人教版九年级上册数学公式汇总完整版
- 格式:docx
- 大小:123.44 KB
- 文档页数:4
人教版九年级上册数学公式【七篇】排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);面积公式:(1)S=ah/2(2).已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2)S=√[p(p-a)(p-b)(p-c)]=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)](3).已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC(4).设三角形三边分别为a、b、c,内切圆半径为rS=(a+b+c)r/2(5).设三角形三边分别为a、b、c,外接圆半径为RS=abc/4R(6).根据三角函数求面积:S= absinC/2 a/sinA=b/sinB=c/sinC=2R注:其中R为外切圆半径。
三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解根与系数的关系-b+√(b2-4ac)/2a -b-√(b2-4ac)/2aX1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))。
九年级数学(上)知识点(2)被开方数中不含有开得尽方的整数或整式。
3、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
7、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,在合并同类二次根式,合并同类二次根式与合并同类项类似,将同类二次根式的“系数”相加减,被开方数和根指数不变。
注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并。
8、二次根式的混合运算:二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的。
在运算过程中,有理数(式)中的运算率及乘法公式在二次根式的运算中仍然适用。
9、比较两数大小的常用方法:(1)平方法:若a>0,b>0,且a²>b²,则a>b;(2)把跟号外的非负因式移到根号内,然后比较被开方数的大小。
第二十二章一元二次根式一.知识框二.知识概念1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.2 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax +bx+c=0(a≠0).2这种形式叫做一元二次方程的一般形式.其中ax 是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.2.一元二次方程的解法:2(1)运用开平方法解形如(x+m) =n(n≥0)的方程;领会降次──转化的数学思想.2(2)配方法:将一元二次方程变形为(x+p) =q的形式,如果q≥0,方程的根是x=-p±√q;如果q <0,方程无实根.2 2(3)公式法:将方程化为一般形式ax +bx+c=0,当b -4ac≥0时,将a、b、c代入式子第二十三章旋转一.知识框架二.知识概念 1.旋转:在平面内,将一个图形绕一个点按某个方向转动一个角度,这样的运动叫做图形的旋转。
人教版九年级数学上册知识点整理完整版一、代数与函数1.代数简介①常数:数值不变的量。
②变量:数量可能改变的量。
③代数式:由数、字母、加减乘除号、括号等符号组成的式子。
④同类项:指含有相同字母并且指数相同的项。
⑤合并同类项:指将同类项合并成一个项。
⑥因式分解:将代数式表示成幂或较简单的代数式,叫做因式分解。
⑦方程式&方程:一个代数式与另一个代数式在等号两边,称为方程式,且方程式构成了等式。
2.一次函数①函数:将自变量的某个取值代入函数中得到唯一的因变量的值,称为函数。
②自变量:输入的值③函数表达式:用代数式表示函数的式子称为函数表达式④一次函数:函数表达式中,最高次项是一次幂的函数叫一次函数,也叫线性函数。
⑤斜率:函数: y = kx + b ,函数图象的斜率 k,即为直线的斜率。
3.二次函数①二次函数:函数表达式中,最高次项是二次幂的函数,叫做二次函数。
②二次函数的一般式:f(x) = ax² + bx + c(a≠0)③二次函数的顶点:二次函数图象的转折点,称为顶点。
④二次函数的对称轴:图象关于 x = -b/ 2a 对称的直线,称为二次函数的对称轴。
⑤二次函数的最小值/最大值:二次函数)的顶点纵坐标所对应的函数值,是二次函数的最小值或最大值。
4.函数的研究①函数图象的基本性质:函数的零点、函数值的正负、单调性、奇偶性、周期性、对称性、渐近线等。
②函数的零点:函数 f(x) = 0 的解叫做函数的零点。
即 f(x) = 0 时 x 的解。
③函数类型:函数分类标准通常有函数的定义域和值域、图象、函数表达式等。
二、图形的认识1.图形的一些概念①线段:由两个端点所组成的线段,叫做线段。
