工程力学习题答案_范钦珊_蔡新着_工程静力学与材料力学_第二版
- 格式:doc
- 大小:1.71 MB
- 文档页数:26
eBook工程力学(静力学与材料力学)习题详细解答(教师用书)(第1章)范钦珊 唐静静2006-12-18(a) (b) 习题1-1图第1章 静力学基础1一1 图a 和b 所示分别为正交坐标系11y Ox 与斜交坐标系22y Ox 。
试将同一个力F 分别在两中坐标系中分解和投影,比较两种情形下所得的分力与投影。
解:图(a ):11 sin cos j i F ααF F +=分力:11 cos i F αF x = , 11 sin j F αF y = 投影:αcos 1F F x = , αsin 1F F y =讨论:ϕ= 90°时,投影与分力的模相等;分力是矢量,投影是代数量。
图(b ): 分力:22)tan sin cos (i F ϕααF F x −= , 22sin sin j F ϕαF y =投影:αcos 2F F x = , )cos(2αϕ−=F F y讨论:ϕ≠90°时,投影与分量的模不等。
1一2 试画出图a 和b 两种情形下各构件的受力图,并加以比较。
比较:解a 图与解b 图,两种情形下受力不同,二者的F R D 值大小也不同。
DR习题1-2b 解图DR习题1-2a 解2图C习题1-2a 解1图(a) (b)习题1-2图1一3 试画出图示各构件的受力图。
习题1-3图B F 习题1-3a 解2图 B习题1-3a 解1图习题1-3b 解1图F Ay Ax 习题1-3c 解图 A习题1-3b 解2图习题1-3d 解1图习题1-3e 解1图习题1-3e 解2图1-4 图a 所示为三角架结构。
荷载F 1作用在B 铰上。
AB 杆不计自重,BD 杆自重为W ,作用在杆的中点。
试画出图b 、c 、d 所示的隔离体的受力图,并加以讨论。
习题1-4图1习题1-3f 解1图F习题1-3e 解3图'A习题1-3f 解2图1O 习题1-3f 解3图F F'F 1习题1-4d 解2图F y B 21习题1-4c 解1图 AA B 1B FDx y2B 习题1-4b 解2图 1习题1-4b 解3图 F y B 2习题1-4c 解2图 F A B1B FAxF'习题1-5b 解3图E D(a-3)E B F习题1-5b 解2图习题1-5b 解1图'AxFF B习题1-5c 解图1一5 试画出图示结构中各杆的受力图。
1—1图a、b所示,Ox i y i与O村分别为正交与斜交坐标系。
试将同一方F分别对两坐标系进行分解和投影,并比较分力与力的投影。
解:(a),图(c): F =F ® oth +Fris ot j1分力:F xi =Fcos、fi i , F yi =Fsin j i投影:F xi =Fcos 用,F yi =Fsin〉讨论:「= 90 °时,投影与分力的模相等;分力是矢量,投影是代数量。
(b),图(d):分力F x2 =(F cos〉-F sin :• tan )i2 ,F y2 = - j2sin屮投影:F x2二Feos〉,F y2 =F cosG =■)讨论:「工90°时,投影与分量的模不等。
I—2试画出图a、b两情形下各物体的受力图,并进行比较(a) (b) (a-i)习题i —2图(a-2)(a-3)(b-i)(b)a-1 )与图(b-1 )不同,因两者之F R D值大小也不同试画出图示各物体的受力图。
AA Wi 丄A A 加习题1-3图F比较:图1-31-4图a所示为三角架结构。
力F i作用在B铰上。
杆AB不计自重,杆BD杆自重为W。
试画出图b、c、d所示的隔离体的受力图,并加以讨论。
(b)A B A B/p/ /D(c)(d)(d-1)B F B1------ A习题1-4图(b-1)i(b-3)F AFB1F'FF' B2yBBF' B2y(d-2)F1 1-5(s)W习题1-5图(C)1— 6图示刚性构件F 沿其作用线移至点 D 或点 E (如图示),是否会改变销钉 解:由受力图1— 6a , 1- 6b 和1— 6c 分析可知,F 从C移至E , A 端受力不变,这是因为力 F 在自身 刚体ABC 上滑移;而F 从C 移至D ,则A 端受力改变,因为 HGC F CX! F Cy(b-3)在构件的点C 作用有一水平力F 。
比较:图(a-1)与图(b-1)不同,因两者之1 - 3试画出图示各物体的受力图。
