2014届人教版中考数学复习方案(19)等腰三角形(25页)
- 格式:ppt
- 大小:906.00 KB
- 文档页数:25
第四章图形的性质第19节等腰三角形■知识点一:等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.注意:三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为 .■知识点二:等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.注意:(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=12AB. ■知识点三:角平分线21P COBA(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA ⊥OA ,PB ⊥OB ,则PA =PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上. ■知识点四:垂直平分线PC OBA(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP 垂直且平分AB ,则PA =PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.■考点1.等腰三角形 ◇典例:1. (2018年黑龙江省绥化市)已知等腰三角形的一个外角为130°,则它的顶角的度数为 .【考点】等腰三角形的性质【分析】等腰三角形的一个外角等于130°,则等腰三角形的一个内角为50°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.解:当50°为顶角时,其他两角都为65°、65°,当50°为底角时,其他两角为50°、80°,所以等腰三角形的顶角为50°或80°.故答案为:50°或80°.【点评】本题考查了等腰三角形的性质,及三角形内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.2.(2017年北京市)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC.【考点】等腰三角形的判定与性质.【分析】根据等腰三角形的性质得到∠ABC=C=72°,根据角平分线的定义得到∠ABD=∠DBC=36°,∠BDC=72°,根据等腰三角形的判定即可得到结论.证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠DBC=36°,∴∠A=∠ABD,∴AD=BD,∵∠C=72°,∴∠BDC=72°,∴∠C=∠BDC,∴BC=BD,∴AD=BC.【点评】本题主要考查等腰三角形的性质和判定,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.◆变式训练1.(2018年内蒙古包头)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5° B.12.5°C.12° D.10°2.( 2017年湖北武汉市)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7■考点2.等边三角形◇典例(2018年辽宁省葫芦岛市)如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n A n+1C n的面积为.(用含正整数n的代数式表示)【考点】规律型:图形的变化类;等边三角形的性质【分析】由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,一次看到△A n B n+1C n的边长为()n﹣1×即可解决问题;解:由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,△A n A n+1C n的边长为()n﹣1×,∴△A n A n+1C n的面积为×[()n﹣1×]2=()2n﹣2×.【点评】本题考查等边三角形的性质、三角形的面积等知识,解题的关键是学会探究规律的方法,属于中考常考题型.◆变式训练(2018年内蒙古通辽市)如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为.■考点3.角平分线◇典例:(2018年山东省德州)如图,为的平分线.,..则点到射线的距离为__________.【考点】角平分线的性质【分析】过C作CF⊥AO,根据勾股定理可得CM的长,再根据角的平分线上的点到角的两边的距离相等可得CF=CM,进而可得答案.解:过C作CF⊥AO.∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF.∵OC=5,OM=4,∴CM=3,∴CF=3.故答案为:3.【点睛】本题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.◆变式训练(2018年山东省东营)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.■考点4.垂直平分线◇典例:(2018年贵州省安顺)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.