中型发电厂电气主接线设计
- 格式:doc
- 大小:848.50 KB
- 文档页数:20
中型发电厂电气主接线设计概述:中型发电厂是指发电机容量在200MW至600MW之间的电厂。
电气主接线设计是发电厂电气系统中的一个重要部分,它负责将发电机输出的电能输送到变电站,供应给大型工业企业或居民使用。
电气主接线设计的目标是确保电力传输的安全、可靠和高效。
设计过程:电气主接线设计需要考虑多个因素,如输电距离、线路负载、设备容量、电压等级等。
下面是一个中型发电厂电气主接线设计的一般过程:1.确定输电距离和传输容量:首先需要确定发电厂到变电站的输电距离,并根据预计的负荷需求确定传输容量。
根据这些参数,选择合适的电缆或电线。
2.确定电压等级:根据输电距离和传输容量,选择合适的电压等级。
常见的电压等级有110kV、220kV和500kV。
3.设计电缆或电线的规格:根据电流负载和电压等级,计算所需的电缆或电线的截面积和长度。
还需要考虑电缆或电线的散热能力,以确保安全运行。
4.设计变电站的主接线:根据发电机输出的电压和电流,设计变电站的主接线。
主接线需要考虑电流分布、电压降低和电缆或电线的阻抗。
5.确定保护系统:为了确保电气系统的安全运行,需要设计合适的保护系统,包括过电流保护、接地保护、短路保护等。
6.进行电气主接线布线:根据设计的结果,进行实际的电气主接线布线。
布线需要考虑电缆或电线的敷设方式、距离和阻抗。
7.进行电气主接线的测试和调试:在完成电气主接线布线后,进行必要的测试和调试,包括电气参数的测量、保护系统的测试等。
8.进行电气主接线的运行和维护:电气主接线的运行和维护是确保电力传输安全可靠的关键。
定期检查电气主接线的状态,及时发现和修复潜在问题。
总结:电气主接线设计是中型发电厂电气系统中非常重要的一个环节。
合理的设计可以保证发电厂的电能传输安全、可靠和高效。
设计过程需要考虑多个因素,如输电距离、线路负载、设备容量、电压等级等。
通过合理的设计和维护,可以提高电气系统的可靠性和效率。
电气主接线设计1.1对原始资料的分析设计电厂为中型凝汽式电厂,其容量为2×100+2×300=800MW,占电力系统总容量800/(3500+800)×100%=18.6%,超过了电力系统的检修备用8%~15%和事故备用容量10%的限额,说明该厂在未来电力系统中的作用和地位至关重要,但是其年利用小时数为5000h,小于电力系统电机组的平均最大负荷利用小时数(2006年我国电力系统发电机组年最大负荷利用小时数为5221h)。
该厂为凝汽式电厂,在电力系统中将主要承担腰荷,从而不必着重考虑其可靠性。
从负荷特点及电压等级可知,10.5kV电压上的地方负荷容量不大,共有6回电缆馈线,与100MW发电机的机端电压相等,采用直馈线为宜。
300MW发电机的机端电压为20kV,拟采用单元接线形式,不设发电机出口断路器,有利于节省投资及简化配电装置布置;110kV电压级出线回路数为5回,为保证检修出线断路器不致对该回路停电,拟采取双母线带旁路母线接线形式为宜;220kV与系统有4回路线,送出本厂最大可能的电力为800-200-25-800×8%=511MW,拟采用双母线分段接线形式。
1.2主接线方案的拟定在对原始资料分析的基础上,结合对电气接线的可靠性、灵活性及经济性等基本要求,综合考虑。
在满足技术,积极政策的前提下,力争使其技术先进,供电安全可靠、经济合理的主接线方案。
发电、供电可靠性是发电厂生产的首要问题,主接线的设计,首先应保证其满发,满供,不积压发电能力。
同时尽可能减少传输能量过程中的损失,以保证供电的连续性,因而根据对原始资料的分析,现将主接线方案拟订如下:(1)10.5kV电压级:鉴于出线回路多,且发电机单机容量为100MW,远大于有关设计规程对选用单母线分段接线每段上不宜超过12MW的规定,应确定为双母线接线形式,2台100MW机组分别接在母线上,剩余功率通过主变压器送往高一级电压110kV。
发电厂电气主接线一次初步设计书一、电力工业的发展概况火力发电是现在电力发展的主力军,在现在提出和谐社会,循环经济的环境中,我们在提高火电技术的方向上要着重考虑电力对环境的影响,对不可再生能源的影响,虽然现在我国已有部分核电机组,但火电仍占领电力的大部分市场,近年电力发展滞后经济发展,全国上了许多火电厂,但火电技术必须不断提高发展,才能适应和谐社会的要求。
