六年级上册数学试题-第二十节约数的个数与和 全国通用
- 格式:doc
- 大小:29.50 KB
- 文档页数:5
一、填空题
1. 200名同学编为1至200号面向南站成一排。
第1次全体同学向右转(转后所有的同学面朝西);第2次编号为2的倍数的同学向右转;第3次编号为3的倍数的同学向右转;……;第200次编号为200的倍数的同学向右转;这时,面向东的同学有( )名。
2. 有一个奇怪的四位数(首位不为0),它是完全平方数,它的数字和也是完全平方数,用这个四位数除以它的数字和得到的结果还是完全平方数,并且它的因数个数还恰好等于它的数字和,那当然也是完全平方数,如果这个四位数的各位数字互不相同,那么这个四位数是( )。
3. 若用G(a)表示自然数a的约数的个数,如:自然数6的约数有1、2、3、6,共4个,记作G(6)=4,则G(36)+G(42)=_______.
二、解答题
4. 在100至150之间,找出约数个数是8的所有整数。
5. 已知15120=24×33×5×7,问:15120共有多少个不同的约数?
6. 甲数有9个因数,乙数有10个因数,甲、乙两数最小公倍数是2800,那么甲数和乙数分别是多少?
7. 求自然数N,使得它能被5和49整除,并且包括1和N在内,它共有10个因数.。
小学数学约数判断计算练习题题目:小学数学约数判断计算练习题注意事项:- 题目涉及小学数学约数判断的基本概念、性质和计算。
- 题目内容偏向理论性和应用性,适合培养学生的思维能力和解决问题的能力。
- 题目中不涉及任何与政治、色情等敏感话题相关的词汇。
第一小节:约数的定义和性质 (15分)1. 给定数16,写出它的所有约数。
2. 举例说明什么是互斥的约数。
3. 如果一个数的约数有3个,那么它本身一定是什么数?第二小节:约数的计算 (25分)1. 将36分解质因数,并求出它的所有约数。
2. 求出37和82的最大公约数。
3. 一个数有30个约数,它的最小正约数是多少?4. 在1000以内,有多少个约数为12的整数?第三小节:互质数与完全数 (20分)1. 什么是互质数?请给出一个例子。
2. 请计算出30、42和66中互质数的两两组合。
3. 一个数恰好等于它的所有真因子之和,这个数是什么数?第四小节:约数的应用 (20分)1. 30、45和72三个数中,哪个数是它们的公约数?为什么?2. 两个数的最小公倍数是180,其中一个数是36,则另一个数是多少?3. 用任意一种方法计算100以内所有数的约数之和,并给出答案。
第五小节:综合应用 (20分)1. 一个边长为24cm的正方形,剪成若干个边长为3cm的小正方形,请问最多能剪成多少个小正方形?2. 甲、乙两个数的最大公约数为6,最小公倍数为180。
甲数比乙数多多少?3. 一辆汽车从甲地到乙地的距离为315km,每小时行驶的速度是45km/h。
从甲地到乙地需要几个小时?希望以上练习题能满足您的要求。
祝学生们顺利完成练习,学有所成!。
小学六年级数的最大公约数练习题最大公约数(GCD)是指最大的能同时整除两个或多个整数的正整数。
小学六年级的学生在学习数学时通常会接触到最大公约数的概念
和计算方法。
以下是一些关于小学六年级最大公约数的练习题:
1. 计算下列各组数的最大公约数:
a) 16, 24
b) 30, 45
c) 48, 60, 72
2. 列出以下各组数的公约数:
a) 15, 25
b) 12, 18, 24
c) 36, 48, 60
3. 判断下列各组数是否有相同的最大公约数:
a) 20, 35
b) 25, 35
c) 10, 15, 25
4. 小明和小红共有一盒糖果。
小明有12颗糖果,小红有18颗糖果。
他们想要将糖果平均分配,每人最多能分到的糖果数是多少?
5. 一个果园里有苹果树、梨树和桃树。
苹果树上有30个苹果,梨
树上有36个梨,桃树上有42个桃子。
想要将所有水果分配到篮子里,每个篮子里的水果数量相同且最多,请问每个篮子里最多可以装几个
水果?
6. 小明想要将一些彩色纸片和一些铅笔放在几个盒子里。
他有红色、蓝色和黄色三种颜色的纸片,数量分别为16张、20张和24张。
他有
铅笔30支。
想要将彩色纸片和铅笔放在盒子里,每个盒子里的纸片颜
色相同且数量相同,铅笔数量相同,请问每个盒子里纸片和铅笔各有
多少?