1 - 1图a 、b 所示,Ox 1y 1与Ox 2y 2分别为正交与斜交坐标系。
试将同一方 F 分别对两坐标系进行分解和投影,并比较分力与力的投影。
解:(a),图(c ):分力: 投影:=90 ° 时, (d ): F cos i 1 FX 1F y1 F sin F y1 F sinj l讨论:(b ),图F X 1 F cos投影与分力的模相等;分力是矢量, X 2投影是代数量。
F sinsin分力: j2BD(b)D(b-1)(a-3)投影: 工90°时, F X 2 F cos , 投影与分量的模不等。
讨论:1 -2试画出图a 、b 两情形下各物体的受力图,并进行比较。
F y2 F cos(F X 2 (F cos F sin tan )i 2 F y2(a)l F AyF A X1F RD 值大小也不同。
a5A■dFBFF CABB(a-1)(b-1)BC DBCBCWDAy或(b-2)(c-1)(d-1)DCABCDFt D或(d-2)(e-2)(e-1)CO iOyBFA(f-3)(e-3)IV2[fW(f-1)(c)习题1—3图F BF BF AxF AF DB FF cW(f-2)AOAF A力 F i 作用在,并加以讨论。
----------------- :B 铰上。
杆AB 不计自重,杆BD 杆自重为 W 。
试画出图1 —4图a 所示为三角架结构 b 、c 、d 所示的隔离体的受力图 A zz ” X Xzr 'i/A1rC[------------DF AxAB虾F 或(a_2)1 — 6图示刚性构件 ABC 由销钉A 和拉杆GH 支撑,在构件的点C 作用有一水平力F 。
试问如果将力 F 沿其作用线移至点 D 或点E (如图示),是否会改变销钉 A 的受力状况。
eBook工程力学(静力学与材料力学)习题详细解答(教师用书)(第7章)范钦珊唐静静2006-12-18第7章弯曲强度7-1 直径为d的圆截面梁,两端在对称面内承受力偶矩为M的力偶作用,如图所示。
若已知变形后中性层的曲率半径为ρ;材料的弹性模量为E。
根据d、ρ、E可以求得梁所承受的力偶矩M。
现在有4种答案,请判断哪一种是正确的。
习题7-1图(A) M=Eπd 64ρ64ρ (B) M=Eπd4Eπd3(C) M=32ρ32ρ (D) M=Eπd34 正确答案是。
7-2 关于平面弯曲正应力公式的应用条件,有以下4种答案,请判断哪一种是正确的。
(A) 细长梁、弹性范围内加载;(B) 弹性范围内加载、载荷加在对称面或主轴平面内;(C) 细长梁、弹性范围内加载、载荷加在对称面或主轴平面内;(D) 细长梁、载荷加在对称面或主轴平面内。
正确答案是 C _。
7-3 长度相同、承受同样的均布载荷q作用的梁,有图中所示的4种支承方式,如果从梁的强度考虑,请判断哪一种支承方式最合理。
l 5习题7-3图正确答案是7-4 悬臂梁受力及截面尺寸如图所示。
图中的尺寸单位为mm。
求:梁的1-1截面上A、 2B两点的正应力。
习题7-4图解:1. 计算梁的1-1截面上的弯矩:M=−⎜1×10N×1m+600N/m×1m×2. 确定梁的1-1截面上A、B两点的正应力:A点:⎛⎝31m⎞=−1300N⋅m 2⎟⎠⎛150×10−3m⎞−20×10−3m⎟1300N⋅m×⎜2My⎝⎠×106Pa=2.54MPa(拉应力)σA=z=3Iz100×10-3m×150×10-3m()12B点:⎛0.150m⎞1300N⋅m×⎜−0.04m⎟My⎝2⎠=1.62×106Pa=1.62MPa(压应力)σB=z=3Iz0.1m×0.15m127-5 简支梁如图所示。
第3章 静力学平衡问题3-1 图a 、b 、c 所示结构中的折杆AB 以3种不同的方式支承。
假设3种情形下,作用在折杆AB 上的力偶的位置和方向都相同,力偶矩数值均为M 。
试求3种情形下支承处的约束力。
解:由习题3-1a 解图lM F F B A 2== 由习题3-1b 解图lM F F B A == 将习题3-1c 解1图改画成习题3-1c 解2图,则lM F F BD A ==习题3-1c 解2图)B习题3-1c 解1图B习题3-1b 解图习题3-1图B习题3-1a 解图'B A习题3-2解2图∴ l M F F BD B ==, lMF F BD D 22==3-2 图示的结构中,各构件的自重都略去不计。
在构件AB 上作用一力偶,其力偶矩数值M =800 N·m 。
