航空发动机控制基础
- 格式:ppt
- 大小:13.12 MB
- 文档页数:194
航空发动机控制系统纵论发动机控制系统对于发动机而言犹如人的大脑对人体各器官的控制作用,是发动机的核心部件。
航空发动机动力学控制技术的主要目的,是通过对支承结构和质量分布的合理分配,保障发动机在全转速范围内无有害振动。
飞机要在不同的高度和速度下飞行,为了在飞行中保持发动机的给定工作状态,或者按照所要求的规律改变工作状态,都必须对发动机进行控制。
所有这些只有依靠自动控制系统来完成。
目前,我国正在结合高性能军用航空发动机的型号研制工作,开发符合中国国情的航空发动机数控系统,缩短与先进国家的技术差距,推动我国航空发动机技术的发展。
一、发动机控制系统的基本要求(一)穩定性高。
航空发动机是一种高度复杂和精密的热力机械,为航空器提供飞行所需动力的发动机。
作为飞机的心脏,被誉为"工业之花",它直接影响飞机的性能、可靠性及经济性,是一个国家科技、工业和国防实力的重要体现。
航空发动机控制系统能够保障航空器的持续适航,技术具备强实时性、高稳定性及小巧便携等优势,能够在降低监测和诊断设备成本的同时,实现机载化的航空发动机监测与诊断系统的良好运行。
但是随着系统规模和复杂程度的不断提高,基于文档的系统工程面临的困难越来越突出,如信息表示不准确造成歧义、难以从海量文档中查找所需信息、无法与其他工程领域的设计相衔接(如软件、机械、电子等)。
于是基于模型的系统工程(MBSE)应运而生,这也是未来系统工程发展的必然趋势。
(二)精度高。
航空发动机的工作环境复杂,工作温度范围大(环境温度~2000 ℃),导致结构工艺特征参数和结构特征参数的变化范围大,引起发动机结构振动具有非线性时变特性。
同时,转静件间隙、支承刚度、同心度、不平衡量分布等动力学参数和气动流场气动力等,随发动机状态和温度场的变化而变化,造成各连接结构部件振动传递特性相差也较大。
在保证发动机可靠性的前提下,要求发动机的“寿命长”。
这是发动机经济性的另一项指标。
航空发动机全权限数字电子控制系统概述航空发动机全权限数字电子控制系统是现代飞机上不可或缺的重要组成部分之一,它可以监测并控制发动机的转速、温度、压力以及发动机其他重要参数,进而确保飞机的安全、可靠飞行。
本文将从系统结构、控制算法、优点等方面来概述一下航空发动机全权限数字电子控制系统。
首先,航空发动机全权限数字电子控制系统的结构是非常复杂的,它包括一个由多个控制单元组成的控制器和与发动机相连的多个传感器、执行器等。
这些传感器可以监测发动机的运行状态,包括发动机的功率、温度、压力等,然后将这些信息传输到控制器中进行处理。
控制器则根据这些信息对发动机进行控制,调节发动机内部的各种参数。
比如,在发动机需要降温时,控制器会通过执行器将冷却剂喷入发动机内部,从而降低发动机的温度。
此外,控制器还可以根据不同的操作模式调节发动机输出的功率、节省燃料等。
其次,航空发动机全权限数字电子控制系统采用的是一套基于先进算法的控制技术。
主要有三种算法:PID控制算法、模糊控制和神经网络控制。
PID控制算法是最基础的算法之一,它采用比例、积分、微分这三个因素来调节发动机输出的功率,是一种比较稳定的算法。
模糊控制是一种强化的控制算法,它可以适应发动机不同输出状态,发挥最大功效。
神经网络控制则是一种类似于大脑的控制算法,通过不断学习和改进,对发动机输出做出最优的调整。
最后,航空发动机全权限数字电子控制系统的优点非常显著。
首先,它可以实时地监测发动机的状态,及时地进行调整。
其次,它的数据精确性很高,能够减少因误差造成的漏检或误判。
再次,它的智能化和自主化程度较高,不仅可以自动调节发动机,还可以自主诊断问题。
总之,航空发动机全权限数字电子控制系统的重要性不言而喻,它是飞机运作的关键之一。
随着技术的不断提升,这个系统也在不断发展,以达到更高效、更精确、更安全的目标。
在本模块中,我们将看到在各个飞行阶段如何操作发动机,并且你将熟悉它们的功能和指示。