以上是一些针对小学六年级最大公约数的练习题,通过解答这些题目,学生能够提高对最大公约数的理解和计算能力。
自然数约数的个数及所有约数的和我们知道:一个数ɑ,如果能被数b整除,b就是ɑ的约数。
自然数(除了1以外)按照约数的多少,可以分成质数与合数两类:质数只有1和它自己两个约数;合数除了1和它自己以外,还有其它的约数;上面这些知识都是非常浅显的,连小学生都知道。
殊不知,在这些人们耳熟能详的知识中,却隐藏着许多饶有兴味的问题。
一、约数的个数一个数的约数的个数,与这个数由哪些质因数组成有关。
以12为例,分解质因数得到12=22×3。
在构成12的约数时,质因数2,可以取2个(即22=4)、1个(即21=2)或者不取(即20=1),有3种方法,“3”比质因数2的幂指数“2”多1;对于质因数3,可以取1个(即31=3)或者不取(即30=1),有2种方法,“2”比质因数3的幂指数“1”多1。
所以,总共可以组成3×2=6个约数,分别是22×31=4×3=12,21×31=2×3=6,20×31=1×3=3,22×30=4×1=4,21×30=2×1=2,20×30=1×1=1。
推广到一般:如果一个数N=ɑi b j…c k,其中,ɑ、b、…、c是N的质因数,i、j、…、k 是这些质因数的幂指数。
N的约数的个数等于:(i+1)(j+1)…(k+1)以360为例,360=23×32×5。
质因数2、3、5的幂指数分别是3、2、1,所以360的约数有(3+1)(2+1)(1+1)=24个。
检验:360的约数有360、180、120、90、72、60、45、40、36、30、24、20、18、15、12、10、9、8、6、5、4、3、2、1,共24个。
二、约数的总和仍以12为例,12=22×3。
根据上面所说的12的约数的构成,这些约数的总和等于:22×31+21×31+20×31+22×30+21×30+20×30,化简后得到:(22+21+20)(31+30)。
约数与倍数综合练习题
在数学学习中,我们经常会遇到约数与倍数的概念。
约数是指一个
数可以整除的所有数,而倍数则是指某个数相对于另一个数的倍数关系。
掌握约数与倍数的概念对于学好数学非常重要。
为了帮助大家更
好地理解和应用约数与倍数,本文将提供一些综合练习题供大家练习。
练习题一:约数问题
1. 求出 36 的所有约数。
2. 一个数的所有约数之和等于这个数本身,那么这个数是多少?
3. 一个数除了 1 和它本身之外,没有其他约数,那么这个数是什么?
练习题二:倍数问题
1. 36 是 6 的倍数,它还是其他哪些自然数的倍数?
2. 一个数如果是 12 的倍数,那么它一定是 6 的倍数吗?为什么?
3. 一个数的所有倍数中,有且只有一个数可以被这个数整除,那么
这个数是什么?
练习题三:约数与倍数综合问题
1. 一个两位数,它的个位数与十位数的和是它的约数之和的两倍,
那么这个两位数是多少?
2. 一个数的所有自然数倍数的总和是 4950,那么这个数是多少?
3. 一个数的所有约数加起来等于这个数的 5 倍,那么这个数是多少?
练习题四:应用题
1. 小明想买一些糖果分给同学们吃,他将糖果分成若干堆,每一堆的个数相同,共分成了 5 堆。
问他至少有多少个糖果?
2. 小红家养了一些鸡和兔子,一共有 21 只头,58 只脚。
问她家至少有多少只鸡和兔子各多少只?
以上是一些关于约数与倍数的综合练习题,希望能够帮助大家更好地掌握约数与倍数的概念和应用。
通过解答这些练习题,可以提升自己的数学思维和解题能力。
祝大家学习进步,取得好成绩!。
第二十一节 最大公约数【知识要点】1.几个数公有的约数叫做这几个数的公约数,其中最大的一个叫做这几个数的最大公约数。
若a ,b 的最大公约数为n ,则记为(a ,b )=n2.最大公约数的性质:(1)如果a 与b 互质,那么a 和b 的最大公约数是1。
(2)如果a 是b 的整数倍,那么a 和b 的最大公约数是b 。
(3)两个数分别除以它们的最大公约数,所得的商是互质数。
(4)两个数的公约数一定是这两个数的最大公约数的约数。
(5)如果a 大于b ,那么a -b 和a +b 与b 的最大公约数就等于a 与b 最大公约数。
(6)一个较大数与另一个数的最大公约数,等于较大数除以较小数所得的余数与较小数的最大公约数。
3.求最大公约数的常用的方法(1)列举法 (2)短除法 (3)分解质因数法【典型例题】例1 用短除法求下列各组数的最大公约数。
① 72、48 ② 26、78 ③ 32、24和16例2 325753⨯⨯=A ;75232⨯⨯=B 。
求AB 的最大公约数是多少?例3 用一个数去除30、60、75都能整除,这个数最大是多少?例4 有3根铁丝:长度分别是12厘米、18厘米和24厘米,现在要把它们截成相等的小段,每根都不许有剩余,每小段最长是多少厘米?一共可以截成多少段?例5 幼儿园一个班借阅图书,如果借35本,平均分发给每个小朋友差1本;如果借56本,平均分发给每个小朋友后还剩2本;如果借69本,平均分发给每个小朋友则差3本。
这个班的小朋友最多有多少人?例6 把60个苹果分成偶数堆,使得每堆的个数相等,有多少种不同的分法?* 例7 一块长方形运动场,长450米,宽231米,四角和四周都要栽上树,相邻两棵之间的距离相等,最少应栽多少棵树?如果买一棵树苗8元钱,买这些树要用多少钱?* 例8 已知两个数的积是5766,它们的最大公约数是31,求这两个数。
* 例9 已知两个自然数的和为165,它们的最大公约数是15,求这两个数.【小试锋芒】1.用短除法求下列各组数的最大公约数。
小学数学专题练习-数的认识(含解析)一、单选题1.用组成一个最小的四位数是()A.1000B.3590C.3509D.30592.4008读作()A.四千八百B.四千零八C.四千零八十D.四千八十3.72分解质因数的正确写法是()A.72=8×9B.72=2×4×3×3C.72=2×2×2×3×3D.72=2×2×2×3×3×14.15与()是互质数.A.18B.28C.102D.95.两个数的积一定是它们的()。