试求支承A 和C 处的约束力。
解:BC 为二力构件,其受力图如习题3-2解1图所示。
考虑AB 平衡,由习题3-2解图,A 、B 二处的形成力偶与外加力偶平衡。
800269.4N 1.81.2A B M F F BD ′====3-3 图示的提升机构中,物体放在小台车C 上,小台车上装有A 、B 轮,可沿垂导轨ED 上下运动。
已知物体重2 kN 。
试求导轨对A 、B 轮的约束力。
解: W = 2kN ,T = W ΣF x = 0, F A = F BΣM i = 0, 0800300=×−×A F W ,kN 75.083==W FA ,FB = 0.75 kN ,方向如图示。
习题3-2图习题3-3图BF C习题3-2解1图 A F BF习题3-3解图MA习题3-4解1图3-4 结构的受力和尺寸如图所示,求:结构中杆1、2、3杆所受的力。
解:1、2、3杆均为为二力杆 由习题3-4解1图ΣM i = 0,03=−⋅M d F ,dMF =3, F = F 3(压) 由习题3-4解2图ΣF x = 0,F 2 = 0, ΣF y = 0,dMF F ==1(拉)3-5 为了测定飞机螺旋桨所受的空气阻力偶,可将飞机水平放置,其一轮搁置在地秤上。
eBook工程力学(静力学与材料力学)习题详细解答(教师用书)(第7章)范钦珊唐静静2006-12-18第7章弯曲强度7-1 直径为d的圆截面梁,两端在对称面内承受力偶矩为M的力偶作用,如图所示。
若已知变形后中性层的曲率半径为ρ;材料的弹性模量为E。
根据d、ρ、E可以求得梁所承受的力偶矩M。
现在有4种答案,请判断哪一种是正确的。
习题7-1图(A) M=Eπd 64ρ64ρ (B) M=Eπd4Eπd3(C) M=32ρ32ρ (D) M=Eπd34 正确答案是。
7-2 关于平面弯曲正应力公式的应用条件,有以下4种答案,请判断哪一种是正确的。
(A) 细长梁、弹性范围内加载;(B) 弹性范围内加载、载荷加在对称面或主轴平面内;(C) 细长梁、弹性范围内加载、载荷加在对称面或主轴平面内;(D) 细长梁、载荷加在对称面或主轴平面内。
正确答案是 C _。
7-3 长度相同、承受同样的均布载荷q作用的梁,有图中所示的4种支承方式,如果从梁的强度考虑,请判断哪一种支承方式最合理。
l 5习题7-3图正确答案是7-4 悬臂梁受力及截面尺寸如图所示。
图中的尺寸单位为mm。
求:梁的1-1截面上A、 2B两点的正应力。
习题7-4图解:1. 计算梁的1-1截面上的弯矩:M=−⎜1×10N×1m+600N/m×1m×2. 确定梁的1-1截面上A、B两点的正应力:A点:⎛⎝31m⎞=−1300N⋅m 2⎟⎠⎛150×10−3m⎞−20×10−3m⎟1300N⋅m×⎜2My⎝⎠×106Pa=2.54MPa(拉应力)σA=z=3Iz100×10-3m×150×10-3m()12B点:⎛0.150m⎞1300N⋅m×⎜−0.04m⎟My⎝2⎠=1.62×106Pa=1.62MPa(压应力)σB=z=3Iz0.1m×0.15m127-5 简支梁如图所示。
2习题4-2图第4章 基本概念4-1 确定下列结构中螺栓的指定截面Ⅰ-Ⅰ上的内力分量,井指出两种结构中的螺栓分别属于哪一种基本受力与变形形式。
解:(a) N P F F =,产生轴向拉伸变形。
(b) Q P F F =,产生剪切变形。
4-2 已知杆件横截面上只有弯矩一个内力分量M z ,如图所示。
若横截面上的正应力沿着高度y 方向呈直线分布,而与z 坐标无关。
这样的应力分布可以用以下的数学表达式描述:Cy =σ其中C 为待定常数。
按照右手定则,M z 的矢量与z 坐标正向一致者为正,反之为负。
试证明上式中的常数C 可以由下式确定:zzI M C =-并画出横截面上的应力分布图。
(提示:积分时可取图中所示之微面积dA =b d y )证明:根据内力分量与应力之间的关系,有()2d d z AAzM A yC y A CI σ==−=−∫∫由此得到习题4-1图F NF Q3习题4一3图zzI M C =-。
于是,横截面上的正应力表达式为:z zM yI σ−= 据此,可以画出横截面上的正应力分布图:4-3 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。
关于固定端处横截面A -A 上的内力分布,有4种答案,如图所示。
