土力学与地基基础浅基础
- 格式:pptx
- 大小:5.95 MB
- 文档页数:22
土力学与地基基础知识点总结一、土力学基础知识点1. 土的物理性质:包括土的颗粒组成、密度、孔隙度、含水量等。
2. 土的力学性质:包括土的强度、变形特性等。
3. 土与水的相互作用:包括渗透流、饱和流等。
4. 土与结构物的相互作用:包括土压力、承载力等。
5. 土与环境的相互作用:包括土壤侵蚀、沉降等。
二、地基基础基础知识点1. 岩石和土壤的分类:岩石按照成因分为火成岩、沉积岩和变质岩;土壤按照成因分为残积土、冲积土和沉积土。
2. 建筑物荷载:建筑物荷载分为永久荷载和可变荷载,其中永久荷载主要来自建筑本身,可变荷载则主要来自人员活动和设备运行等。
3. 地基基础类型:地基基础类型主要有浅基础和深基础两种,其中浅基础包括简单地基(如垫板)、连续墙式地基和筏式地基,深基础包括桩基和墙式基础。
4. 地基处理技术:地基处理技术包括加固、加厚、排水等方法。
5. 地基设计:地基设计主要考虑建筑物荷载、土壤特性、地质条件等因素,以确定合适的地基类型和尺寸。
三、土力学与地基工程实践应用1. 工程勘察:工程勘察是土力学和地基工程实践的重要环节,其目的是了解现场土壤和岩石的特性以及环境条件,为后续工作提供依据。
2. 土体强度试验:土体强度试验包括压缩试验、剪切试验等,可以确定土壤的强度参数,为后续设计提供数据支持。
3. 地下水位测定:地下水位测定是确定渗透流方向和水压力大小的重要手段。
4. 岩土钻探:岩土钻探可以获取现场岩石和土壤样品,进一步了解现场情况。
5. 土壤改良:土壤改良是通过加固、加厚或排水等方法来提高土壤承载力或稳定性的技术手段。
总之,土力学和地基工程是建筑工程中不可或缺的一部分,它们的应用涉及到建筑物的安全性、经济性和环境保护等方面。
在实践中,需要根据具体情况综合考虑各种因素,制定合适的土力学和地基工程方案。
【绪论】1土力学、地基及基础概念:土力学——工程力学的一个分支,用于研究土体的应力、变形、强度、渗流和长期稳定性的一门学科。
基础工程学——关于地基基础设计与施工的知识。
地基:❖定义:承受建筑物或构筑物荷载、受这些荷载影响的那一部分地层。
❖种类:天然地基和人工地基基础:❖定义:支承上部结构荷载并将其传给地层中地基内的、起到承上启下作用的下部结构。
❖种类:浅基础和深基础。
地基与基础设计的基本条件:❖作用于地基上的荷载效应不得超过地基容许承载力值。
❖基础沉降不得超过地基变形容许值。
❖具有足够防止失稳破坏的安全储备。
3基础工程学学习方法:(1)重视工程地质勘察及现场原位测试(2)重视地区工程经验(3)考虑地基、基础和上部结构的共同工作(4)施工质量的重要性绪论(补充内容)土的物理性质第一节土的形成与颗粒特征一、土体的形成:土是岩石经风化、搬运、堆积而形成的自然历史的产物。
二、土体的三相组成(一)、固体矿物颗粒(固相)1. 矿物成分原生矿物:石英、长石、云母等次生矿物:主要是粘土矿物,包括三种类型高岭石、伊利石、蒙脱石粘土矿物:由硅氧四面体和铝氢氧八面体构成的晶胞所组合而成颗粒大小基本概念粒度:天然土是由大小不同的颗粒组成的,土粒的大小称为粒度。
粒组:天然土的粒径一般是连续变化的,工程上把相近的土粒合并为组,称为粒组。
粒径级配:(1)定义:工程中常用土中各粒组的相对含量,占总质量的百分数来表示,称为土的粒径级配(粒度成分)。
(2)粒径分析方法•筛分法(d>0.075mm的土)•沉降分析法:(d<0.075mm的土)密度计法(d<0.075mm的土)(3)表述方法:表格法3. 颗粒形状:•原生矿物圆状、浑圆状、棱角状•次生矿物针状、片状、扁平状(二)、土体中水(液相):土中的水即为土体中的液相,其含量根据土体中水分子受到电场力的作用大小,土体中的水主要可以分为:(三)、土体中气体(气相)土体中的气体是指存于土体空隙中未被水占据的部分,存在形式有两种:第二节土的结构定义:土体的结构是指土颗粒之间的相互排列和连接方式。