【考点】作图—复杂作图,线段垂直平分线【分析】利用线段垂直平分线的性质以及圆的性质分别分得出即可.解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.【点评】此题主要考查了复杂作图,根据线段垂直平分线的性质得出是解题关键.◆变式训练(2018年山东省青岛)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.一、选择题1.(2018 年广西梧州市)如图,已知 BG 是∠ABC 的平分线,DE⊥AB 于点 E,DF⊥BC 于点 F,DE=6,则 DF 的长度是()A.2 B.3 C.4 D.62.(2018年浙江省湖州市)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°3.(2018年四川省攀枝花市)如图,等腰直角三角形的顶点A.C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°4.(2018年甘肃省兰州市(a卷))如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°5.(2018年福建省(A卷))如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°二、填空题6.(2018年湖南省湘潭市)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD= .7.(2018年贵州省遵义市)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为度.8.(2018年江苏省南京市)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE= cm.9.(2018年浙江省绍兴市)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.三、解答题10.(2018年浙江省嘉兴市)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.一、选择题1.(2018 年广西梧州市)如图,在△ABC 中,AB=AC,∠C=70°,△AB′C′与△ABC 关于直线 EF对称,∠CAF=10°,连接 BB′,则∠ABB′的度数是()A.30° B.35° C.40° D.45°2.(2018年青海省)如图,把直角三角形ABO放置在平面直角坐标系中,已知∠OAB=300,B点的坐标为(0,2),将∆ABO沿着斜边AB翻折后得到∆ABC,则点C的坐标是()A. B. C. D.3.(2018年黑龙江省大庆市)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30° B.35° C.45° D.60°4.(2018年湖北省襄阳市)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD 的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm5.(2018年江苏省扬州市)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC6.(2018年广西玉林市)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交 C.垂直 D.平行、相交或垂直7.(2018年四川省巴中市)如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB 于点G.下列结论正确的是()A.CF=FG B.AF=AG C.AF=CF D.AG=FG二、填空题8.(2018年黑龙江省哈尔滨市)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.9.(2018年广西桂林市)如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________10.(2018年四川省南充市)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.11.(2018年湖南省娄底市)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF= cm.三、解答题12.(2018年浙江省绍兴市)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.13.(2018年湖北省孝感市)如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是;(2)若∠ABC=70°,求∠BPC的度数.14.(2018年江苏省镇江市)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.15.(2018年黑龙江省哈尔滨市)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.。