“十五”期间我国火电建设项目发展迅猛。
2001年至2005年8月,经国家环保总局审批的火电项目达472个,装机容量达344382MW,其中2004年审批项目135个,装机容量107590MW,比上年增长207%;2005年1至8月份,审批项目213个,装机容量168546MW,同比增长420%。
随着中国电力供应的逐步宽松以及国家对节能降耗的重视,中国开始加大力度调整火力发电行业的结构。
由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。
它的功能是将自然界的一次能源通过发电动力装置(主要包括锅炉、汽轮机、发电机及电厂辅助生产系统等)转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心。
由于电源点与负荷中心多数处于不同地区,也无法大量储存,电能生产必须时刻保持与消费平衡。
因此,电能的集中开发与分散使用,以及电能的连续供应与负荷的随机变化,就制约了电力系统的结构和运行。
据此,电力系统要实现其功能,就需在各个环节和不同层次设置相应的信息与控制系统,以便对电能的生产和输运过程进行测量、调节、控制、保护、通信和调度,确保用户获得安全、经济、优质的电能。
电能是一种清洁的二次能源。
由于电能不仅便于输送和分配,易于转换为其它的能源,而且便于控制、管理和调度,易于实现自动化。
因此,电能已广泛应用于国民经济、社会生产和人民生活的各个方面。
绝大多数电能都由电力系统中发电厂提供,电力工业已成为我国实现现代化的基础,得到迅猛发展。
本设计的主要内容包括:通过原始资料分析和方案比较,确定发电厂的电气主接线。
发电厂电气主接线设计计划书第一章、系统与负荷资料分析发电厂容量的确定与国家经济发展规划、电力负荷增长速度、系统规模和电网结构以及备用容量等因素有关。
发电厂装机容量标志着发电厂的规模和在电力系统中的地位和作用。
设计电厂为大型凝气式火电厂,其容量为2×300=600MW,最大单机容量为300MW,即具有大中型容量的规模、大中型机组的特点。
当电厂全部机组投入运行后,将占电力系统总容量600/6000≈10%,没有超过电力系统的检修备用容量为8%~15%和事故备用容量为10%的限额,说明该电厂在未来电力系统中不占主导作用和主导地位,主要供给地区用电。
发电厂运行方式及年利用小时数直接影响着主接线设计。
从年利用小时数看,该电厂年利用小时数为6500h/a,远大于我国电力系统发电机组的平均最大负荷利用小时数5000h/年;又为火电厂,所以该发电厂为带基荷的发电厂,在电力系统占比较重要的地位,因此,该厂主接线要求有较高的可靠性;从负荷特点及电压等级可知,该电厂具有110KV和220KV两级电压负荷。
110KV电压等级有8回架空线路,承担一级负荷,最大输送功率为110MW,最大年利用小时数为4000h/a,说明对其可靠性有一定要求;220KV电压等级有10回架空线路,承担一级负荷,最大输送功率为500MW,最大年利用小时数为4500h/a,其可靠性要求较高,为保证检修出线断路器不致对该回路断电,拟采用带旁路母线接线形式。
第二章、电气主接线2.1、主接线方案的选择2.1.1 方案拟定的依据对电气主接线的基本要求,概括的说应该包括可靠性、灵活性和经济性三方面。
安全可靠是电力生产的首要任务,保证供电可靠是电气主接线最基本的要求。
通常定性分析和衡量主接线可靠性时,从以下几个方面考虑:断路器检修时,是否影响连续供电;线路、断路器或母线故障,以及在母线检修时,造成馈线停运的回路数多少和停电时间长短,能否满足重要的一、二类负荷对供电的要求;本电厂有无全厂停电的可能性;大型机组突然停电对电力系统稳定运行的影响与产生的后果等因素。
