路灯监控系统的设计
- 格式:doc
- 大小:2.17 MB
- 文档页数:29
路灯智慧平台管理系统设计方案设计方案:路灯智慧平台管理系统一、需求分析:随着智能城市建设的不断推进,路灯作为城市基础设施之一,也需要进行智能化管理。
路灯智慧平台管理系统旨在通过对路灯的集中监控、远程控制和数据分析,提高路灯管理的效率和智能化水平。
系统需求如下:1. 路灯监控功能:实时监控路灯的亮度、状态、功率等信息,及时发现故障并进行报修。
2. 路灯控制功能:通过系统远程控制路灯的开关和亮度,根据不同的时段和天气条件智能调整亮度。
3. 路灯数据分析功能:通过对路灯设备数据的统计和分析,提供路灯使用情况报表、节能分析报告等,帮助决策者优化路灯管理策略。
4. 报修管理功能:设置在线报修平台,提供故障报修和维修进度查询等服务,方便用户报修和监督。
5. 安全保密功能:确保系统和数据的安全性,防止未经授权的访问和数据泄露。
二、系统架构:基于以上需求分析,路灯智慧平台管理系统可以采用以下架构:1. 前端界面:提供用户操作界面,包括路灯监控、路灯控制、数据分析、报修管理等模块,实现用户与系统的交互。
2. 后台服务:包括路灯数据采集、故障报修、路灯控制和数据分析等功能。
后台服务可以部署在云服务器上,提供稳定的运行环境。
3. 数据库:存储路灯设备信息、故障报修记录、用户信息和数据分析结果等数据。
4. 路灯设备:通过传感器采集路灯的亮度、状态、功率等信息,并通过智能控制模块进行路灯的开关和亮度控制。
5. 移动终端:用户可以通过移动APP等终端设备对路灯进行监控、控制和故障报修等操作。
三、系统功能实现:1. 路灯监控功能:通过与路灯设备通信,获取路灯的亮度、状态、功率等信息,并将数据实时展示在前端界面上。
通过数据图表和地图等形式,直观展示各个路灯的状态和亮度变化,方便管理人员进行监控。
2. 路灯控制功能:通过与路灯设备通信,实现对路灯的开关和亮度的远程控制。
定义不同的亮度控制策略,根据不同的时间段和天气条件自动调整路灯的亮度,实现节能减排的目标。
智能路灯控制系统设计毕业设计智能路灯控制系统设计——毕业设计一、课题背景随着城市的不断发展和智能化的进步,传统路灯系统已经不能满足人们的需求。
智能路灯控制系统可以通过智能化的技术手段,对路灯进行智能化的管理和控制,实现路灯的智能化,提高路灯的使用效率,同时也为城市节能减排做出了积极的贡献。
因此,设计一套可靠性高、易于操作、具有智能化管理和控制功能的智能路灯控制系统成为当今的热门课题。
二、设计思路本次毕业设计的智能路灯控制系统主要包括智能控制器、路灯控制中心和手机App三个部分。
具体实现方式如下:1.智能控制器:智能控制器使用单片机(MCU)和无线通讯模块组成,通过感应器检测环境光强度、路灯实际功率和亮度,并实时反馈传感器数据到路灯控制中心。
控制器安装在路灯杆上,通过网络通讯可以与路灯控制中心实现实时通讯。
2.路灯控制中心:路灯控制中心是智能路灯系统的核心部分,由服务器和数据库组成,实现对智能控制器、路灯和App的智能管理和监控。
路灯控制中心可以对路灯进行智能化管理,如控制路灯的开关、设置灯光亮度等,同时具备实时监控路灯的工作状态,当路灯损坏时,可以及时进行维修和更换,避免路灯故障对城市安全带来的影响。
3.手机App:智能路灯控制系统提供了手机App,用户可以通过手机App对路灯进行管理和控制,例如通过App对路灯开关进行控制、调整灯光亮度等,用户还可以通过App监控路灯的工作状态和及时反馈意见。
三、技术实现方案1.硬件设计:将传感器等硬件设备与单片机(MCU)相连,通过编写程序实现路灯的智能管理和控制。
2.通信技术:选择物联网通信技术,采用GPRS、WiFi等网络通讯技术,通过路灯控制中心实现智能管理和监控。
3.软件设计:采用云计算技术,实现路灯的实时监控和远程操作,使用Web接口和App接口等软件技术,与MCU设备通信协议进行通讯。
四、实验结果及分析本次毕业设计成功实现了一套三部分智能路灯控制系统,实现了路灯的智能化管理和控制,减少了能源的浪费,大大提高路灯的使用效率,为城市的节能减排做出了积极贡献。
智能路灯系统的设计与实现智能路灯系统是一种结合了智能化技术和照明技术的新型路灯系统,通过引入各种先进的传感器、通信技术以及智能控制算法,实现对路灯的自动控制和管理。
它不仅能够实现节能减排的目标,还能够提高路灯的使用寿命、提升道路安全性和智能化管理水平。
一、智能路灯系统的设计原理智能路灯系统的设计可以分为硬件和软件两个方面。
在硬件方面,需要考虑路灯的照明效果、节能性能以及系统的可靠性。
在软件方面,需要设计智能控制算法、建立数据传输和处理模块,并且实现对路灯的远程监控和管理。
在智能路灯系统的设计中,首先需要选择适合的传感器来感知环境的变化,如光照传感器、温湿度传感器、噪声传感器等。