中考数学复习指导:双等腰直角三角形问题前解法分析双等腰直角三角形问题前解法分析一个等腰直角三角形绕另一等腰直角三角形旋转,形成以双等腰直角三角形为背景的数学问题,在近年各地中考试卷中大量出现.本文拟通过对不同类型的双等腰直角三角形问题的剖析,找到某些共性,以达到帮助大家提高解题题能力的目的.一、共直角顶点的两个等腰直角三角形例1.如图1,已知ACB ?和ECD ?都是等腰直角三角形,90,ACB ECD D ∠=∠=°为AB 边上一点.(1)求证: ACE BCD ;(2)求证: 2222CD AD DB =+.分析当两等腰直角三角形绕着公共的直角顶点进行旋转时,必会出现全等三角形,此题第(1)问运用“通性”直接证明全等.第(2)问借助第(1)问的结论,利用等腰直角三角形两锐角互余,以及勾股定理,证明等式成立.注意到等腰三角形中的两腰相等,则旋转使两腰重合往往是解题中常用的途径之一.例2.如图2,在四边形ABCD 中,点,E F 分别是,AB CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连结,,,AG BG CG DG ,且AGD BGC ∠=∠.(1)求证: AD BC =;(2)求证: AGD EGF ??:;(3)如图3,若,AD BC 所在直线互相垂直,求AD EF的值.分析初看此题是一组对边相等的四边形问题,可仔细分析条件可以发现,DGC ?和AGB ?均为等腰三角形,当四边形ABCD 中AD BC ⊥时,两等腰三角形即变为等腰直角三角形,题中三个问题层次分明,逐级递进.第(1)问利用垂直平分线性质直接证全等;第(2)问利用顶用相等的两等腰三角形相似得到对应边成比例,再借用夹角相等证相似;第(3)问通过对四边形中相等的一组对边特殊化,形成两等腰直角三角形,把两条线段的比转化为等腰直角三角形中斜边与直角边的比.虽然通过中点,转化的方法较多(相似、中位线、中位倍长构全等),但本质上均需要构造等腰直角三角形.二、共底角顶点的两个等腰直角三角形例3.如图4, ,A B 分别在射线,OM ON 上,且MON ∠为钝角,现以线段,OA OB 为斜边向MON ∠外侧作等腰直角三角形,分别是,OAP OBQ ??,点,,C D E 分别是,,OA OB AB 的中点.(1)求证: PCE EDQ ;(2)延长,PC QD 交于点R .①如图5,若150MON ∠=°,求证:ABR ?为等边三角形;②如图6,若ARB PEQ ??:,求MON ∠的大小和AB PQ的值.分析本题中两等腰直角三角形OAP ?与OBQ ?中的一底角顶点O 重合,通过OAP ?绕点O 旋转来设计相关问题.第(1)问利用三角形中位线定理和直角三角形斜边上的中线结合平行四边形性质证明全等(边角边).第(2)①问从对称的角度,通过添加辅助线(连结OC )过度,利用线段中垂线证线段相等;第(2)②问,需要对(2)①问逆向思考,通过证PE EQ ⊥这一中间环节,得出PEQ ?与ARB ?为等腰直角三角形,利用直角三角形斜边上的中线性质与等腰直角三角形三边关系求出两线段的比值.值得注意的是,此题与例2图形相近,解法相近,考查的核心知识点相近.例4.已知两个共顶点的等腰三角形Rt ABC ?和Rt CEF ?,90ABC CEF ∠=∠=°,连结,AF M 是AF 的中点,连结,MB ME .(1)如图7,当CB 与CE 在同一直线上时,求证: //MB CF ;(2)如图7,若,2CB a CE a ==,求BM ,ME 的长;(3)如图8,当45BCE ∠=°时,求证: BM ME =.分析两个共底角顶点的双等腰直角三角形中,当两腰在一条直线上时,另两腰必平行.第(1)问利用这个性质结合M 点为中点直接证全等;(2)问在(1)问的基础上,证明BEM ?为等腰直角三角形;第(3)问研究在CEF ?绕点C 旋转45°时,BME ?的形状问题.图形形状发生了改变,但结论不变,方法不变,仍可借助中点构造等腰直角三角形,利用中位线性质进行转化证明.三、一直角顶点和一底角顶点重合的两个等腰直角三角形例5.如图9,在Rt ABC ?中,90,BAC AB AD ∠=°=,点D 是AC 的中点,将一块等腰直角三角板如图放置,使三角板斜边的两个端点分别与,A D 重合,连结,BE EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.分析等腰直角ADE ?的底角顶点A 与等腰直角ABD ?的直角顶点A 重合,借助BAE EDC 证明BEC ?为等腰直角三角形.相当于共直角顶点等腰三角形ADE ?与BEC ?旋转问题的逆问题.例6 如图10 , ABC ?和ACD ?是两个等腰直角三角形,90ACB ADC ∠=∠=°,延长DA 至点E ,使AE AD =,连结,,EB EC BD .(1)求证: BDA BEA ;(2)若BC =BE 的长.分析本题中一等腰直角三角形的直角边与另一等腰直角三角形的斜边重合,此种情况下一等腰直角三角形的斜边必与另一等腰直角三角形一直角边垂直.第(1)问即在此基础上通过“三线合一”构造等腰三角形;第(2)问是根据等腰直角三角形的边角特征,借助勾股定理求线段长.四、一直角顶点和一底边中点重合的两个等腰直角三角形例7如图11,在等腰直角ABC ?中,90,ACB CO AB ∠=°⊥于点O ,点,D E 分别在边,AC BC 上,且AD CE =,连结DE 交CO 于点P ,给出以上结论:①DOE ?是等腰直角三角形;②CDE COE ∠=∠;③1AC =,则四边形CEOD 的面积为14; ④22222AD BE OP DP PE +?