<<发电厂电气主系统>>课程设计原始资料题目:中型电厂电气主接线1. 发电厂(变电厂)的建设规模 (1) 类型:中型凝汽式电厂(2) 最终容量和台数:MW 1002⨯ (QFQ-100-2) KV U N 5.10=85.0=ϕCOS %3.163=d X %20'=dX %4.12"=d X MW 3002⨯ (QFSN-300-2) KV U N 20=85.0=ϕCOS %6.186=d X %2.19'=dX %3.14"=d X (3) 利用小时数:5000小时/年2. 接入系统及电力负荷情况(1)10.5KV 电压级 最大负荷42MW,最小负荷25MW,,8.0=ϕCOS a h T MAX /5000=.电缆馈线(出线)6回,每回平均输送容量7000KW.(2)110KV 出线 5回,每回额定输送容量15MW.110KV 最大负荷300MW,最小负荷200MW, ,8.0=ϕCOS a h T MAX /4500= (3)220KV 电压等级: 出线 4回,其中备用出线2回,接受该厂的剩余功率.电力系统容量:3500MW,当取基准容量为100MVA 时,系统归算到220KV 母线上的021.0*=s x(4)发电机出口处主保护动作时间取s t pr 1.01=,后备保护时间s t pr 0.22=(5)厂用电率 取6% 厂用电负荷平均功率因数 取85.0cos =ϕ 3.环境因素:海拔小于1000米,环境温度025c ,母线运行温度080c世界很大,风景很美;人生苦短,不要让自己在阴影里蜷缩和爬行。
应该淡然镇定,用心灵的阳光驱散迷雾,走出阴影,微笑而行,勇敢地走出自己人生的风景!人们在成长与成功的路途中,往往由于心理的阴影,导致两种不同的结果:有些人可能会因生活的不顺畅怨天尤人,烦恼重重,精神萎靡不振,人生黯淡无光;有人可能会在逆境中顽强的拼搏和成长,历练出若谷的胸怀,搏取到骄人的成就。
发电厂电气主接线课程设计————————————————————————————————作者:————————————————————————————————日期:发电厂电气主接线课程设计题目:2*300MW火电厂主接线设计学生姓名:学号:专业:班级:指导教师:摘要随着我国经济发展,对电的需求也越来越大。
电作为我国经济发展最重要的一种能源,主要是可以方便、高效地转换成其它能源形式。
电力工业作为一种先进的生产力,是国民经济发展中最重要的基础能源产业。
而火力发电是电力工业发展中的主力军,截止2006年底,火电发电量达到48405万千瓦,越占总容量77.82%。
由此可见,火力电能在我国这个发展中国家的国民经济中的重要性。
电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。
主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。
并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。
本文将针对某火力发电厂的设计,主要是对电气方面进行研究。
对配有2台300MW汽轮发电机的火电厂一次部分的初步设计,主要完成了电气主接线的设计。
包括电气主接线的形式的比较、选择;主变压器、启动/备用变压器和高压厂用变压器容量计算、台数和型号的选择;短路电流计算和高压电气设备的选择与校验; 并作了变压器保护。
通过对本次的设计设计,掌握了一些基本的设计方法,在设计过程中更加稳固了理论知识。
关键词:发电厂;火电厂;电气主接线;目录摘要 (2)发电厂课程设计任务书 (4)第一章引言 (5)1.1研究背景及意义 (5)1.2电气主接线的基本要求及形式 (6)第二章电气主接线设计 (8)2.1设计步骤 (8)2.2设计方案 (8)2.3方案分析 (8)第三章厂用电设计 (10)3.1厂用电 (10)3.2厂用电分类 (10)3.3厂用电设计原则 (11)3.4厂用电源选择 (11)3.5厂用电接线形式 (12)第四章电气设备的选择 (13)4.1电气设备选择的一般规则 (13)4.2按正常工作条件选择电器 (13)4.3按短路情况校验 (14)4.4断路器的选择 (15)4.5隔离开关的选择 (15)4.6电流互感器的选择 (15)4.7电缆的选择 (17)第五章设计感想 (18)发电厂课程设计任务书设计题目:2*300MW火电厂主接线设计设计原始资料:1、厂用电为总容量7%2、两台主变3、220KV 5回出线4、110KV 7回出线设计内容:1、对水电站电气主接线进行论述2、选择水电站电气主接线方式,并说明3、对主接线主要电气设备选型计算,校验计算4、主要点短路电流计算5、对主变保护进行论述设计要求:1、主接线论证,方案比较2、主接线设计正确3、设备选型科学并有依据4、图纸规范5、独立完成6、参阅相关资料设计时间安排:1、主接线初步设计1天2、短路电流计算1天3、设备选择2天4、汇制图纸书写说明书2天第一章引言1.1研究背景及意义电力工业是国民经济的重要部门之一,是一种将煤、石油、天然气、水能、核能、风能等一次能源转换成电能这个二次能源的工业,作为国民经济的其他各部门的快速,稳定发展提供足够的动力,其发展水平是反映国家经济发达程度的重要标志,又和广大人民群众的日常生活有着密切的关系。