在地面上,推力的控制完全是传统的。
油门杆的位置确定了推力的大小。
油门杆可在整个四分之一圆周范围内人工移动。
它们不会自动移动。
TO/GA MAX REVIDLECLIMB IDLEFLEX/MCTCLIMBIDLETO/GA FLEX/MCTCLIMBIDLECLIMBFLEX/MCTTO/GAIDLE IDLE REV在四分之一圆周范围内有六个卡槽:●IDLE(慢车)●CL(爬升),代表最大爬升推力●FLEX/MCT(灵活/最大连续推力),一个卡槽具备两个功能:-FLEX用于在起飞时减推力,-MCT代表最大连续推力,在单发飞行时使用。
●TO/GA(起飞/复飞),代表最大起飞或复飞推力●IDLE REV(慢车反推),代表选择反推时的慢车推力●MAX REV(最大反推),代表最大反推力CLIMB FLEX/MCTTO/GA MAX REVIDLE IDLE REV推力控制可通过两种方式实现:●和在传统飞机上一样,使用油门杆人工控制,●当自动推力系统工作时,自动控制。
在地面上,推力极限方式是起飞复飞或灵活起飞。
所选的方式显示在发动机/警告显示器的右上角。
起飞复飞推力代表对应于当天实际外界大气温度的发动机的最大可用推力。
N1额定极限显示在所选方式的旁边,表示相对应的N1值。
灵活用于减推力起飞。
为了使推力减小,需使用一个假设温度(或灵活温度),例如45摄氏度。
灵活温度显示在N1额定极限的旁边。
这意味着发动机将按外界温度为灵活温度值时起飞所需的全马力工作。
结果是实际起飞推力减小,这有助于延长发动机寿命。
灵活起飞将在本课程的性能部分作更为详细地讨论。
今天我们将执行减推力的灵活起飞,因为通常你们将采用这种起飞方式。
把杆飞行员分两步逐渐调整发动机推力。
第一步是将油门杆从慢车位移到大约50%N1处。
单击油门杆调定推力。
不对,移动油门杆以调定推力。
航空发动机的动态特性与控制策略航空发动机,这个被誉为“工业皇冠上的明珠”的复杂系统,其性能和可靠性对于航空领域的发展至关重要。
而深入理解航空发动机的动态特性以及制定有效的控制策略,是保障发动机稳定运行、提高性能和效率的关键所在。
航空发动机的动态特性是指在各种运行条件下,其内部各参数随时间的变化规律。
这些特性受到多种因素的影响,包括但不限于气流流动、燃烧过程、机械结构的运动以及外部环境的变化等。
首先,气流流动是影响航空发动机动态特性的一个重要因素。
在发动机的进气道、压气机、燃烧室和涡轮等部件中,气流的速度、压力和温度都会不断变化。
例如,在压气机中,叶片对气流的作用会导致气流压力的升高,但如果气流的速度和角度不合适,可能会引发失速和喘振等不稳定现象。
燃烧过程也是一个关键环节。
燃料的喷射、混合和燃烧的稳定性直接影响着发动机的功率输出和燃烧效率。
燃烧室内的温度和压力变化剧烈,而且燃烧过程还会受到燃料品质、进气条件和点火时机等多种因素的综合影响。
机械结构的运动同样不可忽视。
发动机内部的转子、叶片和轴系等部件在高速旋转时会产生离心力、振动和热变形等。
这些因素不仅会影响部件的寿命和可靠性,还会对发动机的动态性能产生重要影响。
外部环境的变化,如大气温度、压力和湿度的改变,也会对航空发动机的动态特性产生显著影响。
在高海拔、低温或高温等极端环境下,发动机的性能可能会出现明显下降。
了解了航空发动机的动态特性,接下来我们探讨一下相应的控制策略。
控制策略的首要目标是确保发动机的稳定运行。
这就需要对诸如压气机的喘振、燃烧室的熄火以及涡轮的超温等潜在的不稳定现象进行实时监测和控制。
通过传感器采集关键参数,如压力、温度和转速等,并将这些数据传输给发动机控制系统,系统会根据预设的算法和逻辑来调整燃油流量、叶片角度等控制变量,以维持发动机的稳定工作状态。
提高发动机的性能和效率也是控制策略的重要任务。
例如,通过优化燃油喷射的时机和量,可以提高燃烧效率,从而增加发动机的推力和降低燃油消耗。
航空发动机的ltr控制摘要:本文旨在探讨如何使用LTR控制技术来提高航空发动机的性能。