A.公因数B.公倍数C.最大公因数D.最小公倍数6.由5 个千和5 个十组成的数是()。
A.5005B.5050C.5500D.500057.3462读作()A.三千六百四十二B.三千四百六十二C.四千三百二十六D.二千六百四十三8.把126分解质因数,正确的是()A.126=2×9×7B.126=2×3×3×7C.2×3×3×7=126D.126=2×3×219.2和3都是()A.质因数B.质数C.约数D.奇数10.任何一个质数,只有( )个因数。
A.2B.3C.无数二、填空题11.看图写数,并把它读出来.读作:________12.在三位数中,最小的奇数是________,最小合数是________,最大的奇数是________,最大的合数是________。
13.________叫做这几个数的公倍数,________叫做这几个数的最小公倍数。
14.有一个四位数,它的最高位是________位.从右边起第三位是________位,第二位是________位,第一位是________位.15.填表.________16.根据下面同学的发言,在横线是填上合适的数.(1)17.一个四位数,千位上是10以内最大的质数,百位上是最小的自然数,十位上是最小的奇数,个位上是最小的合数,这个四位数是________。
小学奥数练习卷(知识点:约数个数与约数和定理)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共1小题)1.恰有20个因数的最小自然数是()A.120B.240C.360D.432第Ⅱ卷(非选择题)二.填空题(共40小题)2.写出不大于100且恰有8个约数的所有自然数是.3.已知自然数n有10个约数,2n有20个约数,3n有15个约数,那么6n有个约数.4.一个自然数恰有48个约数,并且其中有10个连续的自然数,那么这个数的最小值是.5.自然数N有很多个约数,把它的这些约数两两求和得到一组新数,其中最小的为4,最大的为2684,N有个约数.6.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.7.四位数的约数中,恰有3个是质数,39个不是质数,四位数的值是.8.大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,6,1+2+3+6=12,6就是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,81的所有因数之和为.9.恰好有12个不同因数的最小的自然数为.10.有10个不同因数的最小自然数为.11.两个正方形的面积之差为2016平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有对.12.60的不同约数(1除外)的个数是.13.如果一个自然数N(N>1)满足:N的因数个数就是其个位数字,那么这样的N就称为“中环数”(比如34=2×17,所以它有4个因数,正好就是34的个位数字,所以34就是一个”中环数”).在2~84中,一共有个“中环数”.14.在所有正整数中,因数的和不超过30的共有个.15.一个五位数是2014 的倍数,并且恰好有16个因数,则的最小值是.16.整数n一共有10个因数,这些因数从小到大排列,第8个是.那么整数n的最大值是.17.一个数恰好有8个因数,已知35和77是其中两个,则这个数是.18.在1~600中,恰好有3个约数的数有个.19.已知a、b是两个不同的正整数,并且a、b的约数个数与2013的约数个数相同,则两数之差(大减小)的最小值为.20.用表示a的不同约数的个数.如4的不同约数有1,2,4共3个,所以=3,那么(﹣)÷=.21.一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.22.有一个自然数A,它的平方有9个约数,老师9个约数写在9张卡片上,发给学学三张、思思三张.学学说:“我手中的三个数乘积是A3.”思思说:“我手中的三个数乘积就是A2,而且我知道你手中的三个数和是625.”那么,思思手中的三个数和是.23.一个四位数,他最小的8个约数的和是43,那么这个四位回文数是.(回文数例如:1111、4334、3210123)24.一个正整数恰有8个约数,它的最小的3个约数的和为15,且这个四位数的一个质因数减去另一个质因数的5倍等于第三个质因数的2倍,这个数是.25.定义:A□B为A和B乘积的约数个数,那么,1□8+2□7+3□6+4□5=.26.已知自然数N的个位数字是0,且有8个约数,则N最小是.27.一个合数至少有3个约数..(判断对错)28.把72的所有约数从小到大排列,第4个是.29.把360的所有约数从小到大排列,第4个数是4,那么倒数第4个数是.30.已知360=2×2×2×3×3×5,那么360的约数共有个.31.一个正整数,它的2倍的约数恰好比它自己的约数多2个,它的3倍的约数恰好比它自己的约数多3个.那么,这个正整数是.32.已知300=2×2×3×5×5,则300一共有不同的约数.33.A、B两数都只含有质因数3和4,它们的最大公约数是36.已知A有12个约数,B有9个约数,那么A+B=.34.能被2345整除且恰有2345个约数的数有个.35.分母是3553的最简真分数的和是.36.若用G(a)表示自然数a的约数的个数,如:自然数6的约数有1、2、3、6,共4个,记作G(6)=4,则G(36)+G(42)=.37.聰聰先求出自然數N的所有約數,再將這些約數兩兩求和,結果發現,最小的和是3,最大的和是2010,那麼這個自然數N是.38.自然数N有20个正约数,N的最小值为.39.一个自然数恰好有18个约数,那么它最多有个约数的个位是3.40.数22×33×55有个不同的约数.41.