引言电力系统由发电厂、变电所、线路及用户组成。
发电厂是把各种能源(化学能、水能、原子能)转换成电能的工厂。
发电厂生产的电能,一般先由电厂的升压站升压,经高压输电线路送出,再经变电所若干次降压后,才能供给用户使用。
直接生产、转换和输配电能的如:开关设备,载流导体称为一次设备。
对一次设备进行监察、测量、控制、保护、调节的辅助设备,称为二次设备,如自动保护及自动装置。
本次设计包括发电厂一次设备及二次设备的部分设计。
发电厂的主接线是根据容量,电压等级负荷等等情况设计,并经过技术经济比较,选出最佳方案,然后通过短路电流计算、回路最大持续工作电流计算,选出设备的型号,了解配电装置布置原则,设计防雷接地,最后对发电机配置保护。
断路器是发电厂中十分重要的设备,本厂选用的为真空断路器.对于真空断路器的技术性能改造还在不断进行,如用带有双重开关或多重开关的断路器代替只带有一个开关的断路器的先进技术,正在被很多发明者改进,存在的问题是真空断路器应为电介质的特性,而在高压范围内限制使用。
本设计基本达到安全可靠,经济合理的要求。
尽量采用新型技术设备。
作为现代化中型发电厂,是建立大型发电厂的基础。
因此意义重大。
第一章电气主接线的设计1.1 电气主接线的设计1.1.1 电气主接线设计的要求电气主接线图是由各种电气元件如发电机、变压器、断路器、隔离开关、互感器、母线、电缆、线路等,接照一定的要求和顺序接起来,并用国家统一规定图形的文字符号表示的发、变、供电的电路图。
电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。
主接线是的确定对电力系统整体及发电厂、变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择,配电装置布置,继电保护和控制方式的拟定有较大影响。
因此,必须正确处理好各方面的关系,全面分析有关影响因素,通过技术经济比较,合理确定主接线方案。
1.1.2 基本接线及适用范围1. 35kV及110kV母线采用单母分段接线(1)优点:用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电;当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电。
大中型火力发电厂的主接线设计大中型火力发电厂包括机组单台容量为125MW及以上的火力发电厂。
1大中型电厂的电气主接线特点与接线方式(1)主接线特点:1)发电机一变压器采用简单可靠的单元接线方式。
有发电机一变压器单元接线、扩大单元接线、联合单元接线和发电机一变压器一线路单元接线等,直接接入高压或超高压配电装置。
2)大中型电厂的所有发电机一变压器单元有部分接入超高压配电装置、部分接入220kV配电装置;也有全部接入超高压配电装置的。
3)接入系统的电压等级宜符合下列规定:a.接入系统的电压不宜超过两种;b.根据火力发电厂在系统中的地位和作用,不同规模的火力发电厂应分别接入相应电压等级的电网;c.为满足地方负荷所建的电厂,单机容量在600MW以下的机组宜接入330kV及以下电网;d.在受端系统内建设的较大容量的主力电厂宜直接接入高一级电压等级的电网;e.对于向区外送电的电厂,单机容量在600MW及以上的机组宜直接接入高一级电压等级的电网。
(2)接线方式。
1)发电机一变压器单元接线。
一台机组接一台主变压器(双绕组、三绕组或自耦变压器)125MW发电机与变压器单元连接。
当发电厂具有两种升高的电压等级时,应符合下列规定:a.125MW级机组的主变压器宜采用三绕组变压器,每个绕组的通过功率应达到该变压器额定容量的15%以上;站进行联络;b.200MW及以上机组不宜采用三绕组变压器,如高压和中压间需要联系时,宜在变电c连接两种升高电压的三绕组变压器不宜超过2台;d.若两种升高电压均系中性点直接接地,且技术经济合理时,可选用自耦变压器,主要潮流方向应为低压和中压向高压送电。
