电机与运动控制系统(第二版)罗应立第2章正式答案
- 格式:docx
- 大小:541.04 KB
- 文档页数:2
第二章2-3试证明图2-5(a)的电网络与(b)的机械系统有相同的数学模型。
分析首先需要对两个不同的系统分别求解各自的微分表达式,然后两者进行对比,找出两者之间系数的对应关系。
对于电网络,在求微分方程时,关键就是将元件利用复阻抗表示,然后利用电压、电阻和电流之间的关系推导系统的传递函数,然后变换成微分方程的形式,对于机械系统,关键就是系统的力学分析,然后利用牛顿定律列出系统的方程,最后联立求微分方程。
证明:(a)根据复阻抗概念可得:即取A、B两点进行受力分析,可得:整理可得:经比较可以看出,电网络(a)和机械系统(b)两者参数的相似关系为2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式的模态。
(1)(2)2-7 由运算放大器组成的控制系统模拟电路如图2-6所示,试求闭环传递函数Uc(s)/Ur(s)。
图2-6 控制系统模拟电路解:由图可得联立上式消去中间变量U1和U2,可得:2-8 某位置随动系统原理方块图如图2-7所示。
已知电位器最大工作角度,功率放大级放大系数为K3,要求:(1) 分别求出电位器传递系数K0、第一级和第二级放大器的比例系数K1和K2;(2) 画出系统结构图;(3) 简化结构图,求系统传递函数。
图2-7 位置随动系统原理图分析:利用机械原理和放大器原理求解放大系数,然后求解电动机的传递函数,从而画出系统结构图,求出系统的传递函数。
解:(1)(2)假设电动机时间常数为Tm,忽略电枢电感的影响,可得直流电动机的传递函数为式中Km为电动机的传递系数,单位为。
又设测速发电机的斜率为,则其传递函数为由此可画出系统的结构图如下:--(3)简化后可得系统的传递函数为2-9 若某系统在阶跃输入r(t)=1(t)时,零初始条件下的输出响应,试求系统的传递函数和脉冲响应。
分析:利用拉普拉斯变换将输入和输出的时间域表示变成频域表示,进而求解出系统的传递函数,然后对传递函数进行反变换求出系统的脉冲响应函数。
《电机与运动控制系统》课后习题参考答案第一章磁路(5题)1-1.一环形铁心,平均路径长度为36cm,横截面为3cm2,上绕400的线圈。
当励磁电流为1.4A时,铁心中的磁通为1.4⨯10-3Wb。
试求:(1)磁路的磁阻;(2)此时铁心的磁导率及相对磁导率。
[400⨯103A/Wb;0.003H/m,2400]解:①.R m=F/Φ=IW/Φ= 1.4⨯400/(1.4⨯10-3)=400000=400⨯103(A/Wb);②.μ=l/(S⨯R m)=0.36/(0.0003⨯400⨯103)=0.003(H/m);③.μr=μ/μ0=0.003/(4π⨯10-7)=2387.3241。
答:(1)磁路的磁阻为:400⨯103A/Wb;(2)此时铁心的磁导率及相对磁导率分别为:0.003H/m和2400。
(答毕#)1-2.为了说明铁磁材料的磁导率随磁化状态而变化的情况,根据硅钢片的B-H曲线(图1-2-3)试计算:当磁密分别为0.8T、1.2T和1.6T 时,其磁导率和相对磁导率各为多少?说明磁导率与饱和程度有什么关系?[3.8⨯10-3H/m;3040;1.7⨯10-3H/m,1360;0.4⨯10-3H/m,320]解:①.由硅钢片的B-H曲线(图1-2-3)查得:当磁密分别为0.8T、1.2T和1.6T时,磁场强度分别为:0.2⨯103A/m、0.7⨯103A/M和4.25⨯103A/m。
根据μ=B/H和μr=μ/μ0,其磁导率和相对磁导率各为:4⨯10-3H/m、1.7⨯10-3H/m、0.4⨯10-3H/m和3180、1364、300(近似值,计算结果:0.004、0.0017、0.000376和3183.0989、1364.1852、299.5858);②.由上述计算可知:硅钢片的磁导率随着饱和程度的增加而急剧减小[要得到0.8T的磁密,只需要磁场强度为:0.2⨯103A/m;而要得到1.6T的磁密,就需要磁场强度为:4.25⨯103A/m。
第1章习题及详解1-1 试举出日常生活中所见到的开环控制系统和闭环控制系统各一例,并分别说明其工作原理。