这些传感器可以实时监测环境参数的变化,并利用数据传输模块将数据传输至后台服务器进行处理。
同时,系统还需考虑使用节能的LED灯作为照明光源,通过对光照强度、光色等参数的调节,实现智能控制,从而提高能源利用效率。
其次,智能路灯系统需要具备远程监控和管理功能。
通过使用通信模块,可以实现对路灯状态的实时监控和控制。
同时,利用云平台的支持,可以实现对整个路灯系统的集中式管理,如路灯开关、亮度调节、故障检测等操作都可以通过后台系统进行远程控制和管理。
这样一来,不仅能够方便运营管理人员进行实时操作,还能够大大降低维护成本和提高工作效率。
二、智能路灯系统的实现步骤1. 硬件设计与组装首先,需要根据系统需求设计并选购合适的传感器、控制模块以及通信模块。
之后,需要进行硬件组装和安装,包括将传感器固定在路灯中、安装控制和通信模块等。
这一步骤的关键在于确保硬件的稳定性和可靠性,以保证系统正常运行。
2. 软件开发与编程接下来,需要进行软件开发与编程。
包括建立数据传输和处理模块,开发智能控制算法,实现远程监控和管理功能等。
此外,还需要开发用户端App或者Web端界面,方便管理人员对路灯系统进行操作和监控。
3. 网络配置和实验测试在系统开发完成后,需要进行网络配置和实验测试。
智慧灯光监控系统设计方案智慧灯光监控系统是一种基于人工智能和物联网技术的智能化管理系统,能够实时监控路灯的工作状态、环境参数和交通信息,并进行智能调控和管理。
下面是一个智慧灯光监控系统的设计方案。
一、系统架构设计智慧灯光监控系统的架构主要包括硬件设备、软件系统和网络平台三个组成部分。
硬件设备方面,首先需要部署感应器设备,包括摄像头、光强传感器、烟雾传感器等,用于采集环境参数和交通信息。
其次,需要配备控制器设备,用于接收感应器的数据,并进行处理和控制。
最后,需要安装LED路灯,用于实现智能调光和显示交通信息。
软件系统方面,需要实现数据处理和分析算法,用于提取有用的信息和进行决策。
同时,也需要开发用户界面,用于展示监控数据和进行远程控制。
网络平台方面,可以采用云平台搭建智慧灯光监控系统。
通过云平台,可以实现数据的存储和共享,同时也方便用户进行远程管理和控制。
二、功能设计智慧灯光监控系统的主要功能包括监控、识别和控制三个方面。
1.监控功能:系统可以实时监控路灯的工作状态,包括灯的亮度、故障和能耗等。
同时也可以监控环境参数,如温度、湿度和烟雾浓度等。
此外,系统还可以监控交通信息,如车辆流量和人员流动等,以便进行交通状况分析和决策。
2.识别功能:系统可以通过摄像头进行目标识别和行为分析。
例如,可以识别出行人和车辆,并分析出行人的行走路径和车辆的速度。
同时,还可以通过光强传感器识别出光照强度,以便进行智能调光。
3.控制功能:系统可以根据监控的数据进行智能调控和管理。
例如,根据环境光强和车流量等信息,智能调节路灯的亮度。
同时,系统还可以进行故障检测和维护管理,及时报警和处理路灯故障。
三、优势及应用场景智慧灯光监控系统具有以下优势:1.提升路灯管理效率:通过实时监控和智能调控,可以有效降低能耗和维护成本,提升路灯的使用效率和寿命。
2.改善交通状况:通过识别和分析交通信息,可以准确掌握道路的交通状况,并进行智能调控,优化交通流量。
智慧路灯监控系统简介设计方案智慧路灯监控系统设计方案一、引言随着城市化进程的加快,城市道路的建设也变得越来越密集。
而路灯作为城市夜间照明的重要部分,其数量也在不断增加。
然而,传统的路灯仅具备照明功能,无法进行实时监控和管理。
为了提高城市管理的效率和便利性,智慧路灯监控系统应运而生。
本文将对智慧路灯监控系统进行简介,包括系统的基本原理、核心技术和设计方案。
二、系统原理智慧路灯监控系统主要由路灯节点、通信模块、云平台和管理终端组成。
路灯节点负责实时监控路灯状态和采集环境数据,并通过通信模块将数据传输到云平台。
云平台对数据进行存储、处理和分析,提供路灯运行状态的监控和管理功能。
管理终端通过云平台可以对路灯进行远程控制和管理。
三、核心技术1. 物联网技术:智慧路灯监控系统通过物联网技术实现了各个节点的互联互通,实现数据的实时传输和共享。
2. 传感器技术:系统中的路灯节点配备了温湿度传感器、烟雾传感器和噪音传感器等,可以感知环境变化并进行数据采集。
3. 通信技术:系统采用无线通信技术,如Wi-Fi、蓝牙和NB-IoT等,实现节点与云平台之间的数据传输。
4. 大数据技术:云平台采用大数据技术对采集到的数据进行存储、处理和分析,为城市管理者提供决策支持。
四、设计方案1. 路灯节点设计路灯节点由智能控制主板、传感器、摄像头和通信模块等组成。
智能控制主板负责控制路灯的开关、亮度调节和定时开关等功能。
