Verilog HDL 综合实用教程
- 格式:doc
- 大小:87.00 KB
- 文档页数:3
使用Verilog HDL进行数字逻辑设计、综合、仿真的步骤及工具软件使用简要说明综合工具使用synplify pro 7.0仿真工具使用modelsim 5.5e (几个菜单排列与5.6有不同,文中有介绍)布局布线工具及时序仿真模型生成使用maxplusII 10.0一.写在开干之前1.涉及到的文件a.源程序(*.v)用户编写的用于描述所需电路的module (可能有多个文件,多个module相互调用)如果用于综合,则源程序内用于描述的V erilog语言必须是可综合风格的。
否则将只能做功能仿真(前仿真),而不能做综合后的仿真和时序仿真(后仿真)。
b.综合后的V erilog HDL 模型(网表) (*.vm)用综合工具synplify对a 进行综合后生成的电路的V erilog HDL 描述。
由synplify自动生成(必须在Implementation Option —Implementation results选项中选中write mapped verilog netlist后才会生成vm文件)。
此文件用于作综合后的仿真c.布局布线后生成的时序仿真模型(网表) (*.vo)文件使用maxplusII对设计进行布局布线之后,生成的带有布局布线及具体器件延迟特性等参数的电路模型的V erilog HDL描述。
要让maxplusII生成vo文件,必须在maxplusII的compile interface中选中verilog netlist writer。
此文件用于作时序仿真(后仿真)d.测试文件(*.v或*.tf)用户编写的V erilog HDL源程序。
用于测试源程序(a,b,c)中所描述电路。
在测试文件中调用被测试的module,生成被测点路所需的输入信号。
所用V erilog HDL语句不需要是可以综合的,只需语法正确。
如果被测试的模型为a,则对应的仿真为前仿真(功能仿真)如果被测试的模型为b, 则对应的仿真为综合后仿真如果被测试的模型为c, 则对应的仿真为后仿真2.强烈建议a.在写用于综合的源程序时,一个源程序文件里只写一个moduleb.源程序文件名与其内所描述的module名相同(如module myadder 文件名myadder.v)c.为了方便管理文件,为每一个设计都单独创建一个目录,目录内创建source, test子目录分别用于存放源程序(用于综合的)和测试文件。
VerilogHDL入门教程第一部分:Verilog HDL概述(约200字)Verilog HDL是一种硬件描述语言,用于描述和建模数字电路和系统。
它是一种被广泛使用的硬件设计语言,特别适合用于逻辑设计和验证。
Verilog HDL提供了一种形式化的方式来表示数字电路和系统的行为和结构,使得工程师可以更轻松地进行硬件设计和验证。
第二部分:Verilog HDL基础(约400字)在Verilog HDL中,最基本的组成单元是模块。
模块是Verilog HDL中的一个独立的、可重用的单元,可以由其他模块实例化和连接。
每个模块由端口(输入和输出)和内部功能(如逻辑代码和信号声明)组成。
module and_gate(input a, input b, output y);assign y = a & b;endmodule这个模块表示一个与门,它有两个输入a和b,一个输出y。
使用assign语句,我们将输出y连接到输入a和b的逻辑与操作。
第三部分:Verilog HDL高级特性(约400字)除了基本的模块和连接之外,Verilog HDL还提供了一些高级特性,用于更复杂的电路建模和验证。
一种特殊的构造是always块。
always块用于描述模块内的行为,基于一个条件或时钟信号的变化。
例如,下面是一个使用always块的模块示例:module counter(input clk, input enable, output reg count);if (enable)count = count + 1;endendmodule这个模块表示一个简单的计数器,在时钟上升沿时根据enable信号增加计数器的值。
Verilog HDL还支持层次化的建模,允许将模块层次化地组织起来,以便更好地管理和复用代码。
层次化建模通过使用模块的层次命名和连接来实现。
例如,我们可以将上面的计数器模块实例化为另一个模块,如下所示:module top_module(input clk, input enable, output reg count);countercounter_inst(.clk(clk), .enable(enable), .count(count));endmodule这个模块实例化了上面定义的计数器模块,并将其内部信号和端口连接到外部接口。