答:开环控制系统与闭环控制系统的差别在于有没有将输出量反馈到输入端的反馈通道。
家庭空调的温度控制就是一个闭环控制系统,其原理是当室内温度升高或降低时,温度传感器将检测到的实际温度反馈到系统输入端与参考输入给定的期望温度比较求得偏差,温度控制器根据偏差信号产生控制作用控制压缩机制冷量,从而维持室温在期望值附近。
在要求不高的场合,有些简单的传送带系统是由电动机带动的开环控制系统。
工作原理很简单,只需闭合电源开关,则电动机带动传送带运行,传送带上负载变化会引起传送速度变化。
1-2 试说明开环控制和闭环控制的优缺点。
答:开环控制系统的控制精度主要取决于系统本身参数的稳定程度,没有抵抗外部干扰的能力,因此,在实际工作环境中,难以达到很高的控制精度。
开环控制系统的优点是结构简单,成本较低,缺点是抗扰性能差。
对于参数稳定的系统,在外部干扰较弱或控制精度要求不高的场合,开环控制系统仍被大量使用。
闭环控制系统利用反馈信号得到的偏差来产生控制作用,也称为反馈控制系统。
这种基于偏差的闭环控制系统具有较强的抵抗外部和内部扰动的能力,并使其对内部参数的变化没有开环控制系统那么敏感,换句话说,要达到较高的控制精度,闭环控制系统对其内部参数的精度要求没有开环控制系统那么高。
由于增加了反馈元件和比较元件等,闭环控制系统的结构相对复杂,成本也有所增加,特别地,当控制装置的参数配合不当时,可能会出现系统内部信号剧烈振荡,甚至发散导致系统不稳定而无法工作的情况。
闭环控制系统的稳定性问题是开环控制系统没有的独特现象。
闭环控制系统的优点:具有很强的自动纠偏能力和较高的控制精度;缺点:由于采用了反馈装置,设备增多,结构复杂,成本增加,同时存在稳定性问题。
闭环控制系统具有的自动纠偏能力和较高的控制精度是开环控制系统无法替代的,因而在控制工程实际中获得了最广泛的应用。
第二章作业思考题:2-1直流电动机有哪几种调速方法?各有哪些特点?1.电枢回路串电阻调速特点:电枢回路的电阻增加时,理想空载转速不变,机械特性的硬度变软。
反之机械特性的硬度变硬。
2.调节电源电压调速特点:电动机的转速随着外加电源电压的降低而下降,从而达到降速的目的。
不同电源电压下的机械特性相互平行,在调速过程中机械特性的硬度不变,比电枢回路串电阻的降压调速具有更宽的调速范围。
3.弱磁调速特点:电动机的转速随着励磁电流的减小而升高,从而达到弱磁降速的目的。
调速是在功率较小的励磁回路进行,控制方便,能耗小,调速的平滑性也较高。
2-2简述直流 PWM 变换器电路的基本结构。
IGBT,电容,续流二极管,电动机。
2-3直流 PWM 变换器输出电压的特征是什么?直流电压2-4为什么直流PWM变换器-电动机系统比V-M系统能够获得更好的动态性能?直流PWM变换器-电动机系统比V-M系统开关频率高,电流容易连续,谐波少,电动机损耗及发热都较小;低速性能好,稳速精度高,调速范围宽;若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强;电力电子开关器件工作在开关状态,导通损耗小,当开关频率适中时,开关损耗也不大,因而装置效率较高;直流电源采用不控整流时,电网功率因数比相控整流器高。
2-5在直流脉宽调速系统中,当电动机停止不动时,电枢两端是否还有电压?电路中是否还有电流?为什么?电枢两端还有电压,因为在直流脉宽调速系统中,电动机电枢两端电压仅取决于直流。
电路中无电流,因为电动机处已断开,构不成通路。
2-6直流PWM变换器主电路中反并联二极管有何作用?如果二极管断路会产生什么后果?反并联二极管是续流作用。
若没有反并联二极管,则IGBT的门极控制电压为负时,无法完成续流,导致电动机电枢电压不近似为零。
2-7直流 PWM 变换器的开关频率是否越高越好?为什么?不是越高越好,因为太高的话可能出现电容还没充完电就IGBT关断了,达不到需要的输出电压。
《电机与拖动基础(第2版)》(习题解答)电机与拖动基础第⼀章电机的基本原理 (1)第⼆章电⼒拖动系统的动⼒学基础 (6)第三章直流电机原理 (12)第四章直流电机拖动基础 (14)第五章变压器 (29)第六章交流电机的旋转磁场理论 (43)第七章异步电机原理 (44)第⼋章同步电机原理 (51)第九章交流电机拖动基础 (61)第⼗章电⼒拖动系统电动机的选择 (73)第⼀章电机的基本原理1-1 请说明电与磁存在哪些基本关系,并列出其基本物理规律与数学公式。