传感器可以实时感知环境的温度、湿度和噪音等参数。
摄像头可以进行实时视频监控,并进行图像识别和分析。
通信模块负责与云平台进行数据通信。
2. 云平台设计云平台由服务器集群、数据库和数据分析模块组成。
服务器集群负责数据的存储和计算,数据库用于存储各个路灯节点采集到的数据,数据分析模块负责对数据进行处理和分析,生成报表和统计信息。
3. 管理终端设计管理终端可以通过云平台对路灯进行实时控制和监控。
管理终端可以通过登录云平台查看各个路灯的实时状态、调整亮度和定时开关等功能。
路灯远程载波监控系统的分析与设计陈焕东(辽宁省高速公路管理局朝阳管理处监控分中心,朝阳122000)摘要:阐述了景观灯、路灯监控升级改造的必要性及远程载波监控系统的优点,介绍了路灯远程载波监控系统的总体框架结构及功能。
关键词:路灯监控管理;远程载波监控系统;升级改造中图分类号:U491文献标识码:B文章编号:1673-6052(2012)12-0128-02这几年,城市中的景观灯、路灯数量巨增,但控制方式还停留在比较原始的手动控制方式或者简单的光控、时钟控制方式,不仅操作起来费时费力,维护起来也很困难,故障不能及时发现,当然也不能得到及时解决。
现在,计算机以及网络技术迅猛发展,我们有理由要求通过网络来监控和管理这些照明、景观灯具。
另外,对于城市照明工作的监管单位,减少人力物力消耗,降低电力消耗都是急待解决的问题。
普通的控制和管理方式已经不能满足现代化城市对照明亮化设施管理的需求。
正因为如此,一种新型的大面积的照明、景观灯监控系统应运而生,希望本系统能够为您带来便利,使您的管理工作更加便捷和得心应手。
1景观灯、路灯监控升级改造的必要性分析1.1目前国内景观灯、路灯常用的控制方式目前国内城市路灯开关控制方式主要采用手动、时钟控制和光控制三种主要方式(1)手动控制方式:是最原始的基本控制方式,通过人工开关灯具。
适用于企业单位等小规模区域的灯具控制,如果灯具数量巨大,安装地点分散,控制者负担重,操作起来很困难。
(2)时钟控制方式:可以通过预先设定好的时间表来控制灯具开关,可按照预定时间段设定开关时间。
但是如果要修改开关时间,需要将所有定时控制器全部修改设置,不灵活,设置参数费时费力。
不能应急突发事件。
受操作者个人因素影响严重。
(3)光控开关灯方式:通过光电传感器来采集光照强度信号,当环境照度高时关闭电源开关,环境照度低时启动电源开关。
相比手动控制而言,可以减轻一定的操作者劳动量。
缺点是启动停止控制只能依赖于光照,控制方式单一,不能应急突发事件,不能控制半夜灯,过分依赖于光照。
黧熊蛆试论市政路灯照明监控系统的总体设计王旭东(晋城市市政工程总公司,山西晋城048000)【摘要]城市路灯照明,是城市的重要妇威部分,和人民群众的日常生活密切相关。
路灯照明设备的正常运行,直接关系着城市道路交通的安全、畅通、人民群众的正常生活。
本文主要分析了市政路灯照明监控系统的总体设计相关问题,有刹于大大提高路灯照明自动化控制水平,缩短路灯故障处理时间,提高路灯照明设备的利用率,提高人民群众对路灯的满意度。
提高人民群众对市政府的满意度。
【关键词】路灯;监控;设计;实现路灯照明监控系统是应用于婀沛’路灯照明的测空管理系统。
系统应用遥测、遥信、遥控等自动控制技术,计算机信息管理技术,无线通讯等技术,根据城市市的实际情况及监拄瘟占点多、分布广等特点,同时考虑到系统运行费用要经济及运行技术上要可靠等诸多因素设计本系统,实现对各个路灯瞄控站点的远程监控和数据采集,同时设计了本地维护功能。
并实现对数据进行处理、存储、报表生成、打印等功能。
系统容量大,覆盖范围广,有强大的管理功能。
系统的实施为路灯照明的运行管理,提供了先进的科学手段,使各站运行信息及时反馈,并得到有效的分析:对于蜘i路灯照明运行管理的完善和提高具有重要的意义。
1路灯照明监控系统没计思想路灯照明监控系统采用分布式计算机控制系统,对路灯照明设备进行集中管理、分散控制。
1)与原有系统—体化。
城市路灯处原有两个与运行管理相关的系统,—个是地理信息设备管理系统,其中管理着大量的设备数据。
另—个是电话接报系统,是日常处理群众报修路灯的管理系统。
本系统的设计采用嵌入M a D l nf o地理信息的方法,与原有“地理信息设备管理系统”完美结合。
本系统的故障自动报警功能,采用了与现有的“电话接报系统”相同的处理流程,可以将本系统的自动报警与电话报修统一管理、统一监督,充分发挥故障处理系统的管理职能。
2)采用分布式结构。
由于路灯照明监控系统是多目标、多任务、多参数、多功能的实时系统,因此,需要采用分布式系统。
智慧路灯监测管理系统设计方案一、引言智慧路灯监测管理系统是一种利用物联网技术对城市道路上的路灯进行实时监测和管理的系统。