=?. 其中所有正确结论正确的序号是 .分析本题表面上看,是一个等腰直角三角形通过作出斜边上的高探究相关结论的问题,实质上是等腰直角DOE ?的直角顶点O 在等腰直角ABC ?斜边中点O 处的结论探究问题.对于选项④利用“四点共圆”,并借助“共角共边的母子”相似三角形,能起到事半攻倍的效果,五、一底角顶点和一底边中点重合的两个等腰直角三角形例8 如图12,等腰直角三角形ABC ?和ODE ?,点O 为BC 中点,90,BAC ODE OD ∠=∠=°交BA 于,M OE 交AC 于N ,试求,,BM NM NA 的关系,并说明理由.分析 DOE ?绕等腰直角ABC ?的底边中点O 旋转,在图12~图14三种情况中,对应的线段和差关系分别是,BM MN NA MN BM NA =+=+.此时DOE ?为等腰直角三角形并不是必备条件,本质上45MON ∠=°才是这一模型的必备条件,其基本的解题途径是,构造共直角顶点的两个等腰直角三角形,通过截长补短解决线段的和差问题.等腰直角三角形底边中点具有独特的性质,以双等腰直角三角形为背景的几何图形,常常具有中点(隐含中点)这一条件,并且图形中常常包含全等三角形,发现其中的全等三角形往往是解题的突破口,而基本的辅助线便是借助中点构造新的等腰直角三角形.。
专题17等腰三角形的核心知识点精讲1.了解等腰三角形的有关概念,掌握其性质及判定.2.了解等边三角形的有关概念,掌握其性质及判定.3.掌握线段垂直平分线的性质及判定.考点1:等腰三角形的性质与判定考点2:等边三角形的性质与判定性质 1.等腰三角形的两个底角度数相等2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)3.等腰三角形是轴对称图形,有2条对称轴判定 1.有两条边相等的三角形的等腰三角形2.有两个角相等的三角形是等腰三角形面积公式,其中a 是底边常,hs 是底边上的高性质 1.三条边相等2.三个内角相等,且每个内角都等于60°3.等边三角形是轴对称图形,有3条对称轴判定 1.三条边都相等的三角形是等边三角形2.三个角相等的三角形是等边三角形3.有一个角的是60°的等腰三角形是等边三角形面积公式是等边三角形的边长,h 是任意边上的高考点3:线段垂直平分线(1)线段垂直平分线的作图1.分别以点A 、B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C 、D 两点;2.作直线CD ,CD 为所求直线(2)性质:线段垂直平分线上的点与这条线段两个端点的距离相等.(3)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上【题型1:等腰三角形的性质和判定】【典例1】(2022•宜昌)如图,在△ABC 中,分别以点B 和点C 为圆心,大于BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若AB =7,AC =12,BC =6,则△ABD 的周长为()A .25B .22C .19D .18【答案】C 【解答】解:由题意可得,MN 垂直平分BC ,∴DB =DC ,∵△ABD 的周长是AB +BD +AD ,∴AB +BD +AD =AB +DC +AD =AB +AC ,∵AB =7,AC =12,∴AB +AC =19,∴△ABD 的周长是19,故选:C .1.(2023•宿迁)若等腰三角形有一个内角为110°,则这个等腰三角形的底角是()A.70°B.45°C.35°D.50°【答案】C【解答】解:当等腰三角形的顶角为110°时,则它的底角==35°,故选:C.2.(2023•菏泽)△ABC的三边长a,b,c满足(a﹣b)2++|c﹣3|=0,则△ABC是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形【答案】D【解答】解:由题意得,解得,∵a2+b2=c2,且a=b,∴△ABC为等腰直角三角形,故选:D.3.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB.(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.【答案】(1)见解析;(2)CD=ED,理由见解析.【解答】(1)证明:∵BD是△ABC的角平分线,∴∠CBD=∠EBD,∵DE∥BC,∴∠CBD=∠EDB,∴∠EBD=∠EDB.(2)解:CD=ED,理由如下:∵AB=AC,∴∠C=∠ABC,∵DE∥BC,∴∠ADE=∠C,∠AED=∠ABC,∴∠ADE=∠AED,∴AD=AE,∴CD=BE,由(1)得,∠EBD=∠EDB,∴BE=DE,∴CD=ED.【题型2:等边三角形的性质和判定】【典例2】(2023•金昌)如图,BD是等边△ABC的边AC上的高,以点D为圆心,DB长为半径作弧交B C的延长线于点E,则∠DEC=()A.20°B.25°C.30°D.35°【答案】C【解答】解:在等边△ABC中,∠ABC=60°,∵BD是AC边上的高,∴BD平分∠ABC,∴∠CBD=∠ABC=30°,∵BD=ED,∴∠DEC=∠CBD=30°,故选:C1.(2022•鞍山)如图,直线a∥b,等边三角形ABC的顶点C在直线b上,∠2=40°,则∠1的度数为()A.80°B.70°C.60°D.50°【答案】A【解答】解:∵△ABC为等边三角形,∴∠A=60°,∵∠A+∠3+∠2=180°,∴∠3=180°﹣40°﹣60°=80°,∵a∥b,∴∠1=∠3=80°.