答:电与磁存在三个基本关系,分别是(1)电磁感应定律:如果在闭合磁路中磁通随时间⽽变化,那么将在线圈中感应出电动势。
感应电动势的⼤⼩与磁通的变化率成正⽐,即 tΦNe d d -= 感应电动势的⽅向由右⼿螺旋定则确定,式中的负号表⽰感应电动势试图阻⽌闭合磁路中磁通的变化。
(2)导体在磁场中的感应电动势:如果磁场固定不变,⽽让导体在磁场中运动,这时相对于导体来说,磁场仍是变化的,同样会在导体中产⽣感应电动势。
这种导体在磁场中运动产⽣的感应电动势的⼤⼩由下式给出 Blv e = ⽽感应电动势的⽅向由右⼿定则确定。
(3)载流导体在磁场中的电磁⼒:如果在固定磁场中放置⼀个通有电流的导体,则会在载流导体上产⽣⼀个电磁⼒。
载流导体受⼒的⼤⼩与导体在磁场中的位置有关,当导体与磁⼒线⽅向垂直时,所受的⼒最⼤,这时电磁⼒F 与磁通密度B 、导体长度l 以及通电电流i 成正⽐,即Bli F = 电磁⼒的⽅向可由左⼿定则确定。
1-2 通过电路与磁路的⽐较,总结两者之间哪些物理量具有相似的对应关系(如电阻与磁阻),请列表说明。
答:磁路是指在电⼯设备中,⽤磁性材料做成⼀定形状的铁⼼,铁⼼的磁导率⽐其他物质的磁导率⾼得多,铁⼼线圈中的电流所产⽣的磁通绝⼤部分将经过铁⼼闭合,这种⼈为造成的磁通闭合路径就称为磁路。
⽽电路是由⾦属导线和电⽓或电⼦部件组成的导电回路,也可以说电路是电流所流经的路径。
课后思考题2.1转速单环调速系统有那些特点?改变给定电压能否改变电动机的转速?为什么?如果给定电压不变,调节测速反馈电压的分压比是否能够改变转速?为什么?如果测速发电机的励磁发生了变化,系统有无克服这种干扰的能力?答:1)闭环调速系统可以比开环调速系统硬得多的稳态特性,从而在保证一定静差率的要求下,能够提高调速范围。
为此,所需付出的代价是需增设电压放大器以及检测与反馈装置。
2)能。
因为)1()1(*k C RI k C U k k n e de ns p +-+=,由公式可以看出,当其它量均不变化时,n 随着*n U 的变化而变化3)能。
因为转速和反馈电压比有关。
4)不,因为反馈控制系统只对反馈环所包围的前向通道上的扰动起抑制作用 ,而测速机励磁不是。
2.2为什么用积分控制的调速系统是无静差的?在转速负反馈调速系统中,当积分调节器的输入偏差电压0=∆U 时,调节器的输出电压是多少?它取决于那些因素?答: 使用积分控制时可以借助积分作用,使反馈电压n U 与给定电压*n U 相等,即使n U ∆为零C U 一样有输出,不再需要n U ∆来维持C U ,由此即可使输出稳定于给定值使调速系统无静差。
当0=∆n U 时调节器的输出为电压C U ,是对之前时刻的输入偏差的积累。
它取决于n U ∆的过去变化,当n U ∆为正C U 增加,当n U ∆为负C U 下降,当n U ∆为零时C U 不变。
2.3在无静差转速单闭环调速系统中,转速的稳态精度是否还受给定电源和测速发电机精度的影响?试说明理由;答: 在无静差转速单闭环调速系统中,转速的稳态精度同样受给定电源和测速发电机精度的影响。
无静差转速单闭环调速系统只是消除了误差,使输出的转速基本稳定于给定的转速。
但是,这种系统依然属于反馈控制系统,只能抑制被反馈环包围的前向通道上的扰动,对于其他环节上的精度影响无可奈何。
2.4在电压负反馈单闭环有静差调速系统中,当下列参数发生变化时,系统是否有调节作用,为什么?(1)放大器的放大倍数Kp (2)供电电网电压 (3)电枢电阻Ra(4)电动机励磁电流 (5)电压反馈系数a答:3)电枢电阻,4)电动机励磁电流,(5)电压反馈系数a 无调节作用。
第二章思考题 2-11转速、电流双闭环调速系统稳态运行时,两个调节器的输入偏差电压和输出电压各是多少?为什么?答:转速、电流双闭环系统稳态运行时,两个调节器的输入偏差都为0。
转速调节器的输出电压为电流给定dL d i i I I U U ββ===*, 电流调节器的输出电压为sdL n e sd e sdo c K RI U C K RI n C K U U +=+==α*。