通过智能传感器、通信设备和云平台等技术手段,实现对路灯的能耗、亮度、故障等信息进行监测和控制,提高路灯的能效和管理效率,同时为城市居民提供更加舒适、安全的路灯照明环境。
本文将从系统架构、功能模块等方面进行设计方案的详细阐述。
二、系统架构智慧路灯监测管理系统的整体架构可分为三层:感知层、传输层和应用层。
1. 感知层:感知层主要包括路灯传感器、视频监控设备等,用于采集路灯的亮度、能耗、故障等信息。
2. 传输层:传输层主要通过物联网技术将感知层采集到的信息传输到云平台。
传输方式可以采用无线通信技术,如Wi-Fi、NB-IoT等。
3. 应用层:应用层是整个系统的核心,主要包括云平台和系统管理终端。
云平台用于接收、存储和处理传感层的数据,提供数据分析、决策支持等功能;系统管理终端用于对路灯进行远程监控和管理。
三、功能模块1. 数据采集模块:负责采集路灯的亮度、能耗、故障等信息,并将数据传输到云平台。
该模块可以通过安装在路灯杆上的传感器实现。
2. 数据传输模块:负责将采集到的数据通过物联网技术传输到云平台。
传输方式可以采用无线通信技术,如Wi-Fi、NB-IoT等。
3. 数据存储与管理模块:负责接收、存储和管理云平台上的数据。
该模块可以采用分布式数据库技术,实现数据的高效存储和管理。
4. 数据分析与决策支持模块:负责对采集到的数据进行分析和处理,提供决策支持。
该模块可以利用数据挖掘和机器学习等技术,实现路灯能耗预测、故障检测、节能调度等功能。
5. 远程监控和管理模块:负责对路灯进行远程监控和管理。
通过系统管理终端可以实时监测路灯的状态、进行亮度调节、故障排查等操作。
四、系统优势1. 节能减排:通过对路灯能耗进行实时监测和分析,系统可以优化路灯的能效,减少能源浪费,实现节能减排的目标。
2. 故障检测与维护:系统能够及时发现路灯的故障,并通过远程监控和管理进行维护。
《城市智能路灯施工方案(节能与监控系统设计)》一、项目背景随着城市化进程的不断加快,城市照明需求日益增长。
传统路灯存在能源浪费、管理不便等问题,已不能满足现代城市发展的需求。
为了提高城市照明的能效,实现智能化管理,本项目旨在建设城市智能路灯系统,该系统将结合节能技术和监控系统设计,为城市提供高效、可靠、智能的照明服务。
城市智能路灯系统具有以下优势:1. 节能高效:采用先进的节能技术,如 LED 光源、智能调光等,可大幅降低能源消耗,减少运营成本。
2. 智能监控:通过监控系统实现对路灯的远程监控和管理,及时发现故障并进行维修,提高路灯的可靠性和稳定性。
3. 环保可持续:减少能源消耗和碳排放,符合国家环保政策,促进城市可持续发展。
4. 提升城市形象:智能路灯系统可以实现多种照明效果,提升城市的美观度和夜间景观。
二、施工步骤(一)施工准备1. 技术准备(1)熟悉施工图纸和相关技术规范,了解智能路灯系统的组成和工作原理。
(2)进行现场勘查,确定路灯的安装位置、线路走向和基础形式。
(3)制定施工方案和技术交底,明确施工工艺和质量要求。
2. 材料准备(1)根据施工图纸和材料清单,采购智能路灯系统所需的材料和设备,包括路灯杆、灯具、控制器、传感器、电缆等。
(2)对采购的材料和设备进行检验和测试,确保其质量符合要求。
3. 人员准备(1)组建施工队伍,包括项目经理、技术负责人、施工员、安全员、质检员等。
(2)对施工人员进行技术培训和安全交底,提高施工人员的技术水平和安全意识。
4. 现场准备(1)清理施工现场,拆除障碍物,平整场地。
(2)设置施工标志和安全警示标志,确保施工现场的安全。
(二)基础施工1. 测量放线根据设计图纸,使用全站仪或经纬仪进行测量放线,确定路灯基础的位置和尺寸。
2. 基础开挖采用挖掘机进行基础开挖,按照设计要求控制基础的深度和尺寸。
开挖过程中,要注意保护地下管线和设施。
3. 基础浇筑(1)在基础底部铺设一层碎石垫层,然后浇筑混凝土基础。
智能路灯监控系统的研究与设计摘要:现代城市对路灯智能化要求越来越高,本文提出了一种基于gprs无线通信和电力线载波通信(plcc)相结合的城市路灯远程监控系统。
该系统利用这两种通信方式的特点,设计了一种性价比高的路灯控制系统。
关键词:路灯管理;智能化;监控一、引言公共路灯照明系统是城市建设的重要组成部分,保证城市路灯处于良好状态,不仅关系着人民生活、生产发展、交通安全和社会治安,而且对提供良好的投资环境,吸引外商投资,促进经济发展,起着非常重要的作用。
传统的路灯控制常采用定时器或光控器,让路灯在规定的时间内亮灭,无法做到与路灯管理室的通信,不便于远程监控和管理。
路灯巡检常采用“晚上巡灯,白天巡线”这种人工方法巡视来获得设备的运行状况,不仅耗费大量的人力和物力,而且实时性很差,处理故障的效率也很低,很难满足现代高亮灯率的要求。
近年来,计算机技术迅速发展,应用计算机技术推动各项事业发展,取得了显著成效。