设数A共有9个不同约数,B共有6个不同约数,C共有8个不同约数,这三个数中的任何两个都互不整除,则三个数之积的最小值是.三.解答题(共9小题)42.已知2008被一些自然数去除,得到的余数都是10,这些自然数共有多少个?43.A、B、C、D是一个等差数列,并且A有2个约数、B有3个约数、C有4个约数、D有5个约数.那么,这四个数和的最小值是.44.如果一个数的奇约数个数有2m个(m为自然数),则我们称这样的数为“中环数”,比如3的奇约数有1,3,一共2=21,所以3是一个“中环数”.再比如21的奇约数有1,3,7,21,4=22,所以21 也是一个中环数.我们希望能找到n个连续的中环数.求n的最大值.45.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是.46.求100至160之间有8个约数的数.47.2008的约数有个.48.100以内共有8个约数的数共有多少个?它们各是多少?49.已知三位数240有d个不同的约数(因子),求d的值.50.求360所有约数的和.参考答案与试题解析一.选择题(共1小题)1.恰有20个因数的最小自然数是()A.120B.240C.360D.432【分析】首先把20拆成几个数的乘积,利用求约数个数的方法,从最小的质因数2考虑,依次增大,找出问题的答案即可.【解答】解:20=20=2×10=4×5=2×2×5;四种情况下的最小自然数分别为:219、29×3、24×33、24×3×5,其中最小的是最后一个24×3×5=240.故选:B.【点评】此题巧用求一个数约数的方法,从最小的质因数着手,分析不同的情形,得出结论.二.填空题(共40小题)2.写出不大于100且恰有8个约数的所有自然数是24、30、40、42、54、56、66、70、78、88.【分析】恰有8个约数的自然数,具有形式abc或ab3或a7(a、b、c是不同的质数),由此可得结论.【解答】解:根据题意可得:2×3×5=30,2×3×7=42,2×3×11=66,2×3×13=78,2×5×7=70;3×23=24,5×23=40,7×23=56,11×23=88,2×33=54;27=128>100.所以,所求的数从小到大依次是:24、30、40、42、54、56、66、70、78、88共十个.故答案为:24、30、40、42、54、56、66、70、78、88.【点评】本题考查约数个数问题,考查学生分析解决问题的能力,确定恰有8个约数的自然数,具有形式abc或ab3或a7(a、b、c是不同的质数)是关键.3.已知自然数n有10个约数,2n有20个约数,3n有15个约数,那么6n有30个约数.【分析】n有10个约数,而2n有20个约数,按约数和定理,得知n的分解式中不含有2,3n有15个约数,假设3n的分解式中不含有3,则3n的约数应该是(1+1)×10=20个,则n的分解式中含有一个3,6n分成2×3×n,再根据约数和定理,可以求得约数的个数.【解答】解:根据分析,n有10个约数,2n有20个约数,按约数和定理,又∵,∴n的质因数分解式中含有0个2;设n=3a m x,又∵,∴n的质因数分解式中含有一个3,根据约数和定理,得n的约数和为:(a+1)(x+1)=10,解得:a=1,x=4,此时n=3×m4;故6n=2×3×n=2×3×3×m4=2×32×m4,其约数和为:(1+1)×(2+1)(4+1)=2×3×5=30,故答案是:30.【点评】本题考查了约数个数与约数和定理,本题突破点是:根据约数和定理确定分解式中2和3的个数,再算约数的个数.4.一个自然数恰有48个约数,并且其中有10个连续的自然数,那么这个数的最小值是2520.【分析】因为这个数中的因数中有10个连续的自然数,那么这个数最小是1、2、3、4、5、6、7、8、9、10的最小公倍数,然后再验证这个最小公倍数是不是有48个约数.如果验证不到,再求2、3、4、5、6、7、8、9、10、11的最小公倍数,就这样去尝试.【解答】解:因为10=2×5,9=3×3,8=4×2,所以这10个数的最小公倍数,也就是7、8、9、10的最小公倍数.7、8的最小公倍数是56,9、10的最小公倍数是90,56和90的最小公倍数是2520.将2520分解质因数得23×32×5×7,所以它的因数个数是(3+1)×(2+1)×(1+1)×(1+1)=48个故此题填2520.【点评】此题考查是求公倍数的方法,以及如何去求约数的个数,采用的是假设验证的解题策略.5.自然数N有很多个约数,把它的这些约数两两求和得到一组新数,其中最小的为4,最大的为2684,N有8个约数.【分析】最小的数为4,则约数最小的数为1,另外一个第二小的约数为4﹣1=3,即:3是N的一个约数,最大的约数是本身,第二大的约数和第二小的约数相乘结果即为本身,所以第二大的约数为:,再根据最大的两约数和为2684,可以求出N的值,用约数和定理求出约数的个数.【解答】解:根据分析,约数最小的数为1,最小的两个约数和为4,则第二小的约数为:4﹣1=3,约数是成对出现的,N=1×N=3×,即是第二大的约数,由于最大的两约数和为2684,则有:,解得:N=2013,分解质因数2013=3×11×61,根据约数和定理,得:2013的约数个数为:(1+1)×(1+1)×(1+1)×(1+1)=8个,故答案是:8.【点评】本题考查了约数和定理与因数倍数知识,突破点是:根据约数和第二大和第二小约数,再求出N,再算其约数的个数.6.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有12个因数.【分析】首先判断文字中含有隐含的数字,奇偶位数和相等是11的倍数,在分析因数的个数,同时注意题中说的是3个质数.42需要分解成3个数字相乘有唯一情况.再枚举即可.【解答】解:首先根据奇偶位数和相等一定是11的倍数.因数一共的个数是3+39=42(个),将42分解成3个数字相乘42=2×3×7.=a×b2×c6.如果是11×52×26=17600(不是四位数不满足条件).