②射线:在一个端点处向一个方向上延伸的线段,叫做射线。
③直线:没有端点,在一个方向上延伸的线段,称为直线。
④平行线:永远不会相交的两条直线叫做平行线。
⑤垂直平分线:在一条直线上,垂直于该线段、且等分该线段的线,称为垂直平分线。
−n± p m人教版九年级数学上册知识点整理(完整版)第二十一章 一元二次方程一、一元二次方程的有关概念(一)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程。
(二)一元二次方程的一般形式:ax 2 + bx + c = O(a ≠ O)其中:二次项为ax 2;二次项系数为 a ;一次项为 bx ,一次项系数为 b ;常数项为 c 。
特殊形式:(三)一元二次方程中“未知数的最高次数是 2,二次项系数 a≠0”是针对整理合并的方程而言的。
(四)一元二次方程的解(根)1、概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解 也叫做一元二次方程的根。
2、判断一个数是否是一元二次方程的根将这个数代入一元二次方程的左右两边,看是否相等,若相等,则该数是这个方程的根;若不 相等,则该数不是这个方程的根。
3、关于一元二次方程根的三个重要结论(1)a+b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =1。
(2)a-b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =﹣1。
(3)c=0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =0。
二、解一元二次方程(一)直接开平方法解一元二次方程1、直接开平方法∶利用平方根的意义直接开平方,求一元二次方程的解的方法叫做直接开平 方法。
2、方程x 2 = p 的根(1) 当 p>0 时,根据平方根的意义,方程x 2 = p 有两个不相等的实数根x 1 = p ,x 2 =− p 。
(2) 当 p=0 时,方程x 2 = p 有两个相等的实数根x 1 = x 2 =0。
(3) 当 p<0 时,因为对任意实数 x ,都有x 2≥0,所以方程x 2 = p 无实数根。
九年级上册数学概念、定义、公式归纳一、二次根式1.2.二次根式的被开方数为非负数。
所有二次根式都是非负数。
3.4.二次根式乘法法则:反过来也适用。
5.二次根式除法法则:,反过来也适用。
6.被开方数不含分母、不含能开得尽方的因数或因式的二次根式,称为最简二次根式。
7.二次根式加减法则:先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。
二、一元二次方程8.等号的两边都是整式,只含有一个未知数,并且未知数的最高次数是2,这样的方程叫一元二次方程。
9.一元二次方程的一般形式:ax²+bx+c=0(a≠0),其中a叫做二次项系数,b叫做一次项系数,c是常数项。
10.解一元二次方程的基本思路是“降次”。
方法有四种:①直接开平方法。
如果方程能化成x²=p或(mx+n)²=p(p≥0)的形式,那么x=±√p,或mx+n=±√p。
②配方法:(1)移项,把常数项移到等号右边。
(2)系数化为1,方程两边同除以二次项系数。
(3)配方,等号两边同加一次项系数一半的平方。
(4)直接开平方。
③公式法。
(1)运用根的判别式b²-4ac判断根的情况。
若判别式△小于0,则方程无实数根;若等于0,则有两个相等的实数根;若大于0,则有两个不相等的实数根。
(2)△≥0时,运用一元二次方程的求根公式“-b±√b²-4ac /2a”来解方程。
④因式分解法。
把方程化为mn=0的形式。
11.求两个单位时间段平均增长(减少)率公式:a(1±x)²=b三、旋转12.把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。
点O叫旋转中心,转动的角叫旋转角,转动方向有顺时针和逆时针两种。
13.旋转的性质:①对应点到旋转中心距离相等。
②对应点与旋转中心所连线段的夹角等于旋转角。
③旋转前后图形全等。
14.把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形中心对称。
九年级数学上册公式汇总一、代数公式1. 求和公式- 角度和:$$\sum_{k=1}^{n}(\alpha_k + \beta_k) =\sum_{k=1}^{n}\alpha_k + \sum_{k=1}^{n}\beta_k$$- 平方和:$$\sum_{k=1}^{n}(\alpha_k + \beta_k)^2 =\sum_{k=1}^{n}\alpha_k^2 + 2\sum_{k=1}^{n}(\alpha_k \beta_k) + \sum_{k=1}^{n}\beta_k^2$$2. 因式分解公式- 平方差公式:$$a^2 - b^2 = (a+b)(a-b)$$- 完全平方公式:$$a^2 + 2ab + b^2 = (a+b)^2$$二、几何公式1. 