通过改变现行落后的照明控制方式来节约能源是建立节约型社会的重要组成部分。
【1】二、项目技术方案项目总体思路及实施方案总体思路:结合嵌入式技术和智能控制技术利用其通讯接口.建立分布式监控系统,实现对所有灯具的数字化集中管理和监控。
【2】1、整个系统为3层:(1)现场监控终端:采用的嵌入式技术,再配之主流的通讯协议,实现现场监控终端与路灯智能电源模块间的通讯。
各智能电源模块与监控终端连接,负责采集路灯各种信号。
现场监控终端既可与远程控制中心脱机,独立设定参数(开、关灯时间及各时段亮度设定)控制路灯,又可与远程控制中心联机,双向通讯,由控制中心设定或修改现场控制器的参数设定,同时现场监控终端把采集到的路灯信息上传到控制中心。
(2)监控中心:现场监控终端与路灯管理所监控端之间通讯方式采用gps通讯。
监控各条线路的路灯故障报警、起停、功率状态,并可根据需要调整路灯的工作状态。
(3)远程监控管理:路灯管理所与远程监控中心采用以太网技术进行通讯,管理级可以充分利用企业广域网络进行海量的数据传输,完美实现远程监控与管理。
基于物联网的智能路灯远程监控系统设计智能路灯远程监控系统是一种基于物联网技术的创新解决方案,旨在提高路灯管理的效率和便利性。
本文将对该系统的设计进行详细介绍,包括系统结构、功能模块以及实施方案。
一、系统结构智能路灯远程监控系统的结构包括物理层、网络层、应用层和云端管理平台。
物理层主要由传感器、控制器、通信设备和电源组成,用于收集路灯状态和环境信息,并将数据传输至云端管理平台。
网络层通过物联网技术连接传感器和云端管理平台,实现数据的可靠传输和实时监控。
应用层是系统的核心,包括远程监控、故障检测、能耗管理等功能模块,能够对路灯进行智能控制和实时管理。
云端管理平台是系统的数据处理中心,负责接收、存储、分析和展示路灯的状态和环境信息。
管理平台具备强大的数据处理和大数据分析能力,能够为路灯管理者提供决策支持和改进方案。
二、功能模块1. 远程监控功能:通过网络连接,管理者可以随时随地远程监控路灯的状态和运行情况。
包括灯具的亮度、故障情况、电源电量等数据,以及路灯的实时视频监控,实现对路灯的全方位监控和管理。
2. 故障检测功能:系统能够实时检测路灯的故障,并自动报警通知管理者。
例如灯泡故障、电源故障等,系统能够实时识别并发送故障信息,以便于及时维修和保养,提高路灯的可用性和可靠性。
3. 能耗管理功能:系统能够实时监测和分析路灯的能耗情况。
通过对电源电量、照明时间和光照强度的自动调节,能够根据实际需求来优化能源的使用效率,并提供节能建议,减少能源浪费,降低运营成本。
4. 安全管理功能:系统对路灯进行实时视频监控,提供安全管理功能,如行人和车辆的识别和异常行为监测。
一旦发生安全事件,系统能够及时报警并通知相关部门,提供安全保障和预防措施。
三、实施方案为实现智能路灯远程监控系统,需要采取以下实施方案:1. 传感器和设备部署:在路灯上安装传感器和控制器,并保证其安全性和稳定性。
同时,选择适当的通信设备,如无线传感器网络或4G/5G无线通信,来实现路灯数据的传输。
基于无线传感网络的路灯控制系统设计基于无线传感网络的路灯控制系统设计随着科技的不断发展和城市化进程的加快,智能城市建设成为人们关注的热点。
而路灯作为城市基础设施的重要组成部分,在提供照明的同时,也潜藏着巨大的节能潜力。
因此,设计一种基于无线传感网络的路灯控制系统,实现路灯的智能化管理和节能,成为当前研究和实践的方向之一。
一、系统结构与组成基于无线传感网络的路灯控制系统由多个路灯节点、集中控制器和监控中心组成。
1. 路灯节点:每个路灯节点包含一个无线传感器节点和一个射频通讯模块。
无线传感器节点负责感知环境信息,例如光照强度、温度等,并将这些信息通过射频通讯模块发送给集中控制器。
2. 集中控制器:集中控制器是整个系统的核心,负责接收并处理来自路灯节点的信息,并根据预设的策略控制路灯的亮度。
集中控制器还具备与监控中心通讯的能力,可以将实时的路灯状态和能耗信息上传。
3. 监控中心:监控中心位于城市管理部门,负责实时监测和管理路灯的运行状态、能耗情况等。
监控中心可以通过网络远程控制路灯的开关、调整亮度等参数,并生成报表供管理者参考和分析。
二、系统工作原理1. 路灯节点工作原理:每个路灯节点安装在路灯杆上,通过无线传感器节点感知环境信息。
传感器负责感知光照强度和温度等参数,然后将这些参数通过射频通讯模块发送给集中控制器。
同时,每个节点还具备一定的处理能力,可以根据预设策略控制灯光的亮度。
2. 集中控制器工作原理:集中控制器接收并处理来自路灯节点的数据信息,包括光照强度和温度等参数。
根据预设的策略,集中控制器实时调整路灯的亮度,以实现节能的目的。