请根据弹性体横截面连续分布内力的合力必须与外力平衡这一特点,分析图示的4种答案中哪一种比较合理。
正确答案是 C 。
解:首先,从平衡的要求加以分析,横截面上的分布内力只能组成一个力偶与外加力偶矩M 平衡。
二答案(A )和(B )中的分布内力将合成一合力,而不是一力偶,所以是不正确的。
直杆在外力偶M 作用下将产生上面受拉、下面受压的变形。
根据变形协调要求,由拉伸变形到压缩变形,必须是连续变化的,因而,受拉与受压的材料之间必有一层材料不变形,这一层材料不受力。
因此,答案(D )也是不正确的。
正确的答案是(C )。
上一章 返回总目录 下一章。
工程力学第2版课后习题答案_范钦珊主编_第1章_静力学基础
1.静力学研究的对象是()
A、物体
B、流体
C、物质
D、刚体
2.两个大小为3N、4N的力合成一个力时,此合力最大值为()
A、5N
B、7N
C、12N
D、1N
3.在研究拉伸与压缩应力应变时,我们把杆件单位长度的绝对变形称为()
A、应力
B、线应变
C、变形
D、正应力
4.质点动力学基本方程为(D)
A、W=FS
B、P=MV
C、I=FT
D、F=ma
5.以下关于截面上内力的大小的结论哪一个是正确的?()
A、与截面的尺寸和形状无关
B、与截面的尺寸有关,但与截面的形状无关
C、与截面的尺寸和形状有关
D、与截面的形状有关,但与截面的尺寸无关
6.当作用在质点系上外力系的主矢在某坐标轴上的投影为零时,则质点系质心的()
A.速度一定为零
B.速度在该轴上的投影保持不变
C.加速度在该轴上的投影一定不为零
D.加速度在该轴上的投影保持不变
7.一空间力系中各力的作用线均平行于某一固定平面,而且该力系又为平衡力系,则可列独立平衡方程的个数是()
A.6个
B.5个
C.4个
D.3个
8.已知点的运动方程为x=2t3+4,y=3t3-3,则其轨迹方程为()
A.3x+4y-36=0
B.3x-2y-18=0
C.2x-2y-24=0
D.2x-4y-36=0。
(a) (b) 习题1-1图 (a) (b)习题1-2图D R(a-1)C(a-2)D R(a-3)(b-1) 1-1 图a 、b 所示,Ox 1y 1与Ox 2y 2分别为正交与斜交坐标系。
试将同一方F 分别对两坐标系进行分解和投影,并比较分力与力的投影。
解:(a ),图(c ):11 s i n c o s j i F ααF F += 分力:11 cos i F αF x = , 11 s i n j F αF y = 投影:αcos 1F F x = , αs i n 1F F y =讨论:ϕ= 90°时,投影与分力的模相等;分力是矢量,投影是代数量。
(b ),图(d ):分力:22)tan sin cos (i F ϕααF F x -= ,22sin sin j F ϕαF y =投影:αcos 2F F x = , )cos(2αϕ-=F F y 讨论:ϕ≠90°时,投影与分量的模不等。
1-2 试画出图a 、b比较:图(a-1)与图(b-1)不同,因两者之F R D 值大小也不同。
1-3 试画出图示各物体的受力图。
(c )22x (d )习题1-3图1-4 图a 所示为三角架结构。
力F 1作用在B 铰上。
杆AB 不计自重,杆BD 杆自重为W 。
试画出图b 、c 、d 所示的隔离体的受力图,并加以讨论。
或(a-2) B (a-1)(b-1)F (c-1) 或(b-2) (e-1) (f-1)'A (f-2) 1O (f-3)Ax F' (b-3)E D(a-3)习题1-5图B(b-2)(b-1) F 'C B C(c) F AxF1-5 试画出图示结构中各杆的受力图。
1-6 图示刚性构件ABC 由销钉A 和拉杆GH 支撑,在构件的点C 作用有一水平力F 。
试问如果将力F 沿其作用线移至点D 或点E (如图示),是否会改变销钉A 的受力状况。
解:由受力图1-6a ,1-6b 和1-6c 分析可知,F 从C 移至E ,A 端受力不变,这是因为力F 在自身刚体ABC 上滑移;而F 从C 移至D ,则A 端受力改变,因为HG 与ABC 为不同的刚体。
F F 1(d-2)yB 21习题1-6图 F F (b-2)(b-3)F yB 2AA B1B F习题1-8图'F(a)1-7 试画出图示连续梁中的AC 和CD 梁的受力图。
1-8 图示压路碾子可以在推力或拉力作用下滚过100mm 高的台阶。
假定力F 都是沿着连杆AB 的方向,与水平面成30°的夹角,碾子重为250N 。