再看一下如果这个数字最小是=11×32×26=6336.=3663=11×37×32.因数的个数共2×2×3=12(个).故答案为:12个.【点评】本题考查因数个数的求解同时考查质数与合数的理解和运用,题中隐含数字11就是本题的突破口,同时关键分析42分解成2×3×7的情况.实际就是特殊的情况,都是最小的质数.问题解决.7.四位数的约数中,恰有3个是质数,39个不是质数,四位数的值是6336.【分析】根据因数个数是42个同时需要有3个质数,42分解成3个数字相乘就有唯一情况.同时这四位数中奇数偶数位数和相等.满足11整除特性.接下来从最小的情况枚举尝试即可.【解答】解:根据奇数偶数位数和相等,所以一定是11的倍数,因数个数是3+39=42个.四位数含有3个质数,需要将42分解成3个数字相乘.42=2×3×7.所以可以写成a×b2×c6.那么看一下质数是最小的是什么情况.11×32×26=6336.当质数再打一点b=5时,c=2时,11×52×26=17600(不满足是四位数的条件).故答案为:6336.【点评】本题考查因数个数的求法,同时对质数的理解和运用,突破口是42需要分解成3个数字相乘有唯一情况.同时数字是11的倍数.最后发现实际都是特殊情况唯一确定.问题解决.8.大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,6,1+2+3+6=12,6就是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,81的所有因数之和为121.【分析】先找出81的所有因数,再把81的所有因数相加即可.【解答】解:81的因数:1、3、9、27、81,81的所有因数之和为:1+3+9+27+81=121,故答案为:121.【点评】本题关键是找到81的所有因数.9.恰好有12个不同因数的最小的自然数为60.【分析】首先把12分成两个数的乘积或3个数的乘积,用因数减1当所求自然数的质因数个数,从最小的质数2开始考虑,使2的个数最多,算出乘积比较得出答案.【解答】解:12=1×12=2×6=3×4=2×2×3,有12个约数的自然数有:①2×2×…×2×2(11个2)=2048,②2×2×…×2(5个2)×3=96,③2×2×2×3×3=72,④2×2×3×5=60;从以上可以看出只有④的乘积最小;所以有12个约数的最小自然数是60.故答案为:60.【点评】此题主要考查一个合数的约数个数的计算公式:a=pα×qβ×rγ(其中a 为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.10.有10个不同因数的最小自然数为48.【分析】首先把10分成两个数的乘积或3个数的乘积,用因数减1当所求自然数的质因数个数,从最小的质数2开始考虑,使2的个数最多,算出乘积比较得出答案.【解答】解:因为10=2×5=1×10,210=1024,24×3=48,所以一个自然数有10个不同的约数,则这个自然数最小:24×3=48;故答案为:48.【点评】此题主要考查一个合数的约数个数的计算公式:a=pα×qβ×rγ(其中a 为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.11.两个正方形的面积之差为2016平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有12对.【分析】假设大正方形的边长为x,小正方形的为y,x2﹣y2=(x+y)(x﹣y)=2016,x+y与x﹣y奇偶性相同,乘积2016是偶数,所以必是偶数,据此分解质因数2016=25×32×7,然后解答即可.【解答】解:假设大正方形的边长为x,小正方形的为y,有题意可得:x2﹣y2=2016,因式分解:(x+y)(x﹣y)=2016,x+y与x﹣y奇偶性相同,乘积2016是偶数,所以必是偶数,2016=25×32×7,2016因数的个数:(1+5)×(2+1)×(1+1)=36(个),共有因数36÷2=18对因数,其中奇因数有:(2+1)×2=6对,所以偶数有:18﹣6=12对,即,满足上述条件的所有正方形共有12对.故答案为:12.【点评】本题考查了约数个数的定理和奇偶性问题,关键是得到2016的约数的个数,难点是去掉几个奇因数;本题还可以根据x+y与x﹣y都是偶数,它们的积至少含有4这个偶数,所以2016÷4=504,然后确定504的约数是24个,即12对即可.12.60的不同约数(1除外)的个数是11.【分析】先将60分解质因数,60=2×2×3×5,再写成标准式是22×3×5,再利用约数个数公式,约数个数=不同质因数指数加1然后再相乘,最后减去1,即得答案.【解答】60分解质因数60=2×2×3×5,再下称标准式是22×3×5,再利用约数个数公式,约数个数=不同质因数指数加1然后再相乘.60的不同约数(1除外)的个数是(2+1)×(1+1)×(1+1)﹣1=11个.答:答案是11个.【点评】约数个数公式的推导要用乘法原理,当然此题也可以用列举法求解.13.如果一个自然数N(N>1)满足:N的因数个数就是其个位数字,那么这样的N就称为“中环数”(比如34=2×17,所以它有4个因数,正好就是34的个位数字,所以34就是一个”中环数”).在2~84中,一共有6个“中环数”.【分析】由题意,对N的因数个数分类讨论,由此即可得出结论.【解答】解:由题意,N的因数个数是2,N就是2;N的因数个数是3,则N是完全平方数,由于末尾是3,不存在N满足题意;N的因数个数是4,由于末尾是4,则满足条件的数为14,34,74;N的因数个数是5,则N是完全平方数,由于末尾是5,不存在N满足题意;N的因数个数是6,则N是76满足题意;同理78满足题意,所以在2~84中,”中环数”是2,14,34,74,76,78,故答案为6.【点评】本题考查因数与倍数,考查新定义,解题的关键是对N的因数个数分类讨论.14.