为此,我们将首先介绍LTR控制技术,然后研究它与航空发动机性能的关系,并提出一些相关的改进措施。
最后,结合当前的应用实例,探讨航空发动机的未来发展方向。
关键词:LTR控制,航空发动机,性能改进,应用实例正文:LTR控制是一种突破性的技术,可以通过有效地利用噪声来提高航空发动机的效率和准确性。
LTR控制技术可以有效地解决流动噪声的引起的动力学问题,从而大大提高了发动机的性能。
首先,我们来了解一些基本的LTR控制概念,其次,我们研究LTR控制技术是如何提高航空发动机性能的。
为此,我们将阐述LTR控制技术的核心原理,并讨论其在航空发动机的控制技术中的应用。
除此之外,我们将分析LTR控制技术如何促进发动机的可靠性,有助于实现可重复性和可读性。
最后,为了预测未来,我们分析了当前LTR控制技术在航空发动机中的应用实例,并对未来的发展方向进行了探讨。
LTR控制技术的应用非常广泛,可以应用于航空发动机。
在航空发动机中,LTR控制技术可以有效调节涡轮滑轮的动态行为,从而提高发动机性能。
LTR控制应用于涡轮滑轮的特定方案可以获得接近期望的可靠性性能,而这些性能优化的发动机也可以满足现代飞机的需求,使其具有更好的效率和动力特性。
此外,LTR控制技术还可以用于涡轮滑轮控制原理,采用LTR控制原理可以有效调整流动参数,从而改善某些发动机的可扩展性和可靠性。
同时,LTR控制技术还可以用于涡轮滑轮系统的建模和仿真,用于模拟发动机的特定性能参数,使之满足用户的要求。
例如,如果发动机的性能低于期望,可以利用LTR控制技术进行仿真,通过检验和调整发动机的控制原理和参数,以达到更好的性能。
因此,LTR控制技术可以很好地应用于航空发动机的性能改进和涡轮滑轮的建模和仿真,可以有效地提高发动机的性能、可靠性和可扩展性。
另外,LTR控制技术也可以用于涡轮滑轮系统的实时控制和检测。
2019 年《航空发动机控制》复习提纲1.理解航空动力装置在地面条件下的安全工作范围。
它的工作受到慢车转速、最大转速、贫油熄火、涡轮前最高温度以及压气机喘振边界的限制。
2.理解航空动力装置在空中飞行时受到的各种限制。
高空低速时受燃烧室高空熄火的限制。
因为高空空气稀薄,燃油雾化质量差,难以稳定燃烧。
低空高速时受压气机超压限制。
因为压气机后压力过高,可能会损坏压气机、燃烧室等薄壁部件。
图中右边为最大飞行马赫数 MH 限制线。
右上方为进气道、飞机蒙皮承受的气动热限制,或称为超载边界。
发动机在空中熄火后,一般只能在空中起动区这一狭小范围内,利用发动机风车状态所造成的燃烧室压力而重新点火、起动。
3.理解航空发动机对控制装置的要求。
(P22)1 保证最有效地使用发动机、2 稳定工作,控制精度高、3 良好的动态品质、4 可靠性高,维护性好、5 可更改性好,满足先进发动机对控制不断增加的要求。
4.掌握可控变量的概念。
能影响被控对象的工作过程,用来改变被控参数大小的因素称为可控变量,如供往发动机的燃油流量Wf,涡桨发动机上螺旋桨的桨叶角β。
通常选择油气比(Wf /p3)作为主要的可控变量(原因在28题处也有):(1)因其与主燃烧室油气比的正比关系,油气比可以很好地控制涡轮燃气温度;(2)当发动机喘振时提供了自恢复的特征;(3)由于减少了控制器收益限制的变化,简化了控制规律,就如同使用修正参数来降低发动机性能参数的变化。
5.掌握被控参数的概念。
能表征被控对象的工作状态而又被控制的参数。
原则上能表征发动机推力大小的参数均可选作被控参数,如转速、涡轮前温度、涡轮后温度、增压比等,当然也包括推力本身。
现代民用航空发动机通常用N1和EPR作为被控参数。
6.掌握控制装置的概念。
用以完成既定控制任务的机构总和,又称控制器。
7.掌握干扰作用量的概念。
作用在被控对象或/和控制器上,能引起被控参数发生变化的外部作用量,如飞机的飞行高度H,飞行速度V、外界温度、压力等,通用可以用f表示。