试比较这两种情形下所需力F 的大小。
解:图(a ):54a r c s i n =θ0=∑x F0sin )60sin(=--︒θθW F 1672=F N 图(b ):︒=13.53θ 0=∑x F0sin )30cos(=-︒-θθW F N 217=F1-9 两种正方形结构所受力F 均已知。
试分别求其中杆1、2、3所受的力。
解:图(a ):045cos 23=-︒F FF F 223=(拉) F 1 = F 3(拉)045cos 232=︒-F F F 2 = F (受压) 图(b ):033='=F F F 1 = 0∴ F 2 = F (受拉)F3习题1-7图习题1-9图F Dx(b)(a-1)'3F(a-2)'3(b-2)F DBCBDBF '1-10 图示为一绳索拔桩装置。
绳索的E 、C 两点拴在架子上,点B 与拴在桩A 上的绳索AB 连接,在点D 加一铅垂向下的力F ,AB 可视为铅垂,DB 可视为水平。
已知α= 0.1rad ,力F = 800N 。
试求绳AB 中产生的拔桩力(当α很小时,tan α≈α)。
解:0=∑y F ,F F ED =αsin αsin FF ED =0=∑x F ,DB ED F F =αcos F FF DB 10tan ==α由图(a )计算结果。
可推出图(b )中F AB = 10F DB = 100F2-3图 a b图 cA:F A =F B = M/22-3bF A=F B= M /l 2-3CF A=F BD= M /l2-5习题1-10图W = 2kN,T = WΣF x = 0,F A = F BΣM i = 0,W ×300 −F A ×800 = 0 ,F A = 3/8W = 0.75 kN,F B = 0.75 kN.2-6F3 ⋅d −M = 0 ,F 3 = M/d, F = F3(压)ΣF x = 0,F2 = 0,ΣF y = 0,F = F1= M/d (拉)2-7解: W/2=4.6 kNΔF = 6.4−4.6 = 1.8 kN ΣM i = 0,−M +ΔF ⋅l = 0M =ΔF ⋅l = 1.8× 2.5 = 4.5 kN ·m2-8解:对于图(a )中的结构,CD 为二力杆,ADB 受力如图所示,根据力偶系平衡的要求,由dMd M F F RC RA 222===对于图(b )中的结构,AB 为二力杆,CD 受力如习题3-6b 解1 图所示,根据力偶系 平衡的要求,由dM F F d M F F D RA D RC /'/====2-9解:BC 为二力构件,其受力图如图所示。
考虑AB 平衡,A 、B 二处的形成力偶与外加力偶平衡。
N BD MF F B A 4.2692/8.122.1800=+⨯=='=2-102-11 d M F F A D 1==d M F F CD 2=='D D F F ='12M M =F By = F Ay = 0 F BX =M/dF R B = M /d (←)由对称性知 F R A = M/ d (→)3-1A:ΣF x =0,F Ax =0ΣM A =0,−M −F P ×4+F R B ×3.5=0,−60−20×4+F R B ×3.5=0, F RB =40kN (↑)ΣF y =0,F Ay +F R B −F P =0, F Ay =−20kN (↓) 对于图b 中的梁,KNFFy F F F F qd d F d F d F dqd M dF M RABR p BR p p BR p p 15,0210322103.2.2.11====-++=-++==∑∑ 3-2解ΣF x = 0,F Ax = 0ΣF y = 0,F Ay = 0(↑)ΣM A = 0,M A + M −Fd = 0 , M A = Fd −M3-3解:ΣM A (F) = 0 , −W ×1.4 −F S ×1+ F NB ×2.8 = 0 , F NB =13.6 kNΣF y = 0,F NA = 6.4 kN3-4ΣF y = 0,F By =W +W1 =13.5 kNΣM B = 0,5F A −1W −3W1 = 0 , F A = 6.7 kN(←),ΣF x = 0,F Bx = 6.7 kN(→)3-7解:以重物为平衡对象:图(a),ΣF y = 0,T C =W / cosα(1)以整体为平衡对象:图(b),ΣF x=0,F Bx=T