在所有正整数中,因数的和不超过30的共有19个.【分析】由于一个数的因数包括本身,则这个数一定不超过30,则依此可以一一检验得到符合题意的正整数的个数.【解答】解:根据分析,此正整数不超过30,故所有不超过30的质数均符合条件,有2、3、5、7、11、13、17、19、23、29共10个;其它非质数有:1、4、6、8、9、10、12、14、15共9个满足条件,故满足因数的和不超过30的正整数一共有:10+9=19个.故答案为:19.【点评】本题考查了约数的个数知识,突破点是:从质数开始排查,再检验其它非质数.15.一个五位数是2014 的倍数,并且恰好有16个因数,则的最小值是24168.【分析】2014的倍数是五位数的数最小从10070开始,再根据的约数个数,来确定这个五位数的最小值.【解答】解:根据分析,2014的倍数是五位数的数:①最小是10070=5×2014,末尾三位是:70=2×5×7,约数个数为:(1+1)(1+1)(1+1)=8个;②12084=6×2014,末三位是:84=22×3×7,约数个数为:(2+1)(1+1)(1+1)=12个;③14098=7×2014,末三位是:98=2×72,约数个数为:(1+1)(2+1)=6个;④16112=8×2014,末三位是:112=24×7,约数个数为:(4+1)(1+1)=10个;⑤18126=9×2014,末三位是:126=2×32×7,约数个数为:(1+1)(2+1)(1+1)=12个;⑥20140=10×2014,末三位是:140=22×5×7,约数个数为:(2+1)(1+1)(1+1)=12个;⑦22154=11×2014,末三位是:154=2×7×11,约数个数为:(1+1)(1+1)(1+1)=8个;⑧24168=12×2014,末三位是:168=23×3×7,约数个数为:(3+1)(1+1)(1+1)=16个;显然符合题意的只有:24168.故答案是:24168.【点评】本题考查了约数个数与约数和定理,突破点是:根据约数和定理一一检验,得到符合题意的数.16.整数n一共有10个因数,这些因数从小到大排列,第8个是.那么整数n的最大值是162.【分析】由于整数的因数都是成对出现,则这10个约数必然是1、、3、、、、、、、n,立即可以填出1、2、3、、、、、、、n,也就是说n必然含有质因数2和3,然后结合因数个数定理可求解.【解答】解:根据分析可知10个因数分别为1、2、3、、、、、、、n,根据因数个数定理10=1×(9+1)=(1+1)×(4+1),由于含质因数2和3,则n应为21×34或24×31,其中21×34=162更大.故答案为:162.【点评】解答本题关键是:能根据因数成对出现的特点结合因数个数和定理.17.一个数恰好有8个因数,已知35和77是其中两个,则这个数是385.【分析】先把35和77分解质因数,即35=5×7,77=7×11,则这个数至少数是:5×7×11,然后根据求一个数约数的个数的计算方法:所有相同质因数的个数加1连乘的积就是这个数约数的个数,即(1+1)×(1+1)×(1+1)=8个,正好符合要求,然后解答可得出答案.【解答】解:35=5×7,77=7×11,则这个数至少数是:5×7×11=385,共有(1+1)×(1+1)×(1+1)=8(个)因数,正好符合要求.答:这个数是385.故答案为:385.【点评】此题主要考查一个合数的约数个数的计算公式:a=pα×qβ×rγ(其中a 为合数,p、q、r是质数),则a的约数共有(α+1)(β+1)(γ+1)个约数.18.在1~600中,恰好有3个约数的数有9个.【分析】如果一个数恰好有3个约数,则这个数分解质因数的形式为P2(P为质数),然后确定在1~600中,完全平方数的个数即可.【解答】解:如果一个数恰好有3个约数,则这个数分解质因数的形式为P2(P 为质数),因为,242=576,252=625,所以,P是不大于24的质数,即2、3、5、7、11、13、17、19、23,共有9个;答:在1~600中,恰好有3个约数的数有9个.故答案为:9.【点评】本题考查了约数个数与约数和定理的灵活逆用;关键是明确:当一个数的因数的个数是奇数个数时,这个数是完全平方数.19.已知a、b是两个不同的正整数,并且a、b的约数个数与2013的约数个数相同,则两数之差(大减小)的最小值为1.【分析】显然先分解质因数2013,可以求得其约数的个数为(1+1)×(1+1)×(1+1)=8,而8=2×2×2=2×4,故而可以确定a和b的分解质因数的形式,再一一检验找出差值最小的数.【解答】解:根据分析,分解质因数2013=3×11×61,有(1+1)×(1+1)×(1+1)=8个约数,而一个数有8个余数,那么这个数分解质因数一定可以写成m3×n或m×n×w (m、n、w为互不相同的质数),故约数个数为8的数有多个,现举例说明两数之差最小的几组:①104=23×13与105=3×5×7均有8个约数(这是最小的满足差是1的一组);②189=33×7与190=2×5×19均有8个约数;③23×37=296与297=33×11均有8个约数;④2013=3×11×61,2014=2×19×53均有8个约数.综上,a、b 两数之差(大减小)的最小值为1.故答案是:1.【点评】本题考查了约数个数与约数和定理,本题突破点是:先分解质因数,求出约数的个数,再算出a,b最小的差.20.用表示a的不同约数的个数.如4的不同约数有1,2,4共3个,所以=3,那么(﹣)÷=1.【分析】由题意,12的约数个数是6个,6的约数个数是4个,5的约数个数是2个,即可得出结论.【解答】解:由题意,12的约数个数是6个,6的约数个数是4个,5的约数个数是2个,所以(﹣)÷=(6﹣4)÷2=1,故答案为1.【点评】本题考查因数与倍数,考查学生的计算能力,正确理解题意是关键.21.一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是441.