故选:A.2.(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=,则△AOB与△B OC的面积之和为()A.B.C.D.【答案】C【解答】解:将△AOB绕点B顺时针旋转60°得△CDB,连接OD,∴OB=BD,∠OBD=60°,CD=OA=2,∴△BOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+()2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,+S△BCD=S△BOD+S△COD=×12+=,∴△AOB与△BOC的面积之和为S△BOC故选:C.3.(2023•凉山州)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是1+.【答案】1+.【解答】解:取AB中点D,连OD,DC,∴OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,∵△ABC为等边三角形,D为AB中点,∴BD=1,BC=2,∴CD==,∵△AOB为直角三角形,D为斜边AB的中点,∴OD=AB=1,∴OD+CD=1+,即OC的最大值为1+.故答案为:1+.【题型3:线段的垂直平分线】【典例3】(2023•青海)如图,在△ABC中,DE是BC的垂直平分线.若AB=5,AC=8,则△ABD的周长是13.【答案】13.【解答】解:∵DE是BC的垂直平分线.∴BD=CD,∴AC=AD+CD=AD+BD,∴△ABD的周长=AB+AD+BD=AB+AC=5+8=13,故答案为:13.1.(2023•吉林)如图,在△ABC中,AB=AC.分别以点B和点C为圆心,大于的长为半径作弧,两弧交于点D,作直线AD交BC于点E.若∠BAC=110°,则∠BAE的大小为55度.【答案】55.【解答】解:∵AB=AC.∴△ABC是等腰三角形,∵分别以点B和点C为圆心,大于的长为半径作弧,两弧交于点D,作直线AD交BC于点E.∴AE垂直平分BC,∴AE是∠BAC的平分线,∴∠BAE=∠BAC=55°.故答案为:55.2.(2023•丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若A B=4,则DC的长是4.【答案】4.【解答】解:∵∠B=∠ADB,AB=4,∴AD=AB=4,∵DE是AC的垂直平分线,∴DC=AD=4,故答案为:4.3.(2022•青海)如图,在Rt△ABC中,∠ABC=90°,ED是AC的垂直平分线,交AC于点D,交BC 于点E,∠BAE=10°,则∠C的度数是40°.【答案】40°.【解答】解:∵ED是AC的垂直平分线,∴AE=EC,∴∠EAC=∠C,∵∠ABC=90°,∠BAE=10°,∴∠EAC+∠C=180°﹣∠BAE﹣∠ABC=80°,∴∠EAC=∠C=40°,故答案为:40°.一.选择题(共9小题)1.若等腰三角形的两边长分别为2和5,则它的周长为()A.9B.7C.12D.9或12【答案】C【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选:C.2.如图,AD是等边△ABC的一条中线,若在边AC上取一点E,使得AE=AD,则∠EDC的度数为()A.30°B.20°C.25°D.15°【答案】D【解答】解:∵△ABC为等边三角形,∴∠BAC=60°,∵AD是等边△ABC的一条中线,∴AD⊥BC,∠CAD=∠BAC=30°,∵AE=AD,∴∠ADE=∠AED,∵∠ADE+∠AED+∠CAD=180°,∴∠ADE=75°,∴∠EDC=90°﹣75°=15°,故选:D.3.如图,A、B、C表示三个居民小区,为了居民生活的方便,现准备建一个生活超市,使它到这三个居民小区的距离相等,那么生活超市应建在()A.AB,AC两边中线的交点处B.AB,AC两边高线的交点处C.∠B与∠C这两个角的角平分线的交点处D.AB,AC两边的垂直平分线的交点处【答案】D【解答】解:∵生活超市到这三个居民小区的距离相等,∴生活超市应建在△ABC的三边的垂直平分线的交点处.故选:D.4.在△ABC中,若AB=AC=3,∠B=60°,则BC的值为()A.2B.3C.4D.5【答案】B【解答】解:∵AB=AC,∠B=60°,∴△ABC为等边三角形,∴BC=AB=3.故选:B.5.如图,在△ABC中,∠ABC,∠ACB的平分线交于点D,过点D作EF∥BC交AB于点E,交AC于点F.若AB=12,AC=8,BC=13,则△AEF的周长是()A.15B.18C.20D.22【答案】C【解答】解:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠EBD=∠EDB,∴ED=EB,同理可证得DF=FC,∴AE+AF+EF=AE+EB+AF+FC=AB+AC=20,即△AEF的周长为20,故选:C.6.如图,在△ABC中,AC=10,AB的垂直平分线交AB于点M,交AC于点D,△BDC的周长为18,则BC的长为()A.4B.6C.8D.10【答案】C【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∴BD+CD=AC=10.∴BC=△BDC的周长﹣(BD+CD)=18﹣10=8,故选:C.7.