C’sinα=W tanαΣM B=0,−F R A⋅4h+T C′cosα⋅2h+T C′sinα⋅4h=0,F R A=(1/2+tanα)W(↑)ΣF y=0,F By=(1/2-tanα)W(↑)3-9解:以整体为平衡对象,有ΣM A = 0F RB ×2×2.4cos 75°−600×1.8cos 75°−W(1.2 + 3.6) cos 75° = 0,F R B = 375 NΣF y = 0,F R A = 525 N以BC 为平衡对象,有−T EF ×1.8sin 75°−150×1.2 cos75° + F R B ×2.4 cos75° = 0T EF = 107 N3-11:以托架CFB 为平衡对象,有ΣF y = 0,F By = F W2 (1)以杠杆AOB 为平衡对象,有ΣM O = 0,F W⋅l−F By⋅a=0F w1/F w2=a/l4-2 图示直杆ACB在两端A、B处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是D 。
习题4-2图5-1图 a图 b图 c图 d5-21 b5-4解:(a)A截面: F=b/(a+b)F P,M=0QC截面: F=b/(a+b) F P,M=ab/(a+b) F PQD截面: F=-a/(a+b) F P,M=ab/(a+b) F PQB截面: F=-a/(a+b) F P,M=0Q(b)A截面: F=M0/(a+b),M=0QC截面: F Q =M0/(a+b),M=a/(a+b)M0D截面: F=- M0/(a+b),M=b/(a+b) M0QB截面: F=- M0/(a+b),M=0Q(c)A截面: F=5/3qa,M=0QC截面: F=5/3qa,M=7/6qa2QB截面: F=-1/3qa,M=0Q(d)A截面: F=1/2ql,M=-3/8qa2QC截面: F=1/2ql,M=-1/8qa2QD截面: F=1/2ql,M=-1/8qa2QB截面: F=0,M=0Q(e)A截面: F=-2 F P,M=F P lQC截面: F=-2 F P,M=0QB截面: F=F P,M=0QA截面: F=0,M= F P l/2QC截面: F=0,M= F P l/2QD截面: F=- F P,M= F P l/2QB截面: F=-F P,M=0Q5-5(a)F Q ( x ) =-M/2 l, M( x) =-M/2 l x ( 0 ≤x ≤l)F Q ( x ) =-M/2 l,M( x) =-Mx/2 l + M ( l ≤x ≤2 l)F Q ( x ) = -M/2 l, M( x) = -Mx/2 l + 3M ( 2 l ≤x ≤3 l)F Q ( x ) = -M2 l, M( x) = -Mx/2 l + 2M ( 3 l ≤x ≤4 l)( b)F Q ( x ) = -(1/4)ql-qx , M( x) = ql2-(1/4)ql x –(1/2)qx2 ( 0 ≤x ≤l) F Q ( x ) = -(1/4)ql, M( x) =(1/4)ql(2l- x)( l ≤x ≤2 l) ( c)F Q ( x ) = ql-qx , M( x) = ql x + q l2-(1/2)qx2 ( 0 ≤x ≤2 l)F Q ( x ) = 0 , M( x) = ql2( 2 l ≤x ≤3 l)(d)F Q ( x) =(5/4)ql-qx, M( x) =(5/4)qlx-(1/2)qx2(0≤x≤2l)F Q ( x) =-ql + q(3 l-x) , M( x) = ql(3l-x) –(1/2)q( 3l-x)2(2 l≤x≤3 l) (e)F Q ( x) = qx , M( x) =(1/2)qx2 (0 ≤x ≤l)F Q ( x) = ql-q( x-l) , M( x) = ql(x -1/2)-(1/2)q( x-l)2 ( l ≤x ≤2 l) (f)F Q ( x ) = -ql/2+ qx , M ( x ) = -(1/2)qlx +(1/2)qx 2 ( 0 ≤ x ≤ l ) F Q ( x ) =-ql/2+ q (2l-x ) , M ( x ) = (ql/2)(2 l-x )-(1/2)q (2l-x )2( l ≤x ≤2l )5-6画出5-5图示各梁的剪力图和弯矩图,并确定 m a x Q ||F 、max M 。