分子级别反映单个化合物的来源,较之于全油和族组成分同位素,具有更明显的优越性,已广泛应用于油气成因类型、油源识别、混源定量等油气勘探实践中。
其数据的精度在相当程度上取决于单体化合物分离的纯度、仪器检测的稳定性及标样的界定。
原油单体烃碳同位素的分布形式主要取决于样品的性质,特别是母源岩原始沉积环境与生源输人,受成熟度等其他因素的影响相对较小。
我国西部叠合盆地由于存在多套有效烃源岩,不同成因类型原油混源现象普遍,如塔里木盆地可能包含海相与陆相各自不同层位烃源岩,甚至海相与陆相成因原油的混源,因此单体烃碳同位素在油源识别中至关重要。
为了更好地应用单体烃碳同位素技术,需要建立不同地质模式下不同成因类型原油的单体烃碳同位素模型,并对可能的影响因素进行评价。
1单体正构烷烃碳同位素的古植被与古气候意义近年来,由于气相色谱-燃烧-同位素比质谱联用仪(GC/C/IRMS)新技术的成功运用,使得单体分子标志化合物碳同位素的研究已在生物源识别、C3与C4植被类型确定、全球碳循环等方面得到了应用。
单体分子标志物碳同位素的研究使稳定同位素在古气候学中的应用达到分子级水平,不但为局部或全球古气候研究而且为控制全球碳循环的机制探讨提供了新的更加准确的证据。
因而,分子标志物的分布与单体碳同位素组成特征的联合应用,可以大大增强追踪古环境中有机质来源和重建古生物地球化学过程及古环境的能力。
2013年6月June2013岩 矿 测 试ROCKANDMINERALANALYSISVol.32,No.3392~397收稿日期:2012-12-03;接受日期:2013-02-20基金资助:中国地质大调查项目(1212011120276,12120113015100)作者简介:李立武,博士,研究员,主要从事气体地球化学分析测试与研究。
E mail:llwu@lzb.ac.cn。
文章编号:02545357(2013)03039206稳定同位素质谱与同位素光谱结合的方法分析氧同位素17O/16O李立武1,王 广2,李中平1,杜 丽1,曹春辉1(1.中国科学院油气资源研究重点实验室,甘肃兰州 730000;2.国家地质实验测试中心,北京 100037)摘要:传统的氧同位素分析方法一般将各种形式的氧转化为CO2,再通过稳定同位素质谱测定其氧同位素组成,由于二氧化碳中的17O和13C在质谱中有相同的质荷比m/z,这种方法不能测得17O同位素的丰度,三氧同位素(16O、17O、18O)丰度分析的关键是17O同位素丰度的分析。
为了测量17O同位素丰度,一般需要先将各种形式的氧转化为O2,然后利用稳定同位素质谱进行分析,转化过程复杂或者有危险。
本文提出了一种新思路,应用稳定同位素质谱与碳同位素光谱相结合的方法分析17O/16O。
先采用传统方法将各种形式的氧转化为CO2,再由多接收器稳定同位素质谱计测得CO2的质谱峰高比45/44(记为R45),同位素光谱如光腔衰荡光谱测得13C/12C(定义为R13),计算其同位素比值17O/16O=(R45-R13)/2,方法的分析精度好于±0.08‰(1σ)。
该方法是在传统方法的基础上,增加一个CO2碳同位素光谱分析步骤,通过简单的数据处理就可以获得17O同位素组成,而无需将各种形式的氧转化为O2,18O同位素样品制备方法成熟,无危险性,且分析精度优于或相当于其他测试方法。
第十讲地质常用主要稳定同位素简介18OFull atmospheric General Circulation Model (GCM) with water isotope fractionation included.内容提要●基本特征●氢同位素●碳同位素●氧同位素●硫同位素10.1. 传统稳定同位素基本特征☐只有在自然过程中其同位素分馏变化为可测量范围的元素,才能应用于地质研究用途,这些元素的质量范围多<40;☐多为能形成固、气、液多相态物质的元素,其稳定同位素组成可发生较大程度变化。
总体上,重同位素趋于在结合紧密的固相物质中富集;重同位素趋于在氧化价态最高的物相中富集;☐生物系统中的同位素变化常用动力效应来解释。
在生物作用过程中(如光合作用、细菌反应及其它微生物过程),相对于反应初始组成,轻同位素趋于在反应生成物中富集。