如图,在△ABC中,∠A=90°,边AB的垂直平分线交AB于点D,交BC于点E,已知BE=3,则B C长为()A.5B.6C.7D.8【答案】B【解答】解:如图所示,连接AE,∵DE是AB的垂直平分线,∴EA=EB,∴∠B=∠EAB,∵∠A=90°,∴∠B+∠C=90°,∠BAE+∠CAE=90°,∴∠CAE=∠C,∴EA=EC,∴EC=EB,∴BC=BE+CE=2BE=6,故选:B.8.如图,△ABC中,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点F,若∠BAC=140°,则∠EAF的度数为()A.95°B.100°C.105°D.110°【答案】B【解答】解:∵∠BAC=140°,∴∠B+∠C=180°﹣∠BAC=40°,∵AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,∴EA=EB,FA=FC,∴∠B=∠BAE,∠C=∠FAC,∴∠BAE+∠FAC=40°,∴∠EAF=∠BAC﹣(∠BAE+∠FAC)=100°,故选:B.9.如图,P是等边△ABC的边AC的中点,E为BC边延长线上一点,PE=PB,则∠CPE的度数为()A.20°B.25°C.30°D.35°【答案】C【解答】解:∵P是等边△ABC的边AC的中点,∴BP平分∠ABC,∠ABC=60°=∠ACB,∴∠PBC=30°,∵PE=PB,∴∠PBC=∠E=30°,∴∠CPE=∠ACB﹣∠E=30°,故选:C.二.填空题(共6小题)10.如图所示,在△ABC中,∠C=90°,∠A=36°,DE是线段AB的垂直平分线,交AB于点D,交A C于点E,则∠EBC的度数是18度.【答案】见试题解答内容【解答】解:∵DE是线段AB的垂直平分线∴AE=BE∵∠C=90°,∠A=36°∴∠EBA=∠A=36°∴∠EBC=90°﹣36°﹣36°=18°.11.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC与点E,∠A=∠ABE.若AC=7,BC=4,则BD的长为.【答案】.【解答】解:∵CD平分∠ACB,∴∠BCD=∠ECD,∵BE⊥CD,∴∠BDC=∠EDC=90°,∵CD=CD,∴△BDC≌△EDC(ASA),∴BC=CE=4,BD=DE,又∵∠A=∠ABE,∴AE=BE,∵AC=7,BC=4,∴AE=AC﹣CE=3,∴BE=AE=3,∴BD=BE=,故答案为:.12.如图,在等边三角形ABC中,AD⊥BC,垂足为D,则∠BAD=30°.【答案】30.【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=∠ADB﹣∠B=30°;故答案为30.13.如图,在边长为4的等边△ABC中,点P为BC边上任意一点,PE⊥AB于点,PF⊥AC于点F,则PE+PF的长度和为2.【答案】2.【解答】解:如图所示,连接AP,作CD⊥AB交AB于点D,=S△ABP+S△ACP,则S△ABC即AB•CD=AB•PE+AC•PF,∵△ABC为等边三角形,∴AB=AC,∴CD=PE+PF,∵AB=AC=BC=4,CD⊥AB,∴,∴,∴,故答案为:.14.如图,△ABC中,∠C=90°,AB的垂直平分线交BC于点D.若BC=9,AD=5,则△ABD的面积为.【答案】.【解答】解:∵AB的垂直平分线交BC于点D,∴DB=DA=5,∴CD=BC﹣BD=9﹣5=4,在Rt△ACD中,∵∠C=90°,∴AC===3,=×5×3=.∴S△ABD故答案为:.15.如图,过边长为4的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为2.【答案】见试题解答内容【解答】解:过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=4,∴DE=.故答案为:2.三.解答题(共3小题)16.已知,如图,△ABC是等边三角形,D是边AC的中点,E是BC延长线上的一点,DB=DE.求∠CD E的度数.【答案】30°.【解答】解:∵△ABC是等边三角形,∴∠ABC=60°,∵D是边AC的中点,∴,∵DB=DE,∴∠E=∠DBC,∴∠E=30°,∵∠BCD=60°,∴∠CDE=∠BCD﹣∠E=30°.17.图①中所示的遮阳伞,伞柄垂直于地面,其示意图如图②.当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开.已知伞在撑开的过程中,总有PM=PN,CM=CN.(1)求证:PC垂直平分MN;(2)若CN=PN=60cm,当∠CPN=60°时,求AP的值.【答案】(1)见解析;(2)60cm.【解答】(1)证明:在△CMP和△CNP中,,∴△CMP≌△CNP(SSS),∴∠MPB=∠NPB,∵PM=PN,∴△PMN是等腰三角形,∴PB⊥MN,BM=BN,∴PC垂直平分MN;(2)解:∵CN=PN=60cm,∴当伞收紧时,点P与点A重合,∴AC=CN+PN=120cm,当∠CPN=60°时,∵CN=PN,∴△CPN是等边三角形,∴PC=PN=60cm,∴AP=AC﹣PC=60cm.18.如图,△ABC中,EF垂直平分AC,交AC于点F,交BC于点E,AD⊥BC,垂足为D,且BD=DE,连接AE.(1)求证:AB=EC;(2)若△ABC的周长为20cm,AC=7cm,则DC的长为多少?【答案】(1)见解析;(2).