2-14 转速、电流双闭环调速系统中,两个调节器均采用PI 调节器。
当系统带额定负载运行时,转速反馈线突然断线,系统重新进入稳态后,电流调节器的输入偏差电压i U ∆是否为零?为什么?答:转速反馈线突然断线,i U ∆不等于零,*n n U U =∆,转速调节器ASR 很快饱和输出,转速环失去作用,电流给定最大,达到稳态时dm dl d I I I <=由于负载不变所以负载电流不变,所以输入偏差0*>-=-=∆d dm i im i I I U U U ββ,因而不为零。
习题 2-8 (1)100010% 5.56(1)20(110%)N cl n S n D S ⨯∆===-⨯-01000 5.561005.56/minN cl n n n r =+=+=*max150.015min 1005.56minnmv V r rn Uα==≈⋅ 220940.15(2)0.2059.m in/100094(0.150.3)205.4.m in/0.2059N N ae Nd op eU I R C V rn R I n V rC --⨯===⨯+∆===205.411365.56op cln K n ∆≥-=-≈∆取k=3636.950.205912.354400.015e p s K C K K a⨯===⨯(3)取020R k =Ω,则102012.354247.68p R R K k k =⨯=Ω⨯=Ω(4)*1.51.1n comdbl Nscom dcr Ns U U I I R U I I R ⎧+≈=⎪⎪⎨⎪==⎪⎩两式联立解得41.360.4com s U VR =⎧⎨=Ω⎩ 20.4s R R ==Ω稳压管的击穿电压值为41.36V 2-23(1)当电压不饱和时,由0,0n n U ==∆可得n U U n n α==*得出*150.011500nm N U n α===,进而得出*5500/min 0.01nU n r α===0.1285002023.4730e d c sC n I RU V k +⨯+⨯===(2)电动机失磁时,φ立即减小,因为,d d e U E I E C nRφ-==,所以d I 立即增加。
《电机与电气控制技术》第2版习题解答第二章三相异步电动机2-1三相异步电动机的旋转磁场是如何产生的?答:在三相异步电动机的定子三相对称绕组中通入三相对称电流,根据三相对称电流的瞬时电流来分析由其产生的磁场,由于三相对称电流其大小、方向随正弦规律变化,由三相对称电流建立的磁场即合成磁极在定子内膛中随一定方向移动。
当正弦交流电流变化一周时,合成磁场在空间旋转了一定角度,随着正弦交流电流不断变化,形成了旋转磁场。
2-2三组异步电动机旋转磁场的转速由什么决定?对于工频下的2、4、6、8、10极的三相异步电动机的同步转速为多少?答:三相异步电动机旋转磁场的转速由电动机定子极对数P交流电源频率f1决定,具体公式为n1=60f1/P。
对于工频下的2、4、6、8、10极的三相异步电动机的同步转速即旋转磁场的转速n1分别为3000r/min、1500r/min、1000r/min、750r/min、600r/min。
2-3试述三相异步电动机的转动原理,并解释“异步”的意义。
答:首先,在三相异步电动机三相定子绕组中通入三相交流电源,流过三相对称电流,在定子内膛中建立三相旋转磁场,开始转子是静止的,由于相对运动,转子导体将切割磁场,在转子导体中产生感应电动势,又由于转子导体是闭合的,将在其内流过转子感应电流,该转子电流与定子磁场相互作用,由左手定则判断电磁力方向,转子将在电磁力作用下依旋转磁场旋转方向旋转。
所谓“异步”是指三相异步电动机转子转速n与定子旋转磁场转速n1之间必须有差别,且n<n1。
2-4旋转磁场的转向由什么决定?如何改变旋转磁场的方向?答:旋转磁场在空间的旋转方向是由三相交流电流相序决定的,若要改变旋转磁场的方向,只需将电动机三相定子绕组与三相交流电源连接的三根导线中的任意两根对调位置即可。
如果来绕组U1接电源L1、V1接L2、W1接L3为正转,要想反转U1仍接L1,但V1接L3、W1接L2即可。