航空发动机控制系统发展概述摘要:发动机作为飞机的心脏为飞机提供前进的动力,而动力来自于发动机通过进气道、压气机、燃烧室、涡轮及尾喷管共同工作提供的推力。
但是这些部分的工作参数是无法通过自身进行调节的,需要采用智能调控系统进行控制,这就是航空发动机的控制系统。
本文主要就航空发动机控制系统发展进行探讨。
关键词:航空发动机;控制系统;发展1航空发动机控制系统组成和原理1.1航空发动机控制系统组成发动机是飞机的重要系统,除了发动机本体单元体之外,还包括控制系统、传动系统及润滑系统等。
其中控制系统是航空发动机的重要组成部分,现代航空发动机基本都采用全权限数字电子控制(FADEC)系统。
FADEC系统由感受航空发动机工作状态和环境信息的传感装置、对信息进行逻辑判断和控制运算的计算装置、把计算结果施加给航空发动机的控制装置,以及在它们之间传递信息的机械、电缆和管路等组成。
FADEC系统--般可分为控制计算机子系统、燃油与作动子系统、传感器子系统、电气子系统等。
图1为某型发动机FADEC系统的组成图。
控制计算机子系统分为电子控制器和嵌入式软件两部分。
数字电子控制器(EEC)是FADEC系统的核心部件,它处理来自各种传感器和开关装置的信号,经模/数转换为数字量,由其内部机载的控制软件对输入数字量进行诊断、处理,实现各种控制算法、控制逻辑的计算,产生输出数字量,再经过数/模转换成模拟信号,经放大处理,生成控制器输出驱动信号,经电缆传输给相应的液压机械装置。
燃油与作动子系统包括燃油子系统和伺服作动子系统。
燃油子系统包括增压泵、主燃油泵、燃油计量装置、燃油滤、燃油管路、喷嘴等。
伺服作动子系统包括伺服控制单元、伺服作动器及相应附件。
传感器子系统包括控制用传感器和状态监视用传感器等。
1.2航空发动机控制系统原理FADEC系统-般包括转速、压力、温度等多个控制回路,每个控制回路根据相应的输入闭环计算出控制输出,进而实现控制发动机状态的目的。
航空发动机控制航空发动机控制简介航空发动机是播种机器可以失去,基于我们都清楚的事情。
发动机的控制是保证发动机工作状况良好、安全、可靠的前提。
航空发动机控制系统是综合应用传感、信号处理、微处理、电子技术等先进技术的高精度、高可靠的复杂系统,不仅具有高度的自控能力,还能根据飞机任务要求进行定制。
一、航空发动机控制的目的及其所要完成的任务航空发动机控制的目的,就是保证发动机安全、可靠地运行。
它可以保证发动机始终处于最优的运行状态,避免因操作错误或外部因素梭差(如高温、湿度和压力等)而导致的事故发生。
航空发动机控制所要完成的任务,主要包括以下几个方面:1、实现对发动机的启动、工作转速、停车手续和故障检测等控制。
2、通过监视发动机的工作情况,及时发现故障并采取相应的态势,防止故障引起事故。
3、为飞机提供满足特定任务要求的最优发动机参数(如燃油消耗、发动机功率、噪声和排放等)。
4、实现自适应控制,适应飞行任务和高、低温、高刹地区等不同环境条件。
二、航空发动机控制系统的组成航空发动机控制系统由的组成部分:发动机传感器、控制与数据处理器、执行器和人机接口等。
1、发动机传感器发动机传感器是架设在发动机地方的装置,用于监视发动机各部位的状况,以取得发动机的运行状态。
常用的发动机传感器有:(1)压力传感器——用于测量燃气流动的压力和燃油领付压力等。
(2)温度传感器——用于测量各部位的温度和排气温度等。
(3)速度传感器——用于测量高压涡轮和低压涡轮转速等,以控制发动机的工作转速。
(4)加速度传感器——用于测量振动、震荡和冲击力等。
(5)流量传感器——用于测量燃油流量和气体流量等。
(6)位置传感器——用于测量晶圆位置、调节器位置和排气门位置等。
2、控制与数据处理器控制与数据处理器是发动机控制系统的主要部分,其功能包括数据处理、故障检测、反馈控制等,它可以通过接收传感器的信号来监测发动机状态,并通过执行器实现相应的控制。
一个典型的控制器包括处理器、存储器和输入/输出功能,同时也能够对发动机进行智能判断,划分故障级别和预警。