周长和面积公式- 矩形周长:$$P = 2(l + w)$$- 矩形面积:$$S = l \times w$$- 三角形周长:$$P = a + b + c$$- 三角形面积(海伦公式):$$S = \sqrt{p(p-a)(p-b)(p-c)}$$,其中$$p = \frac{1}{2}(a + b + c)$$2. 三角函数公式- 正弦定理:$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$- 余弦定理:$$a^2 = b^2 + c^2 - 2bc\cos A$$3. 相似三角形公式- 对应边比例相等:$$\frac{AB}{DE} = \frac{AC}{DF} =\frac{BC}{EF}$$- 对应角相等:$$\angle A = \angle D, \angle B = \angle E, \angle C = \angle F$$三、概率公式1. 概率计算公式- 事件概率:$$P(A) = \frac{n(A)}{n(S)}$$,其中$$n(A)$$为事件$$A$$的样本点个数,$$n(S)$$为样本空间$$S$$的样本点个数。
九上数学公式归纳人教版在九年级数学公式归纳部分,根据人教版教材,我们主要学习了以下几个内容:1.一次幂的公式归纳:对于任意实数a,a^1 = a。
这个公式告诉我们,一个数的1次幂就是其本身。
2.幂的乘法公式归纳:对于任意实数a和正整数m,a^m × a^n = a^(m+n)。
这个公式告诉我们,相同底数的幂数相乘,等于底数不变、指数相加的幂。
3.幂的除法公式归纳:对于任意实数a和正整数m,a^m ÷ a^n = a^(m-n)。
这个公式告诉我们,相同底数的幂数相除,等于底数不变、指数相减的幂。
4.幂的乘方公式归纳:对于任意实数a和正整数m,(a^m)^n =a^(m × n)。
这个公式告诉我们,一个幂的乘方等于这个幂的指数乘以乘方的指数。
除了以上几个主要内容,数学公式归纳还包括了二次幂的公式归纳、平方根的公式归纳等其他内容。
但是在九年级数学中,这些内容并没有明确提及。
需要注意的是,数学公式归纳部分需要学生通过观察、思考和验证,加深对数学定理的理解,并运用这些定理解决实际问题。
在学习过程中,可以通过一些习题来拓展提高:1.进一步拓展幂的乘法公式,尝试证明负指数的幂的乘法公式a^(-m) × a^(-n) = a^(-m-n)。
2.探索零指数的特殊情况,讨论a^0的定义以及其与其他幂的关系。
3.深入理解幂的除法公式,尝试解决一些实际问题,如模拟计算科学记数法中的幂的除法。
4.研究幂的乘方公式的特殊情况,探索指数为零、一的情况,思考这两种情况与其他情况的联系。
希望以上的回答和拓展能对你有所帮助!。
人教版九年级上册数学
公式汇总
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
第二十一章 二次根式
1、一个正数有两个平方根;在实数范围内,负数没有平方根。
2、一般地,我们把形如 (a ≥0)的式子叫做二次根式,“ ”称为二次根号。
3、a (a ≥0)是一个非负数.当a 为带分数是,要把a 改写成假分数,即53
22要写成53
8 4、二次根式的性质:(a )2=a (a ≥0), 2a =a (a ≥0)
5、用基本运算符号(基本运算符号包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式。
6、二次根式的乘法规定:a ×b =ab (a ≥0,b ≥0)
7、二次根式的除法规定:b a =b
a (a ≥0,
b >0) 8、最简二次根式条件:①被开方数不含字母;②被开方数中不含能开得尽方的因数或因式。
9、二次根式加减法法则:先将二次根式化成最简二次根式,再合并同类二次根式
10、同类二次根式即指被开方数相同的最简二次根式
11、平方差公式:a 2-b 2=(a+b)(a-b) 完全平方公式:(a ±b )2=a 2±2ab+b 2
12、二次根式除法没有分配率,任何非零数的零次幂都是1,(ab )m =a m b m 第二十三章 旋转
1、 旋转性质:(1)只改变位置,不改变图形的大小及形状;(2)任意一对对应点与旋转中心所连线段的夹角都相等;(3)对应点到旋转中心的距离相等;(4)图形上的每一个点都沿相同的方向旋转相同都角度。
2、 把一个图形绕着某一点旋转180度,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,
3、 全等的图形不一定是中心对称,而中心对称的两个图形一定全等。
中心对称有一个对称中心,绕中心旋转180度,旋转后与另一个图形重合;轴对称有一条对称轴,图形对称折叠,折叠后与另一个图形重合。
4、 中心对称性质:(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)中心对称的两个图形是全等图形。
5、 把一个图形绕着某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。
线段、平行四边形是中心对称图形。
(1)既是轴对称又是中心对称图形的有:长方形、正方形、圆、菱形等