集中控制器还负责与监控中心通讯,将路灯的实时状态和能耗信息上传到监控中心,方便管理者进行监控和管理。
3. 监控中心工作原理:监控中心通过网络接收集中控制器发送的实时路灯状态和能耗信息,可以远程控制路灯的开关、调整亮度等参数。
监控中心还可以生成报表,用于评估和分析路灯的能效和运行情况,为城市管理者提供参考和决策依据。
路灯监控系统方案1. 背景随着城市发展和人口增加,道路交通的安全问题变得日益重要。
路灯作为城市的基础设施之一,为行人和驾驶员提供了必要的照明和安全保障。
然而,经常发生路灯不亮、灯泡烧坏等问题,给夜间交通带来了诸多隐患。
为了提高道路交通安全性和提供良好的城市照明环境,需要一种高效可靠的路灯监控系统。
2. 系统架构路灯监控系统的架构包括以下几个主要组件:2.1 路灯节点路灯节点是系统的基本单元,安装在每个路灯上。
每个节点包含一个光敏传感器和一个摄像头,用于监测路灯的状态和周围环境。
路灯节点与云服务器通过无线通信进行数据传输。
2.2 网关网关是连接路灯节点和云服务器的中间设备。
网关负责收集路灯节点发送的数据,并将其上传到云服务器。
网关还提供与路灯节点的双向通信功能,可以从云服务器接收指令,并将其传送给相应的路灯节点。
2.3 云服务器云服务器是整个系统的核心,负责接收、处理和存储路灯节点发送的数据。
云服务器使用数据库存储路灯节点的状态信息,并根据需要生成报告和统计数据。
云服务器还提供用户接口,允许用户通过手机应用或Web界面监控和控制路灯。
3. 系统功能路灯监控系统具有以下主要功能:3.1 实时监控路灯节点的摄像头可以实时监控路灯周围的环境。
用户可以通过手机应用或Web界面查看路灯节点的视频流,以便及时发现异常情况。
3.2 路灯状态监测路灯节点的光敏传感器可以实时监测路灯的状态。
系统可以自动检测和报告路灯故障情况,如灯泡烧坏、电源故障等。
3.3 智能控制系统可以根据时间、天气和交通流量等因素自动调节路灯的亮度。
例如,在夜间交通繁忙时,系统可以增加路灯的亮度,提供更好的照明效果,以确保交通安全。
3.4 统计和报告系统可以记录和存储路灯节点的历史数据,并生成报告和统计信息。
用户可以根据需要查看路灯节点的使用情况、故障次数等统计数据,以便及时维护和管理路灯。
4. 技术实现路灯监控系统可以采用以下技术来实现:4.1 无线通信技术节点和网关之间的通信可以使用无线通信技术,如LoRa、NB-IoT等。
城市路灯监控系统系统设计方案一、路灯监控系统的构成下图是为**市路灯管理单位设计的“路灯监控系统”的构成示意图:在上述系统图中,安装在变压器配电房或控制柜内的“灯控终端RTU”是系统的核心设备,它通过GPRS无线传输网络与监控中心进行远程通信,实现路灯的远程智能监控并实时监测各回路的电压、电流、有功功率、无功功率、功率因数,监测各回路开关的工作状态,监测开关量输入的变化情况。
系统简述1.1“灯控终端RTU”有四种工作模式:第一,接收监控中心的指令,并向其控制的下端设备传达监控中心的指令,实现对远端设备的“遥控”;第二,向监控中心汇报整个系统的实时数据、设备状态,实现“遥信”、“遥测”;第三,当配电房被非法打开时,当配电房遭遇水浸时,“灯控终端RTU”自动向监控中心发出警情信息,提请监控中心进行紧急处理;第四,RTU具有独立运行的能力。
当监控中心微机或通信线路发生故障时,RTU会按照预置的“自行开关灯时间表”发出开关灯指令,以确保路灯的正常运行。
1.2 “灯控终端RTU”的通信1、“灯控终端RTU”的“上行通信”。
“灯控终端RTU”与监控中心之间的通信方式有三种。
第一种:使用GPRS公众通信网络。
“灯控终端RTU”带有RS232接口和12VDC电源,可外接GPRS DTU(Data Transfer Unit 数据传输单元),路灯管理单位只需要为监控中心配置简单的GPRS数据接收设备,就可以实现“灯控终端RTU”与监控中心的远程通信。
GPRS无线公众网具有“永远在线、按流量计费、传输速率大、防雷击、网络覆盖面积大、专业运营与维护”等优点,是路灯行业进行远程监控的良好通信网络。
第二种:利用GSM短信。
“灯控终端RTU”可连接GSM短信模块,短信模块既可以把报警内容发送到监控中心,也可以发送到指定的手机上。
第三种:使用RS485总线。
“灯控终端RTU”上配置了两个RS485总线接口,其中一个设置为“从设备”,用来向上与监控中心的设备进行通信。
2、“灯控终端RTU”的“下行通信”。
“灯控终端RTU”采用电力线载波通信技术与“单灯监控器”、“电缆监控器”进行通信。
“灯控终端RTU”、“单灯监控器”和“电缆监控器”都集成了电力线载波通信调制解调器(PLC Modem),每个设备都配置了地址编码,这样,在一个配电变压器下游的电力线上,“灯控终端RTU”最多可以与1023个“单灯监控器”和(或)“电缆监控器”进行通信,其中,“电缆监控器”的最大数量是16个。