【分析】一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8,利用其中3个约数A,B,C满足:①A+B+C=79;②A×A=B×C,进行验证即可得出结论.【解答】解:一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8,(1)当N=x8,则九个约数分别是:1,x,x2,x3,x4,x5,x6,x7,x8,其中有3个约数A、B、C且满足A×A=B×C,不可能.(2)当N=x2y2,则九个约数分别是:1,x,y,x2,xy,y2,x2y,xy2,x2y2,其中有3个约数A、B、C且满足A×A=B×C,①A=x,B=1,C=x2,则x+1+x2=79,无解.②A=xy,B=1,C=x2y2,则xy+1+x2y2=79,无解.③A=xy,B=x,C=xy2,则xy+x+xy2=79,无解.④A=xy,B=x2,C=y2,则xy+x2+y2=79,解得:,则N=32×72=441.⑤A=x2y,B=x2y2,C=x2,则x2y+x2y2+x2=79,无解.故答案为441.【点评】本题考查约数个数和约数和定理,考查分类讨论的数学思想,解题的关键是一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8.22.有一个自然数A,它的平方有9个约数,老师9个约数写在9张卡片上,发给学学三张、思思三张.学学说:“我手中的三个数乘积是A3.”思思说:“我手中的三个数乘积就是A2,而且我知道你手中的三个数和是625.”那么,思思手中的三个数和是55.【分析】A2有9个约数,故由约数个数定理可逆推出:A的质因数分解形式为p4或pq(p、q为不相同的质数),分类讨论,即可得出结论.【解答】解:A2有9个约数,故由约数个数定理可逆推出:A的质因数分解形式为p4或pq(p、q为不相同的质数);若A=p4,那么可把A2的9 个约数写成如下的表格形式(幻方):学学手中必拿到了一行或一列或一条对角线;思思手中拿到的可能是(1、p、p7)(1、p2、p6)(1、p3、p5)(p、p2、p5)(p、p3、p4);只有后两组才能确定学学手中的牌,但后两组所确定的数需要1+p4+p8=625或1+p5+p7=625,可是这两种情况p均无解;故知A的质因数分解形式不能为p4,只能为pq;若A=pq,那么可把A2的9 个约数写成如下的表格形式思思手中拿到的可能是(1、p、pq2)(1、q、p2q)(1、p2、q2)(p、q、pq);经分析可知,只有当思思拿到(p、q、pq)时,才一定能确定学学手中的牌,此时学学手中的牌为(1、p2q、pq2),故1+p2q+pq2=625,解得A的两个质因数p、q为3和13,故思思手中的牌为(3、13、39),所求答案为3+13+39=55.故答案为55.【点评】本题考查约数和定理,考查幻方的运用,考查分类讨论的数学思想,正确运用约数个数定理是关键.23.一个四位数,他最小的8个约数的和是43,那么这个四位回文数是2772.(回文数例如:1111、4334、3210123)【分析】最小的八个约数的和为43,约数首先为自然数,首先该有1和2(如果没2的话,就不会有偶约数,最小的8个奇数的和大于43),不该有5(有5的话首末位都为0)和10,而1+2+3+4+6+7+8+9=40不够43,而回文数必然是11的倍数,所以11也是这8个约数之一,把11考虑进去,就只有下面一种情形了:1+2+3+4+6+7+9+11=43,然后求出这8个数的最小公倍数即可;由此解答.【解答】解:由分析可知:约数首先为自然数,首先该有1和2,不该有5和10,而1+2+3+4+6+7+8+9=40不够43,而回文数必然是11的倍数,所以11也是这8个约数之一,把11考虑进去,则有:1+2+3+4+6+7+9+11=43,以上数的最小公倍数为:4×7×9×11=2772,正好满足要求;答:这个四位回文数是2772;故答案为:2772.【点评】明确回文数的含义:从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”;然后根据题意,进行推导,求出这8个约数,是解答此题的关键.24.一个正整数恰有8个约数,它的最小的3个约数的和为15,且这个四位数的一个质因数减去另一个质因数的5倍等于第三个质因数的2倍,这个数是1221或2013.【分析】它的最小的3个约数的和为15,1肯定是其中一个约数,另两个最小的约数之和是14,然后通过列举,推出它的最小的3个约数只能是:1,3,11;它是4位数,所以,3和它本身肯定也是它的约数,所以已经有5个约数了,其中有两个质因数3,11,另外它至少有3个质因数,设第3个质因数为x.那么它的约数有:1,3,11,33,x,3×x,11×x,这个数本身,刚好8个,所以有x﹣5×3=2×11或者x﹣5×11=2×3,由此可以得出x=37或61;由此即可得出结论.【解答】解:它的最小的3个约数的和为15,1肯定是其中一个约数,另两个最小的约数之和是14,可能是:7、7(不符),6、8(如果是这两个,那2也是,不符),5、9(如果是这两个,那3也是,不符),4、10(如果是这两个,那2也是,不符),3、11(符合),所以可以推出它的最小的3个约数只能是:1,3,11;它是4位数,所以,33和它本身肯定也是它的约数,所以已经有5个约数了,其中有两个质因数3,11,另外它至少有3个质因数,设第3个质因数为x.那么它的约数有:1,3,11,33,x,3×x,11×x,这个数本身,刚好8个,所以有x﹣5×3=2×11或者x﹣5×11=2×3,由此可以得出x=37或61;所以它的约数有:1,3,11,33(3×11),37,111(3×37),407(11×37),1221(3×11×37)或1,3,11,33(3×11),61,183(3×61),671(11×61),2013(3×11×61)所以答案应该是1221或2013;故答案为:1221或2013.