(2)只是轴对称的有:角、五角星、等腰三角形、等边三边形、等腰梯形等
(3)只是中心对称的有:平行四边形等
(4)既不是轴对称又不是中心对称图形的有:不等边三角形、非等腰梯形等。
两个点关于原点对称时,它们的坐标符号相反,即P (x,y )关于原点的对称点为P '(-x,-y)
第二十二章一元二次方程
1、等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。
2、一元二次方程的一般形式:ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次
项系数;bx是一次项,b是一次项系数;c是常数项。
3、使方程左右两边的值相等的未知数的值,叫做这个方程的解,一元二次方程的解也叫一元二次方程的根。
4、解一元二次方程的方法:
(1)公式法:Δ=b2-4ac叫做方程ax2+bx+c=0(a≠0)根的判别式。
当Δ>0时,方程ax2+bx+c=0(a≠0)有两个不相等的实数根;当Δ=0时,方程ax2+bx+c=0(a≠0)有两个相等的实数根;当Δ<0时,方程ax2+bx+c=0(a≠0)无实数根。
当Δ≥0时,式
子x=
a ac
b b
2
4 2-
±
-
叫做一元二次根式 ax2+bx+c=0(a≠0) 的求根公式。
(2)因式分解法:左端能够因式分解成(a
1x+b
1
)(a
2
x+b
2
)=0
5、一元二次方程的根与系数的关系:方程的两个根x
1,x
2
和系数a,b,c有如下
关系:x
1+ x
2
=-
a
b
, x
1
x
2
=
a
c
6、一元二次方程解实际应用题的步骤:(1)审题;(2)设未知数;(3)列代数式;(4)列方程;(5)解方程;(6)检验;(7)写出答案。
①平均增长率方面:平均增长率公式:a(x+1)2=b;降低率公式:a(x-1)2=b(a
为起始量,b为终止量,n为增长的次数及降低的次数,x为平均增长率及平均降低率)
②利润方面:总利润=总销售额-总成本;总利润=单个利润×总销售量
③与几何图形有关的:涉及三角形的三边关系,三角形全等,面积的计算,体积的计算,勾股定理等
第二十四章
1(1)点和圆的位置关系:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内
⇔d
(2)不在同一直线的三个点确定一个圆。
(3)经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,外接圆的圆心
是三角形三条边垂直平分线的交点,叫这个三角形的外心。
任意三角形都有且只有一个
外接圆,圆的内接三角形有无数个。
2、(1)直线和圆的位置关系:直线L和⊙O相交⇔d<r;直线L和⊙O相切
⇔d=r;直线L和⊙O相离⇔d>r。
相交有两个公共点,公共点为交点,直线叫割线;相切有1个公共点,公共点叫切点,直线叫切线;相离没有公共点。
(2)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线(有切线,连半径,得垂直)。
切线的性质定理:圆的切线垂直于过切点的半径。
切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
(3)判断一条直线是否是切线的方法:①一条直线与一个圆只有一个公共点②圆心到一条直线的距离等于这个圆的半径;③切线的判定定理。
(4)经过圆外一点做圆的切线,这点和切点之间的线段长,叫这点到圆的切线长。
过圆上的一点只能引圆的一条切线。
(5)与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫三角形的内心,内心一定在三角形的内部。
一个圆可以有无数个外切三角形,但一个角形只有一个内切圆。
3、(1)圆和圆的外置关系:相离没有公共点包括外离d >r 1+r 2,内含d <r 1+r 2;相切一个公共点包括外切d=r 1+r 2,内切d=r 1-r 2;相交两个公共点r 1-r 2<d <r 1+r 2。
(2)等腰三角形三线合一(中线,垂直平分线,角平分线)
11、一个正多边形的外接圆的圆心叫这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形的每一边所对的圆心角叫正多边形的中心角,中心到正多边形的一边的距离叫正多边形的边心距。
4、(1)正n 边形的内角和是(n-2)×1800,所以每一个内角为n
n 180*)2(-;(2)正n 边形的中心角的和是360度,所以正n 边形的一个中心角是n
360;(3)正n 边形的中心角和外角的大小相等;(4)判断一个多边形是否是正多边形的条件:各边都相等;各内角都相等;
5、圆的周长C=2πR ,n °的圆心角所对的弧长为L=180
R n π;圆的面积S=πR 2, 扇形的面积①S=360
2
R n π; 6、圆锥的侧面积S= πRL (L 为母线,R 为底面圆半径); 圆锥的全面积S=πRL+πR 2
第二十五章 概率初步
1、 确定事件包括:①必然发生的事件:在特定条件下,有些事件我们事先能肯定它一定发生;②不可能发生的事件:在特定条件下,有些事件我们事先能肯定它一定不会发生。