“灯控终端RTU”上配置了两个RS485总线接口,其中一个设置为“主设备”,用来向下与“8回路电流监测单元”、“开关量输入输出单元”等设备进行通信。
1.3 “灯控终端RTU”的功能:1.3.1 灯控终端RTU的配置“灯控终端RTU”与“6路开关量输出转接器”、“交流接触器”一起完成对路灯供电线路的“供电”和“断电”操作,实现“开灯”与“关灯”。
交流接触器的一对端子或者辅助端子的“通/断”状态作为开关量输入给“灯控终端RTU”,RTU 可以实时监测交流接触器的工作状态。
“灯控终端RTU”自身带有6路开关量信号输出,可以直接控制六个回路的交流接触器;“灯控终端RTU”自身带有3路电压检测、3路电流检测,可以实时监测变压器输出端的三相电压、三相电流,并计算整个变压器的有功功率、无功功率、功率因素。
“8回落电流监测单元”具有3路电压检测、24个单相(8个三相回路)电流的监监测能力,并合理计算每个回路的亮灯率,数据采集精度优于1%。
“灯控终端RTU”带有“RS485”接口和“电力线载波载波通信模块”可以读取RS485电能表、载波电能表的电量数据,实现远程抄表的目标。
“灯控终端RTU”带有“电力线载波载波通信模块”,可以与能够实现单灯节能控制的“单灯监控器”和“节能器”进行通信和指令动作,达到节能的效果。
如下图:1.3.2 灯控终端RTU的采集项目灯控终端的附属设备“8-12回路电流监测单元”具有3路电压检测、24个单相(8个三相回路)电流的监监测能力,并合理计算每个回路的亮灯率。
1.3.3 灯控终端RTU的自动报警功能“灯控终端RTU”上带有2路门禁开关量输入,当有人打开控制柜柜门时,RTU将自动发出警情给监控中心。
监控中心也可以通过“GSM短信模块”向值班人员的手机发送警情信息。
由于灯控终端RTU带有变压器输出端的电压、电流检测,同时带有各个回路电流、电压的检测,因此,RTU可以实现多种报警:⏹当采集的交流电流、电压超过上下限时能自动报警。
⏹当白天亮灯或晚上熄灯时自动报警。
⏹当供电线路停电时通过自备电源运行,能自动告警。
⏹当某支线路出现故障时自动报警。
1.3.4 灯控终端RTU的线路防盗本投标人提供的“灯控终端RTU”具备了“加装路灯线路断线告警装置的接口”。
“灯控终端RTU”带有“电力线载波载波通信模块”,可以与能够实现电缆防盗的“电缆监控器”进行通信和指令动作,从而达到防盗的要求。
防盗系统如下图:在安装于电缆末端的“电缆监控器”上集成了“电力线载波通信模块”,“灯控终端RTU”可以与“电缆监控器”通过载波信号进行通信。
一旦通信联络中断,灯控终端RTU将向监控中心发出“电缆警情”信息,表明户外电缆出现了必须进行人工干预的事故:(1)电缆监控器不正常工作;(2)电缆监控器被盗;(3)电缆被切断。
当路灯供电电缆没电时,安装在前端的直流电源就会自动输出60VDC直流电到电缆上,为末端的“电缆监控器”提供工作电源,维持“电缆监控器”的正常工作。
当路灯电缆“上电”时,直流电源就自动将直流电压输出切断。
1.3.5 灯控终端RTU的终端保护“灯控终端RTU”具有防止雷击、强脉冲干扰等自我保护功能,同时具有较高的内部参数保护,保证终端运行的可靠性和稳定性。
1.3.6 灯控终端RTU的现场显示功能“灯控终端RTU”具有现场显示和参数设置功能,供应商可通过键盘显示器进行各种功能操作,RTU的前面板如下图:在灯控终端上,可以进行下列操作:⏹设置和查询当前工作时间;⏹设置全夜灯、半夜灯、景观灯、广告灯等各种灯的开/关灯时间;⏹采集和读取的各种数据和状态;⏹进行通信参数的设置;⏹可以进行自身的工作参数设置。
1.3.7 灯控终端RTU的独立运行能力RTU具有独立运行的能力。
当监控中心微机或通信线路发生故障时,RTU会按照预置的“自行开关灯时间表”发出开关灯指令,以确保路灯的正常运行。
一般来说,预置的开关灯时间可能会比规定的时间稍晚一些,这样,当“光敏仪”、监控中心系统软件、通信系统发生故障而没有发出开关灯指令时,那么,“灯控终端RTU”自己也能完成开关灯工作。
1.3.8 灯控终端RTU的实时时钟实时时钟:误差≤0.12s/h,断电正常运行10年。
1.3.9 灯控终端RTU的编址能力编址能力:0~9999。
1.3.10 灯控终端RTU的静态功耗静态功耗≤ 2VA 。
1.3.11 灯控终端RTU的工作环境环境温度:-20℃~+65℃。
相对湿度:<98%。
工作电源:220V AC(+ 40V、30V),50Hz 10%。
1.4 灯控终端的优先级别设置“灯控终端RTU”执行开关灯指令的优先级设置为四级:第一优先级,“下位机”手动开关灯。
操作员可以在“灯控终端RTU”上手动输入“即时开关灯指令”、“定时开关灯指令”,方便现场调试和维修。