【点评】此题考查了约数个数和约数和定理,根据题意,进行推导,得出它的最小的3个约数是:1,3,11,是解答此题的关键.25.定义:A□B为A和B乘积的约数个数,那么,1□8+2□7+3□6+4□5=20.【分析】依次算出各部分约数的个数,然后相加即可.【解答】解:1×8的因数有4个2×7的因数有4个3×6的因数有6个4×5的因数有6个所以1□8+2□7+3□6+4□5=4+4+6+6=20故填20【点评】此题的关键是看懂A□B的意思,然后确定运算顺序.26.已知自然数N的个位数字是0,且有8个约数,则N最小是30.【分析】根据能被2、5整除的数的特征;自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少,而其它质因数最好都是2和3,并且2的个数不能超过2个;据此解答.【解答】解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.【点评】本题关键是根据能被2、5整除的数的特征确定自然数N的质因数;难点是根据约数和定理得出质因数5、3和2的个数.27.一个合数至少有3个约数.√.(判断对错)【分析】根据合数的意义,一个数,如果除了1和它本身还有别的因数,这样的数叫做合数.由此解答.【解答】解:根据合数的意义,一个合数至少有3个约数;所以这种说法是对的.。
数学总结约数的应用题约数是我们学习数学时经常接触到的一个概念。
简单来说,对于一个数n,如果存在一个数x,使得x能够整除n,那么x就是n的约数。
在我们的日常生活和学习中,约数有着广泛的应用。
本文将通过一系列应用题的讨论,来总结约数的应用。
一、公约数的性质及应用公约数是指两个数共有的约数。
我们来看一个例子:例1:求18和24的公约数。
解:首先,我们可以列出18和24的所有约数如下:18的约数为1、2、3、6、9、18,24的约数为1、2、3、4、6、8、12、24。
可以看出,18和24的公约数有1、2、3、6。
由此可以得知,计算公约数的一种方法是先列出两个数的所有约数,然后找出它们共有的约数。
公约数的性质:1. 任何一个整数的约数必定是1和其本身的约数。
2. 两个数的公约数中,最大的一个称为最大公约数(简称最大公因数)。
公约数的应用:1. 寻找两个数的公约数可以用于简化分数:将分子和分母同时除以最大公约数,即可得到最简分数形式。
2. 在解决实际问题时,公约数可以帮助我们找到最简单、最经济的解决方法。
二、最大公约数的计算方法最大公约数是指两个数中最大的公约数。
下面介绍几种求最大公约数的方法:1. 列举法:列举两个数的所有约数,然后找出它们的最大公约数。
2. 公式法:对于正整数a和b,有以下公式成立:最大公约数(a, b) = 最大公约数(b, a % b)。
其中,%表示取余运算。
通过不断将较大数除以较小数取余,可以快速求解最大公约数。
例2:求36和48的最大公约数。
解:根据公式法,我们进行如下计算:最大公约数(36, 48) = 最大公约数(48, 36 % 48) = 最大公约数(48, 36) = 12。
因此,36和48的最大公约数为12。
最大公约数的计算方法,除了提高计算效率外,还可以帮助我们解决一些实际问题。
接下来,我们以应用题的形式继续讨论。
三、约数的应用题1. 应用一:小学生校服小明是某小学的学生,他的学校规定,学生校服的颜色有3种,分别是红色、蓝色和绿色。
第二十节 约数的个数与和
【知识要点】
自然数d c b a P P P P N 4321⨯⨯⨯=,4321P P P P
均为质数,a 、b 、c 、d 为自然数,则 约数的个数等于
()()()()1111+⨯+⨯+⨯+d c b a ,所有约数的和等于()()b a P P P P 221111+++⨯+++ ()()d c P P P P 443311+++⨯+++⨯
【典型例题】
例1 用枚举法求120所有的因数。
例2 180共有几个约数?所有约数的和是多少?
* 例3 1~500中有奇数个约数的数有哪些?只有3个约数的数有哪些?
* 例4 共有8个不同约数,且小于120的自然数有哪些?
* 例5 有12个不同约数的最小自然数是多少?
【小试锋芒】
1.用枚举法求90的所有因数。
2.720的约数有多少个?约数的和是多少?
* 3.200~600之间有奇数个约数的自然数有几个,都是哪些?* 4.小于200的有14个约数的自然数有哪些?
* 5.某自然数是4和5的倍数,包括1和它本身在内共有9个约数,这个自然数是多少?
** 6.少年宫游乐厅内悬挂着100个彩色灯泡,这些灯泡或明或暗十分有趣。
这100个灯泡按1~100编号,它们的亮暗规则是:
第一秒,全部灯泡变亮;
第二秒,凡编号为2的倍数的灯泡由亮变暗;
第三秒,凡编号为3的倍数的灯泡改变原来的亮暗状态,即亮的变暗,暗的变亮;
……
一样的,第n秒凡编号为n的倍数的灯泡改变原来的亮暗状态。
这样继续下去,每2分钟一个周期。
问:第100秒时,亮着的灯泡有多少个?
** 7.3个孩子分20个苹果,每人至少一个,分得的苹果个数是整数,则分配的方法一共有多少种?
【大显身手】
1.用枚举法求124所有的因数。
2.126的约数个数有多少个?全部约数的和是多少?* 3.小于200的有奇数个约数的自然数有哪些?
* 4.小于300的9个约数的自然数有哪些?
*** 5.某自然数小于200,并且是2和9的倍数,包括1和它本身在内共有12个约数,这样的自然数有哪些?
**** 6.两千五百年前,数学家们发现了这样一种现象:6的约数有1、2、3、6,而6恰好等于它自身的约数(不含它本身)的和:6=1+2+3。
后来,数学家们找到具备这样性质的第二个数是28,28=1+2+4+7+14,第三个数是496,第四个数是8128。
人们把这样的数叫做完全数。
观察这四个数,大胆猜测(这是研究数学的极为重要的方式)一下,8128后面的那些完全数因该是什么样子的,简单说明理由。