第二章 Verilog HDL设计方法概述前言随着电子设计技术的飞速发展,专用集成电路(ASIC)和用户现场可编程门阵列(FPGA)的复杂度越来越高。
数字通信、工业自动化控制等领域所用的数字电路及系统其复杂程度也越来越高,特别是需要设计具有实时处理能力的信号处理专用集成电路,并把整个电子系统综合到一个芯片上。
设计并验证这样复杂的电路及系统已不再是简单的个人劳动,而需要综合许多专家的经验和知识才能够完成。
由于电路制造工艺技术进步非常迅速,电路设计能力赶不上技术的进步。
在数字逻辑设计领域,迫切需要一种共同的工业标准来统一对数字逻辑电路及系统的描述,这样就能把系统设计工作分解为逻辑设计(前端)和电路实现(后端)两个互相独立而又相关的部分。
由于逻辑设计的相对独立性就可以把专家们设计的各种常用数字逻辑电路和系统部件(如FFT算法、DCT算法部件)建成宏单元(Megcell)或软核(Soft-Core)库供设计者引用,以减少重复劳动,提高工作效率。
电路的实现则可借助于综合工具和布局布线工具(与具体工艺技术有关)来自动地完成。
VHDL和Verilog HDL这两种工业标准的产生顺应了历史的潮流,因而得到了迅速的发展。
作为跨世纪的中国大学生应该尽早掌握这种新的设计方法,使我国在复杂数字电路及系统的设计竞争中逐步缩小与美国等先进的工业发达国家的差距。
为我国下一个世纪的深亚微米百万门级的复杂数字逻辑电路及系统的设计培养一批技术骨干。
2.1.硬件描述语言HDL(Hardware Description Language)硬件描述语言(HDL)是一种用形式化方法来描述数字电路和设计数字逻辑系统的语言。
它可以使数字逻辑电路设计者利用这种语言来描述自己的设计思想,然后利用电子设计自动化(在下面简称为EDA)工具进行仿真,再自动综合到门级电路,再用ASIC或FPGA实现其功能。
目前,这种称之为高层次设计(High-Level-Design)的方法已被广泛采用。
VerilogHDL常⽤综合语法 前⾯已经记录了⼀些组成Verilog的基本组成,可以⽤这些基本组成来构成表达式。
这⼀节,就来记录⼀下把这些表达式构成⼀个⽂件的各种⾏为描述语句。
①这⾥⽤Verilog基本要素进⾏的⾏为描述主要是针对综合来的,也就是可以设计出实际电路来的(⾏为描述语句有两⼤⼦集,⼀个是⾯向综合,⼀个是⾯向仿真)。
②⾏为描述语句⼀般指放在always语句中。
内容提纲如下所⽰: ·触发事件控制 ·条件语句(if与case语句) ·循环语句 ·任务和函数 ·编译预处理⼀、触发事件控制 ①电平敏感事件是指指定信号的电平发⽣变化时发⽣指定的⾏为。
②边沿触发事件(信号跳变沿)是指指定信号的边沿信号跳变时发⽣指定的⾏为,分为信号的上升沿(x→1或者z→1或者0→1)和下降沿x→0或者z→0或者1→0)。
③信号跳变沿触发电路对信号的某⼀跳变沿敏感名字⼀个时钟周期内,只有⼀个上升沿和⼀个下降沿,因此计算结果在⼀个周期内保持不变,⽽电平触发电路则可能会引起数据在⼀个时钟周期内变化⼀次或多次。
其他敏感列表的事项请查看这篇博⽂:。
⼆、条件语句 Verilog的条件语句包括if语句和case语句。
(1)if语句 ①if语句中的条件判断表达式(括号中的那个)⼀般为逻辑表达式或者关系表达式或者就⼀个变量。
如果表达式的值是0、X或者Z,则全部按照“假”处理;若为1,则按照“真”处理。
②在应⽤中,else if 分⽀的语句数⽬由实际情况决定;else分⽀可以省略,但在描述组合逻辑中,会综合得到锁存器。
(2)case语句 ①case语句,case语句是⼀个多路条件分⽀的形式,常⽤于多路译码、状态机以及微处理器的指令译码等场合,有case 分⽀、casez分⽀、casex分⽀这三种形式。
②case语句⾸先对条件表达式求值,然后同时并⾏对各分⽀项求值并进⾏⽐较;当case语句跳转到某⼀分⽀后,控制指针将转移到endcase。
实验二十六进制7段数码显示译码器设计
一、实验目的:
1、了解利用EDA 软件及开发系统进行可编程器件设计的一般流程;
2、掌握基本组合电路的Verilog/VHDL文本设计方法,及进行下载验证。
学习7段数码显示译码器的Verilog/VHDL硬件设计。
二、实验原理
译码器即是把输入的数据转换成对应的输出码。
例如:BCD 数至7 段显示译码器,要执行的操作就是把一个 4 位的BCD 码转换成7 个显示段码输出,以便在7 段数码管上显示出这个十进制数。
对如图2-1 所示7 段共阴数码管,要设计该译码器的必须条件,就是要列出输入码与输出码之间的对应关系即真值表。
如表2-1 所示,根据真值表可以直接用查表法来设计,应用Verilog/VHDL译码程序在FPGA中来实现。
该程序可按照教材中例3-2的case 语句表述方法。
如果要考虑表示小数点的发光管,需要增加段h,然后将LED7S 改为8位输出。
三、实验原理框图
四、实验任务