第二优先级,“上位机”手动开关灯。
操作员可以在监控中心手动输入“即时开关灯指令”、“定时开关灯指令”。
第三优先级,“光敏仪”自动开关灯。
如果在监控中心安装了光敏仪,那么,光敏仪可以根据天气变化情况自动发出开关灯指令。
当遭遇大雾、阴雨天气时,安装在监控中心外面的“光敏仪”就会根据室外的光线亮度情况,自动下达“开灯”或“关灯”指令,也可以提醒监控中心内的值班员及时采取“开灯”、“关灯”操作,实现路面照明和节能的平衡。
第四优先级,“下位机”按照预置的时间表自动开关灯。
监控中心可以向作为“下位机”的“灯控终端RTU”发送本周(或本两周)的开关灯时间表,“灯控终端RTU”就可以按照已经预置的时间表自动执行开关灯指令。
一般来说,预置的开关灯时间可能会比规定的时间稍晚一些,这样,当“光敏仪”、监控中心系统软件、通信系统发生故障而没有发出开关灯指令时,那么,“灯控终端RTU”自己也能完成开关灯工作。
1.5 灯控设备的信号接口说明1.6 监控中心系统设备配置监控中心构成如下图:安装在每个变压器控制柜内的“灯控终端RTU ”带有一个“GPRS_DTU ”(GPRS 数据传输单元),可以把数据通过中国移动GPRS 网络传输到带有固定IP 的服务器上,实现,安装于户外的“灯控终端RTU ”与监控中心系统的通信和指令传输。
在服务器上,我们配置一个GSM Modem (GSM 短信模块),可以把警情信息发送到指定的工作人员手机上。
GSM Modem(GSM短信模块)通过RS232接口连接到服务器上。
“光敏仪”与服务器之间也采用RS232接口连接。
当户外光亮度达到一定的程度时,服务器将自动下发开关灯指令。
“GPS自动校时钟”与服务器之间也采用RS232接口连接。
“GPS自动校时钟”接收GPS 卫星信号提供稳定的校时信号。
运用全球卫星定位系统与计算机技术,实现对系统的准确校时,保证监控中心和监控终端时钟的准确性与一致性。
1.6.1 GPS自动校时钟技术参数◆GPS天线接口 BNC◆典型冷启动 120秒◆典型初始化启动 45秒◆典型热启动 15秒◆典型捕获时间 2.0秒◆典型捕获时间 2.0秒◆1PPS 输出精度: 1μS◆频率输出 10KHz◆无GPS授时输入时守时精度 1分钟/月◆工作电源 AC 220V/50Hz◆功率 30W◆工作温度 -20 ~ 60摄氏度◆相对湿度 10% ~ 85%◆外形尺寸 482*300*44 mm 19英寸 1U单元◆重量 < 3KG◆显示窗口 0.5英寸6位数码管显示◆计算机接口 RS3231.6.2 电子式光敏仪主要功能:●液晶显示操作步骤●42个记忆程序位,24小时/7天●可用日期程式编制假期程式功能●可复制开关时间到同一星期之其它日子●延时开关80秒及10年后备电●预选开关和永久开关功能●光亮度可有2至2000之间调节●光度感应器表面安装外置式1.6.3 短信模块无线通信引擎是一款快速接入的GSM/GPRS网通或移动通信双频终端。
应提供标准的工业接口,双频设计和抽屉式的SIM卡阅读器使它成为GSM数据/语音通信的理想通信终端。
较宽的频带、完善的设计和各种保护电路,可以便利地适用于遥测遥感、远程信息处理、传输和通信等工业领域。
特性:支持EGSM900和GSM1800双频支持数据、语音、短消息和传真服务采用电路交换最高速率为14.4kbps支持的电压范围:6V—30V低功耗全部采用工业接口用于显示工作状态的LED符合GSM Phase 2/2+的标准认证支持标准的RS-232串行接口GSM第四类收发器(最大2瓦)模拟语音输入/输出短信息服务(SMS),支持PDU和Block模式,符合GSM07.05标准符合GPRS CLASS 10标准,上行13.4Kbits/S,下行26.8Kbits/SAT命令集,符合GSM07.07,GSM07.05和V25硬件体积:77mm*54mm*25mm重量:102克接口信息接口:RS232 (D-SUB 9pin Female)天线接口:SMA (Female)语音接口:RJ11SIM座:抽屉式,方便更换SIM卡温度范围工作温度:-20度至+65度存储温度:-25度至+75度电源工作电压:从6V到30V(电压范围大)电流:待机25mA使用平均电流360mA保护电路内置防浪涌内置防过流内置EMC控制电路,防止对外界产生干扰SIM卡检测和保护电路工作指示加电后,常亮,随e通AC76B开始正常工作LED慢闪,表示已经找到网络LED快闪,表示正在发送信息其他软件控制复位电平触发强令自动复位功能1.6 系统主要技术指标1、性能指标中心系统月可用率:≥99.8%遥控误动率:≤9‰遥控拒动率:≤5‰遥信正确率:≥99%遥测综合误差:≤1.0%2、通信方式利用中国网通或移动GPRS网络通讯,数传速率:1200 b/s。