一台主变压器。
2)发电机一变压器扩大单元接线(分裂变压器或双卷变压器)。
两台或两台以上机组接这种接线适用范围较广,扩大单元的主变压器容量要与电力系统的总容量和备用容量相要求。
适应,一般不大于系统总装机容量的10%,并要满足主变压器故障或检修时系统稳定运行的当发电机的容量与升高电压等级所能传输容量相比,发电机容量较小而不配合时可采用两台发电机接一台主变压器的扩大单元接线,以减少主变压器、高压断路器和高压配电装置间隔。
300MW发电厂电气主接线选择摘要:本次设计着重讲述发电厂电气主接线的设计,相应的介绍了电气主接线选择的基本方案和方法,内。
发电厂是电力系统中的重要组成环节,它将直接影响整个电力系统的安全与经济运行,是电力系统存在的基础。
合理的主接线设计对于电厂来说非常重要。
进一步提高工作人员的素质,研发并制造更好的电力设备亦能提高电力系统的可靠性。
关键词:发电厂;电气主接线1电气主接线的选择电气主接线是由各种电气设备如发电机、变压器、断路器、隔离开关、互感器、母线、电缆、线路等按照一定的要求和顺序连接起来,完成电能的输送和分配的电路。
电气主接线是传输强电流、高电压的网络。
1.1对电气主接线的要求电气主接线代表了发电厂或变电站电气部分的主体结构,是电力系统网络结构的重要组成部分。
它直接影响运行的可靠性、灵活性,并对电器选择、配电装置布置、继电保护、自动装置和控制方式的拟定都有决定性的关系。
电气主接线的确定必须符合综合处理各方面的因素,经过技术、经济论证后方可确定。
根据电力工业设计经验的积累和发电厂、变电站的实际运行的经验,为满足电力系统的需要,对电气主接线提出了一下基本要求:保证对用户供电必要的可靠性;接线应力求简单、清晰、操作方便;运行灵活,设备投、停方便,检修、隔离、维护方便;投资少、运行费用低;有扩建的可能性。
对电气主接线的要求,概括地说包括主要的三个方面:可靠性、灵活性、经济性。
其次应该考虑发展和扩建的可能性。
1.1.1可靠性安全可靠是电力生产的首要任务,保证供电可靠性是电气主接线最基本要求。
事实表明:事故停电不仅是电力部门的损失,而且对国民经济各部门造成的损失更加严重,随着国民经济的发展往往数十倍、数百倍于电力部门的直接损失,严重时可能导致的人生伤亡、设备损坏、产品报废等经济损失和政治影响,其后果更是难以估计。
因此,保证电气主接线的可靠性是头等重要的基本要求。
1.1.2灵活性电气主接线应能适应各种运行方式的要求,即电气主接线应能根据调度的要求快速、方便地进行运行方式之间的转换;一旦出现事故或设备检修时,能快速切除故障,退出设备,防止事故的扩大。
电气主接线设计1.1对原始资料的分析设计电厂为中型凝汽式电厂,其容量为2×100+2×300=800MW,占电力系统总容量800/(3500+800)×100%=18.6%,超过了电力系统的检修备用8%~15%和事故备用容量10%的限额,说明该厂在未来电力系统中的作用和地位至关重要,但是其年利用小时数为5000h,小于电力系统电机组的平均最大负荷利用小时数(2006年我国电力系统发电机组年最大负荷利用小时数为5221h)。
该厂为凝汽式电厂,在电力系统中将主要承担腰荷,从而不必着重考虑其可靠性。
从负荷特点及电压等级可知,10.5kV电压上的地方负荷容量不大,共有6回电缆馈线,与100MW发电机的机端电压相等,采用直馈线为宜。
300MW发电机的机端电压为20kV,拟采用单元接线形式,不设发电机出口断路器,有利于节省投资及简化配电装置布置;110kV电压级出线回路数为5回,为保证检修出线断路器不致对该回路停电,拟采取双母线带旁路母线接线形式为宜;220kV与系统有4回路线,送出本厂最大可能的电力为800-200-25-800×8%=511MW,拟采用双母线分段接线形式。
1.2主接线方案的拟定在对原始资料分析的基础上,结合对电气接线的可靠性、灵活性及经济性等基本要求,综合考虑。
在满足技术,积极政策的前提下,力争使其技术先进,供电安全可靠、经济合理的主接线方案。
发电、供电可靠性是发电厂生产的首要问题,主接线的设计,首先应保证其满发,满供,不积压发电能力。