【解答】(1)证明:∵EF垂直平分AC,∴AE=EC,∵AD⊥BC,BD=DE,∴AB=AE,∴AB=EC;(2)解:∵△ABC的周长为20cm,∴AB+BC+AC=20cm,∵AC=7cm,∴AB+BC=13cm,∵AB=EC,BD=DE,∴AB+BD=DE+EC=DC,∵AB+BC=AB+BD+DC=2DC=13cm∴.一.选择题(共5小题)1.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E的度数为()A.25°B.20°C.15°D.7.5°【答案】C【解答】解:∵△ABC是等边三角形,∴∠ACB=60°.∵∠ACB=∠CGD+∠CDG,∴∠CGD+∠CDG=60°.∵CG=CD,∴∠CGD=∠CDG=30°.∵∠CDG=∠DFE+∠E,∴∠DFE+∠E=30°.∵DF=DE,∴∠E=∠DFE=15°.故选:C.2.如图,用一张矩形纸片DEFG覆盖等边△ABC,且DG∥BC,若边AB被DG、EF三等分,则△ABC被覆盖(阴影部分)的面积是未被覆盖的面积的()A.B.C.D.【答案】A【解答】解:如图:DG交AB于M,交AC于L,EF交AB于N,AC于K,∵DG∥BC,边AB被DG、EF三等分,∴△AML∽△ANK,△ABC∽△ANK,∴BP=,,∴,,=9a,设S△ABC=a,S△ANK=4a,则S△AML=4a﹣a=3a,∴S四边形MNKL∴未被覆盖的面积为:9a﹣3a=6a,△A B C被覆盖(阴影部分)的面积是未被覆盖的面积,故选:A.3.如图,在等边三角形ABC中,AB=AC=BC=10cm,DC=4cm.如果点M,N都以2cm/s的速度运动,点M在线段CB上由点C向点B运动,点N在线段BA上由点B向点A运动.它们同时出发,当两点运动时间为t秒时,△BMN是一个直角三角形,则t的值为()A.B.C.D.【答案】D【解答】解:∵点M、N都以2cm/s的速度运动则CM=2t,BM=10﹣2t,BN=2t,当∠BMN=90°时,∵三角形ABC是等边三角形,∴∠B=60°,∴∠BNM=30°,∴BN=2BM,即2t=2×(10﹣2t),解得:,当∠BNM=90°时,∵三角形ABC是等边三角形,∴∠B=60°,∴∠BMN=30°,∴BM=2BN,即2×2t=(10﹣2t),解得:,综上所述,t的值为或时,△BMN是一个直角三角形.故选:D.4.如图,在等边△ABC中,AB=5,点D在AB上,且BD=1,点E、F分别是BC、AC上的点,连接DE,EF,如果∠DEF=60°,DE=EF,那么BE的长是()A.3B.3.5C.4D.4.5【答案】C【解答】解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC=5,∵∠BEF=∠C+∠EFC=∠DEF+∠BED,∠DEF=∠C=60°,∴∠BED=∠EFC,在△DBE和△ECF中,,∴△DBE≌△ECF(AAS),∴DB=EC=1,∴BE=BC﹣EC=5﹣1=4.故选:C.5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为2cm2,则△PBC的面积为()A.0.8cm2B.1cm2C.1.2cm2D.不能确定【答案】B【解答】解:如图,延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,∴△ABP≌△EBP(ASA),∴AP=PE,=S△EBP,S△ACP=S△ECP,∴S△ABP=S△ABC=×2=1(cm2),∴S△PBC故选:B.二.填空题(共4小题)6.如图,边长为5cm的正三角形ABC向右平移1cm,得到正三角形A'B'C',此时阴影部分的周长为12 cm.【答案】见试题解答内容【解答】解:由题意得,△ABC为等边三角形,BC=5cm,BB'=1cm,∴B'C=BC﹣BB'=5﹣1=4cm,且阴影部分为等边三角形,∴阴影部分的周长为3×4=12cm,故答案为12.7.如图,在等边△ABC中,点D、E分别在边AB、AC上,DE∥BC,点F在BC延长线上,且EB=EF,若BD=4,BF=8,则线段DE的长为2.【答案】2.【解答】解:过E点作EH⊥BF,设DE=x,∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵DE∥BC,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,∴△ADE是等边三角形,∵BD=4,∴EC=BD=4,AB=BC=AC=4+x,∠ACB=60°,在Rt△CHE中,∵∠ACB=60°,EC=BD=4,∴∠HEC=180°﹣∠ACB﹣∠EHC=180°﹣60°﹣90°=30°,∴,∴BH=BC﹣CH=4+x﹣2=2+x,∵EB=EF,∴△EBF是等腰三角形,∵EH⊥BF,BF=8,∴BH=FH=4,∴2+x=4,∴x=2,∴DE=2.故答案为:2.8.如图,C是线段AB上的一点,△ACD和△BCE都是等边三角形,AE交CD于M,BD交CE于N,交AB于O,则:①DB=AE;②∠AMC=∠DNC;③△MCE是等腰三角形;④△MCN是等边三角形;⑤∠AOD=60°.其中,正确的有①②④⑤.【答案】①②④⑤.