1、应用case 语句等编写Verilog/VHDL 七段显示器译码程序。
2、进行编辑、编译、综合、适配、仿真,给出所有信号的仿真波形(要求:用输入总线的方式给出输出信号的仿真波形)
3、硬件测试:选用LEDC,进行引脚锁定及硬件测试、验证译码器的工作状态和性能。
五、实验报告
1、预习报告:写出该实验的基本设计思路及源程序;
2、实验报告:写出经调试通过的实验程序及实验步骤、软件编译及仿真
分析、硬件测试和实验过程、程序分析报告、仿真波形图及结果分析。
VerilogHDL教程verilog hdl教程一、Verilog HDL概述二、Verilog HDL语法1.模块定义和端口声明模块是Verilog HDL的基本单元,用于描述电路的结构和行为。
以下是一个简单的模块定义和端口声明的例子:module adderinput wire [3:0] a,input wire [3:0] b,output wire [3:0] sum//模块内部的逻辑和信号声明//...endmodule2.信号声明和赋值wire [3:0] a;reg [3:0] b;assign a = 4'b0110;b<=a;end3.组合逻辑和时序逻辑组合逻辑通过组合逻辑操作(如AND,OR,XOR等)来描述电路的行为。
时序逻辑通过时钟沿的触发条件来描述电路的行为。
以下是组合逻辑和时序逻辑的例子://组合逻辑assign c = a & b;assign d = a ^ b;//时序逻辑if (reset) begine<=0;end else begine<=a+b;endend三、Verilog HDL用法1.模块实例化add4 adder_inst.a(a),.b(b),.sum(sum)2.仿真和验证Verilog HDL可以使用仿真工具进行仿真和验证。
常用的仿真工具包括ModelSim,Xilinx ISE和Cadence Incisive等。
仿真工具可以使用Verilog HDL代码来模拟和验证电路的功能和性能。
四、总结Verilog HDL是一种用于描述数字电路的硬件描述语言。
它提供了一种清晰,结构化的方式来描述电路的行为和结构。
通过模块化的设计和调试,Verilog HDL使设计人员能够更好地建模和分析复杂的电路。
它支持多种级别的抽象,如行为级,RTL级和门级,以满足不同层次的设计需求。
通过实例化已定义的模块和使用仿真工具,Verilog HDL可以方便地进行电路的仿真和验证。
Verilog_HDL教程
1.简介
Verilog HDL是由美国电气和电子工程师协会(IEEE)于1984年开
发的一种硬件描述语言。
它是一种面向数据流的语言,主要用于描述数字
逻辑电路的行为和结构。
Verilog HDL可以用于设计和仿真各种数字电路,如计算机处理器、存储器、控制逻辑和通信接口等。
2.基本语法
下面是Verilog HDL的基本语法元素:
2.1模块
模块是Verilog HDL中的最基本的构建单元。
每个模块都有一个名称
和一个端口列表。
端口可以是输入或输出,也可以是双向的。
2.2数据类型
2.3信号赋值
可以使用赋值运算符(=)将值赋给变量或信号。
还可以使用阻塞或
非阻塞赋值运算符来实现顺序或并发的赋值操作。
3.设计结构
4.运算符
5.仿真和验证
总结:
本教程简要介绍了Verilog HDL的基本语法和用法。
Verilog HDL是一种被广泛应用于数字电路设计的硬件描述语言。
通过学习本教程,您将能够开始使用Verilog HDL进行数字电路的设计和验证。
verilogHDL培训教程华为(多场景)VerilogHDL培训教程——华为第一章:引言随着电子设计自动化(EDA)技术的不断发展,硬件描述语言(HDL)在数字电路设计领域扮演着越来越重要的角色。
VerilogHDL 作为一种主流的硬件描述语言,因其强大的功能、灵活的语法和广泛的应用范围,已成为数字集成电路设计工程师必备的技能之一。
本教程旨在帮助读者掌握VerilogHDL的基本概念、语法和设计方法,为华为等企业培养合格的数字电路设计人才。
第二章:VerilogHDL基础2.1VerilogHDL简介VerilogHDL是一种用于数字电路设计的硬件描述语言,它可以在多个层次上对数字系统进行描述,包括算法级、寄存器传输级(RTL)、门级和开关级。
VerilogHDL的设计初衷是为了提高数字电路设计的可重用性、可移植性和可维护性。
2.2VerilogHDL编程环境(1)文本编辑器:Notepad++、SublimeText等;(2)仿真工具:ModelSim、IcarusVerilog等;(3)综合工具:XilinxISE、AlteraQuartus等。