同时尽可能减少传输能量过程中的损失,以保证供电的连续性,因而根据对原始资料的分析,现将主接线方案拟订如下:(1)10.5kV电压级:鉴于出线回路多,且发电机单机容量为100MW,远大于有关设计规程对选用单母线分段接线每段上不宜超过12MW的规定,应确定为双母线接线形式,2台100MW机组分别接在母线上,剩余功率通过主变压器送往高一级电压110kV。
由于两台100MW机组均接于10.5kV母线上,有较大短路电流,为选择轻型电器,应在各条电缆馈线上装设出线电抗器。
(2)110kV电压级:出线回数大于4回,为保证检修出线断路器不致对该回路停电,采取双母线带旁路母线接线形式,以保证其供电的可靠性和灵活性。
(3)220kV电压级:出线4回,考虑现在断路器免维护减小投资,采用双母线分段接线。
通过两台三绕组变压器联系10.5kV 及110kV电压,以提高可靠性。
2台300MW机组与变压器组成单元接线,直接将功率送往220kV电力系统。
1.3发电机及变压器选择(1)发电机的选择:通过查着资料,两台100MW发电机选用QFQ-100-2型,两台300MW发电机选用QFSN-300-2型。
具体参数如下表:,三绕组变压器选择SFPS7-180000/220/110/10。
具体参数如下表:1.4 年运行费用的计算(1)双绕组变压器△P 0=180KW △Q 0=2520Kvar △P K =828KW △Q K =47160KvarS=527MVA S N =360MVA tmax =4500h/a T=5000h/aK=0.02 n=2 α=0.32元/(kW ·h )△A 1=n (△P 0+K △Q 0)T+ tmax /n(△P K +K △Q K )(S/ S N )²=10844166(kW ·h ) (2)三绕组变压器△P 0=178KW △Q 0=1260Kvar△P 1k =650KW △P 2k =650KW △P 3k =650KW△Q 1k =27000Kvar △Q 2k =-1800Kvar △Q 3k =14400Kvarm ax 1t =5000h/a m ax 2t =4500h/a max 3t =5000h/aT=5000h/a n=2 K=0.02 △A 2=n (△P 0+K △Q 0)T+1/n[(△P 1k +K △Q 1k )t1max +(△P 2k +K △Q 2k )t2max +(△P 3k +K △Q 3k )t3max ]=8733500(kW ·h )C=α(△A 1+△A 2)α=626.5万 1.5电气主接线图 见附录一短路电流计算2.1 概述电力系统中,常见的短路故障有三相对称短路、两相短路和单相接地短路。
其中三相短路电流的计算是为了选择和校验QF 、QS 、母线等电气设备,两相短路电流用于整定继电保护装置。
短路发生后,短路电流的值是变化的,变化的情况决定于系统电源容量的大小、短路点离电源的远近以及系统内发电机是否带有电压自动调整装置等因素。
按短路电流的变化情况,通常把电力系统分为无限容量系统和有限容量系统。
无限容量系统短路电流的计算,采用短路回路总阻抗法计算;有限容量系统短路电流的计算采用运算曲线法,这中间要用到网络的等效变换。
本次设计中,短路电流的计算就涉及到这两个方面的内容。
2.2 系统电气设备电抗标幺值计算系统基准值B S =100MVA ,基准电压B U = .av n U (1)发电机电抗标幺值的计算100MVA 发电机电抗标幺值X *G1=0.124×100×0.85/100=0.105 300MVA 发电机电抗标幺值X *G2=0.143×100×0.85/300=0.422 (2)变压器电抗标幺值的计算 双绕组变压器电抗标幺值 X *T1=0.131×100/360=0.036 (3)三绕组变压器电抗标幺值U K1%=1/2×[U K(1-2)%+U K(3-1)%-U K(2-3)%]=15 U K2%=1/2×[U K(1-2)% +U K(2-3)%-U K(3-1)%]=-1.0 U K3%=1/2×[U K(3-1)%+U K(2-3)%-U K(1-2)%]=8.0 X *T2.1=0.15×100/180=0.083 X *T2.2=(-0.01)×100/180=-0.006 X *T2.3=0.08×100/180=0.044(4)系统归算到220kV 侧的电抗标幺值:0.021X