【解答】解:△ACD和△BCE都是等边三角形,∴AC=AD=CD,CE=CB=BE,∠ACD=∠DAC=∠ADC=60°=∠BCE=∠CBE=∠CEB,∴∠DCE=60°,∴∠ACE=∠DCB=120°,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS),∴AE=BD,∠EAC=∠BDC,故①符合题意;∴∠AOD=∠ACD=60°,故⑤符合题意;在△ACM和△DCN中,,△ACM≌△DCN(ASA),∴AM=DN,CM=CN,∠AMC=∠DNC,∴△MCN是等腰三角形;△MCN是等边三角形;故②④符合题意,综上:①②④⑤都符合题意.故答案为:①②④⑤.9.如图,四边形ABCD,AD=1,,BC=3,点E为AB的中点,连接DE、CE,使得∠DEA+∠CEB=60°,则DC的最大值为.【答案】##.【解答】【详解】解:将△ADE沿DE翻折得到△MDE,将△BCE沿CE翻折得到△NCE,连接MN,由翻折可知:∠AED=∠MED,∠BEC=∠NEC,AD=MD=1,BC=NC=3,∵E是AB中点,,∴,∵∠DEA+∠CEB=60°,∴∠AEM+∠BEN=120°,∴∠MEN=60°,∴△EMN是等边三角形,∴,∴CD≤DM+MN+CN,当D,M,N,C共线时,CD取得最大值为,故答案为:.三.解答题(共2小题)10.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE=DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE=DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).【答案】见试题解答内容【解答】解:(1)当E为AB的中点时,AE=DB;(2)AE=DB,理由如下,过点E作EF∥BC,交AC于点F,证明:∵△ABC为等边三角形,∴△AEF为等边三角形,∴AE=EF,BE=CF,∵ED=EC,∴∠D=∠ECD,∵∠DEB=60°﹣∠D,∠ECF=60°﹣∠ECD,∴∠DEB=∠ECF,在△DBE和△EFC中,,∴△DBE≌△EFC(SAS),∴DB=EF,则AE=DB;(3)点E在AB延长线上时,作EF∥AC,则△EFB为等边三角形,如图所示,同理可得△DBE≌△CFE,∵AB=1,AE=2,∴BE=1,∵DB=FC=FB+BC=2,则CD=BC+DB=3.故答案为:(1)=;(2)=11.如图,△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动.(1)当点P的运动速度是1cm/s,点Q的运动速度是2cm/s,当Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),当t=2时,判断△BPQ的形状,并说明理由;(2)当它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),则当t为何值时,△PBQ是直角三角形?【答案】(1)△BPQ是等边三角形;(2)当t=2s或t=4s时,△PBQ是直角三角形.【解答】解:(1)如图,根据题意得:AP=tcm,BQ=2tcm,当t=2时,AP=2cm,BQ=4cm,∵△ABC是边长为6cm的等边三角形,∴AB=6cm,∠B=60°,∴BP=4cm,∴BP=BQ,∴△BPQ是等边三角形;(2)△PBQ中,BP=6﹣t,BQ=t,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,①当∠BQP=90°时,∠B=60°,∴∠BPQ=30°,∴BQ=BP,即t=,解得:t=2;②当∠BPQ=90°时,同理得:BP=BQ,即6﹣t=t,解得:t=4,答:当t=2s或t=4s时,△PBQ是直角三角形.1.(2022•大连)如图,在△ABC中,∠ACB=90°.分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若AB=3,则CD的长是()A.6B.3C.1.5D.1【答案】C【解答】解:由已知可得,MN是线段AC的垂直平分线,设AC与MN的交点为E,∵∠ACB=90°,MN垂直平分AC,∴∠AED=∠ACB=90°,AE=CE,∴ED∥CB,∴△AED∽△ACB,∴,∴,∴AD=AB,∴点D为AB的中点,∵AB=3,∠ACB=90°,∴CD=AB=1.5,故选:C.2.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F 沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是6.【答案】见试题解答内容【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵△ABC是等边三角形,∴∠B=∠C=60°,又∵DE∥AB,DF∥AC,∴∠DEF=∠B=60°,∠DFE=∠C=60°,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.3.(2023•攀枝花)如图,在△ABC中,∠A=40°,∠C=90°,线段AB的垂直平分线交AB于点D,交A C于点E,则∠EBC=10°.【答案】10°.【解答】解:∵∠C=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∵DE是线段AB的垂直平分线,∴AE=BE,∴∠EBA=∠A=40°,∴∠EBC=∠ABC﹣∠EBA=50°﹣40°=10°,故答案为:10°.。