2.3VerilogHDL语法基础(1)关键字:VerilogHDL中的关键字具有特定含义,如module、endmodule、input、output等;(2)数据类型:包括线网类型(wire)、寄存器类型(reg)、整数类型(integer)等;(3)运算符:包括算术运算符、关系运算符、逻辑运算符等;(4)模块与端口:模块是VerilogHDL设计的基本单元,端口用于模块之间的信号传递;(5)行为描述与结构描述:行为描述用于描述电路的功能,结构描述用于描述电路的结构。
第三章:VerilogHDL设计流程3.1设计流程概述(1)需求分析:明确设计任务和功能要求;(2)模块划分:根据需求分析,将设计任务划分为若干个模块;(3)编写代码:使用VerilogHDL编写各个模块的代码;(4)仿真验证:对设计进行功能仿真和时序仿真,确保设计正确;(5)综合与布局布线:将VerilogHDL代码转换为实际电路,并进行布局布线;(6)硬件测试:在FPGA或ASIC上进行实际硬件测试。
《Verilog HDL 综合实用教程》读书笔记——锁存器、触发器
加入收藏
2007-08-29 00:23
转发分享 人人网 开心网 新浪微博 搜狐博客 百度收藏 谷歌收藏 qq 书签 豆瓣 淘江湖 Facebook Twitter Digg Yahoo!Bookmarks
锁存器:
推导出锁存器的一般规则是,如果变量未在 always 语句所有可能的执行过程中被赋值, 就推导出锁存器。
如果变量在 if 的所有分支中都被赋值则综合成组合逻辑。
case、casez、casex 可转成 if、else 形式。
当 case 中不是所有情况都列举出或使用 default 语句时、在 case 语句前对 case 中赋值对象赋初值也可避免综合出锁存器。
若不 是以上各种情况且须综合成组合逻辑可以使用综合命令,如下: 例: always @ (Toggle) case (Toggle) //synthesis full_case 2'b01: NextToggle = 2'b10; 2'b10: NextToggle = 2'b01; end case end module 上例中的//synthesis full_case 是综合命令,告知综合工具 case 中已是全部列举可能的 情况,这样综合后无锁存器。
(正常的 case 语句是有优先级的,先出现的优先级最高,若 case 中各分支是互斥时,综合成译码逻辑。
当使用 casex 时用综合命令//synthesis parallel-case 告知综合工具该 casex 是互斥的)。
触发器: 沿控制的用触发器,且沿控制的赋值用非阻塞的方式“Zee<=A;”。
当 always 中是沿敏感时,此 always 中有 if……else if……且在这些 if……else if 中有多 于 1 个对同一变量赋值时,这个变量很可能被综合成有异步置位或清零的触发器。
例: always @ (negedge Reset or negedge Set or negedge CLKA) if (!Reset) NextState<=12; else if (!Set) NextState<=5;
else NextState<=CurrentState; 上例为异步赋值,最后一个 else 才是时钟控制,前两个不受时钟控制,综合时形成带异步 清零或置位。
(书中说“不提倡使用异步赋值”)使其同步化的方法是将 always 中的敏感变 量表中只有时钟作为触发源则为同步,既 always 中的处理都是在时钟的控制下进行的。
触发器、锁存器优化: 例: always @ (posedge clockA) case (PreserState) 0:begin PresetState<=1; Zont<=4'b0100; end 1:begin PresetState<=0; Zont<=4'b0001; end endcase Zont 的赋值在 clockA 的上升沿触发的 always 语句块中, 所以 Zont 就被综合成四位触发 器,太浪费资源,改为如下: always @ (posedge clockA) case (PresetState) 0:PresetState<=1; 1:PresetState<=0; endcase always @ (PresetState) case (PresetState) 0:Zont=4'b0100; 1:Zont=4'b0001; endcase always @ (Probe or Count)
又例:
if (Probe) Luck=Count; 综合后因 Probe 为 0 时 Luck 保留原值,所以综合成锁存器。
若要去掉锁存器可以改为 always @ (Probe or Count) if (Probe) Luck=Count; else Luck=0; 或 always @ (Probe or Count) begin Luck=0; if (Probe) Luck=Count;
end
。