10.2. 氢(hydrogen)☐直到1930年代,人们才发现H不是由1 个同位素,而是由两个同位素组成:1H:99.9844%2H(D):0.0156%☐在SMOW中D/H=155.8 10-6☐氢还有一个同位素氚(3H),但为放射性核素,半衰期仅为~12.5y。
10.2.1 氢同位素基本特征☐与多数重元素的同位素组成不同,太阳系物质具有高度不均一的氢(氧)同位素组成,尤其是内地行星与彗星之间;☐1H与D同位素间质量相对差最大,在地球样品中表现出最大的稳定同位素变化(分馏)范围;☐从大气圈、水圈直至地球深部,氢总是以HO、OH-,2H2、CH4等形式存在,即在各种地质过程中起着重要作用;☐氢同位素以 D表示,其同位素测量精度通常为0.5‰至2‰(相对其它稳定同位素偏低)。
JFC:Jupiter family cometsOCC:outer solar system Oortcloud comets内地行星与碳质球粒陨石具有相似的氢同位素组成,但与彗星之间存在差异(Taylor,2015,PSRD: Water in Asteroid 4 Vesta)(Robert ,2011,Nature Geoscience)行星和陨石的氢同位素组成(Alexander et al., 2012, EPSL)NASA/JPL-Caltech/UCLA/MPS/DLR/IDAWater in apatite in meteorites from Vesta varies in its hydrogen isotopic composition. Range is similar to the range in Earth.来自小行星带不同陨石样品中磷灰石的氢同位素组成(Sarafian et al.,2014)Hydrogen isotope variations in mantle-derived materials(Bell and Ihinger, 2000)金云母K-碱镁闪石韭闪石&羟钛角闪石10.2.2 主要分馏机制◆发生氢同位素分馏的主要原因是水蒸气压的不同,其次为其冰点差异。
《石油地质学》课程笔记第一章绪论1.1 石油和天然气在现代社会中的地位石油和天然气是现代社会最重要的化石能源,对于全球经济发展和社会进步具有举足轻重的作用。
它们不仅是能源的主要来源,还是化学工业、农业、医药、制冷和运输等行业不可或缺的原材料。
随着全球经济的快速增长,石油和天然气需求持续增加,导致资源紧张和价格波动。
因此,石油和天然气资源的勘探、开发和利用成为各国政府和企业关注的焦点。
1.2 我国油气地质与勘探发展简史我国石油和天然气的开发利用历史悠久,早在公元前就有关于石油和天然气的记载。
20世纪初,我国开始引进西方的地质理论和勘探技术,开展油气资源的调查和勘探。
新中国成立后,我国油气地质与勘探事业取得了举世瞩目的成就。
1950年代,发现了大庆、胜利等大型油田,使我国成为石油生产大国。
此后,我国在陆地和海域油气勘探不断取得突破,形成了多个重要的油气产区。
1.3 世界油气地质与勘探发展简史世界油气地质与勘探的发展历程与人类对能源的需求密切相关。
19世纪初,人们开始使用煤油作为照明燃料,推动了石油勘探的兴起。
随着内燃机的发明和应用,石油需求激增,促使勘探技术不断进步。
20世纪初,地质学家们提出了油气成因理论,为油气勘探提供了科学依据。
此后,地震勘探、钻井技术、油气藏评价等技术的突破,使得油气勘探领域不断扩大,发现了大量油气田。
第二章石油、天然气、油田水的基本特征2.1 石油的元素组成石油是一种复杂的混合物,主要由碳(C)和氢(H)两种元素组成,碳的含量约占83%至87%,氢的含量约占11%至14%。
此外,石油中还含有少量的硫(S)、氮(N)、氧(O)和微量金属元素等。
2.2 石油的化合物组成石油中的化合物主要包括烷烃、环烷烃和芳香烃。
烷烃是石油中含量最高的化合物,主要包括甲烷、乙烷、丙烷等。
环烷烃包括环戊烷、环己烷等。
芳香烃包括苯、甲苯、二甲苯等。
2.3 石油的馏分组成与组分组成石油可以通过蒸馏分离成不同的馏分,主要包括:轻馏分(液化石油气、汽油)、中馏分(柴油、煤油)、重馏分(润滑油、沥青)和残余油(重油、渣油)。