s =*2.3短路电流计算 2.3.1系统的简化图2.3.2 220KV 母线短路等值电路图如下:220kv简化后:0.0140.116220kv短路电流标幺值:I *1=1/O.014+1/0.116=80.48 短路电流:I 1=I *1×100/(√3×220)=21.1KA 短路冲击电流:I sh1=1.9√2I 1=56.7KA 2.3.3 110KV 母线短路 等值电路图如下:简化后:0.044/2110kv短路电流标幺值:I *2=1/0.029=36.2短路电流:I 2=I *2×100/(√3×110)=11.1KA 短路冲击电流:I sh2=1.9√2I 2=29.8KA 2.3.4 10.5KV 母线短路 等值电路图如下:10.5kv简化后:0.0770.05310.5kv 短路电流标幺值:I *3=1/0.053+1/0.077=33.4短路电流:I 3=I *3×100/(√3×10.5)=183.6KA 短路冲击电流:I sh3=1.9√2I 3=494.1KA第三章 电气设备的选择3.1断路器的选择断路器的选择,除满足各项技术条件和环境条件外,还应考虑到要便于安装调试和运行维护,并经技术方面都比较后才能确定。
根据目前我国断路器的生产情况,电压等级在10kV~220kV 的电网一般选用少油断路器,而当少油断路器不能满足要求时,可以选用SF 6断路器。
断路器选择的具体技术条件如下:1)额定电压校验: max N U U ≥2)额定电流选择: max N I I ≥3)开断电流: Nbr w I I ≥(短路电流有效值)4)动稳定: es sh i i ≥ (短路冲击电流) 5)热稳定: k r Q Q ≥ 隔离开关的选择校验条件与断路器相同,并可以适当降低要求。
3.1.1 220KV 侧断路器选择 (1)双绕组变压器出口最大电流: I 1max =1.05×360000/(√3×220)=992A (2)三绕组变压器220KV 侧最大电流: I 2max =1.05×180000/(√3×220)=496A 母线上流过的最大电流m ax I =2I 1max = 1984A短路电流:''I =21.1KA短路冲击电流:I sh1=56.7KA为了检测与校验方便,可均选择SFM-220型号的断路器。
额定电压:U N ≥U NS =220kV 额定电流:I N =2000A ≥I max =1984A 额定断开电流: I Nbr =40kA ≥''I =21.1kA 额定闭合电流:I Ncl =100kA ≥I sh1=56.7kA 动稳定校验:I es =I Ncl =100kA ≥I sh1=56.7kA 热稳定校验:I t ²×t=4800(kA ²·S) t k = t pr2+t a +t in =2.35s经查资料得到:I tk =18.4KA , I tk/2=17.45kA 则Q k =12kt (''I ²+10×I tk ²+I tk/2²) =749.8(kA ²·S) 因此I t ²×t> Q k 所以所选断路器的热稳定满足需求。
此断路器满足系统需求。
3.1.3 110KV 侧断路器选择 (1)母线的最大电流:I max =300000/(0.8×110×√3)= 1968 A (2)三绕组变压器110KV 侧最大电流: I max =1.05×180000/(√3×110)=992A短路电流:I 2=11.1 KA短路冲击电流:I sh2=29.8 KA为了检测与校验方便,可均选择LW6-110Ⅱ型号的断路器。
3.1.4 110kV 断路器校验额定电压:U N ≥U MS =110kV 额定电流:I N =2000A ≥I max =1968A 额定断开电流: I Nbr =31.5kA ≥I 2=11.1kA 额定闭合电流:I Ncl =80kA ≥I sh2=29.8kA 动稳定校验:I es =I Ncl =80kA ≥I sh2=29.8kA 热稳定校验:I t ²×t=2976.8(kA ²·S) t k = t pr2+t a +t in =2.065s经查资料得到:I tk =19.28 kA I tk/2=18.0kA 则Q k =630.3(kA ²·S) 因此,I t ²×t> Q k 所以所选断路器的热稳定满足需求。