土力学与地基基础总结土力学与地基基础总结土力学与地基基础总结一第1章绪论1、基本概念土力学:是用力学的观点研究土各种性能一门科学地基:直接承受建筑物荷载的那一部分土层基础:将上部结构的荷载传递到地基中的结构的一部分,通常称为下部结构持力层:直接与基础地面接触的土层下卧层:地基内持力层下面的土层软弱下卧层:地基承载力低于持力层的下卧层天然地基:未经人工处理就可满足设计要求的地基人工地基:地层承载力不能满足设计要求,需进行加固处理的地基基础埋深:从设计地面(一般从室外地面)到基础底面的垂直距离浅基础:埋深小于5m,只需挖槽、排水等普通施工程序即可建造的基础深基础:借助于特殊施工方法建造的基础。
如桩基、墩基、沉井和地下连续墙2、地基与基础设计的基本条件(1)作用于地基上的荷载效应不得超过地基容许承载力值。
(2)基础沉降不得超过地基变形容许值。
(3)具有足够防止失稳破坏的安全储备。
第2章土的物理性质和工程分类1、土的结构:(1)单粒结构;(2)蜂窝结构;(3)絮状结构2、土的构造(1)层状构造;(2)分散构造;(3)裂隙构造(4)结核状构造3、土的工程特性(1)压缩性高;(2)强度低;(3)透水性大4、土的颗粒级配(1)土的粒径: d60 —控制粒径d10 —有效粒径d30 —中值粒径(3)连续程度:Cc = d302 / (d60 ×d10 ) —曲率系数5、土的物理性质(1)土的物理性质指标1)土的密度、有效密度、饱和密度、干密度土的重度、有效重度、饱和重度、干重度2)土粒的比重3)土的饱和度4)土的含水量5)土的孔隙比和空隙率(2)无粘性土的密实度:Dremaxeemaxemin(3)粘性土的物理性质:(4)液性指数和塑性指数IpLpILpLp(5)粘性土的灵敏度(6)粘性土的触变性饱和粘性土受到扰动后,结构产生破坏,土的强度降低。
当扰动停止后,土的强度随时间又会逐渐恢复的现象,称为触变性。
天然地基上的浅基础设计一、教学目标:1. 让学生了解天然地基的性质和特点;2. 使学生掌握浅基础的设计原理和方法;3. 培养学生分析和解决实际工程问题的能力。
二、教学内容:1. 天然地基的概念及其分类;2. 天然地基的性质及影响因素;3. 浅基础的设计原理;4. 浅基础的设计方法;5. 设计实例分析。
三、教学重点与难点:1. 教学重点:天然地基的性质,浅基础的设计原理和方法。
2. 教学难点:天然地基的性质及其对基础设计的影响,浅基础设计的实际应用。
四、教学方法:1. 讲授法:讲解天然地基的概念、性质及分类,浅基础的设计原理和方法。
2. 案例分析法:分析设计实例,让学生更好地理解浅基础设计的过程和技巧。
3. 互动教学法:引导学生参与课堂讨论,提高学生的思考和分析能力。
五、教学准备:1. 教材:天然地基与浅基础设计相关教材;2. 课件:天然地基的性质、浅基础设计原理和方法的图片和动画;3. 设计案例:挑选具有代表性的设计案例供学生分析。
【导入】简要介绍天然地基的概念和重要性,引导学生关注天然地基对建筑基础的影响。
【新课内容】1. 天然地基的性质及影响因素讲解天然地基的分类,分析不同类型地基的性质及影响因素,如土层的分布、密度、含水率等。
2. 浅基础的设计原理介绍浅基础的设计原理,如静承载力、稳定性和沉降控制等,解释基础底面积、埋深和材料选择等设计参数的确定方法。
3. 浅基础的设计方法讲解浅基础的设计方法,包括初步设计、详细设计和施工图设计等阶段,介绍设计过程中应注意的问题,如地基处理、防水隔离等。
【案例分析】分析一个具有代表性的设计案例,让学生了解天然地基对基础设计的影响,以及如何根据地基条件进行合理的设计。
【课堂小结】总结本节课的主要内容,强调天然地基性质对浅基础设计的影响,以及设计过程中应注意的问题。
【作业布置】1. 复习本节课的内容,整理学习笔记;六、教学评估与反馈:1. 课堂问答:通过提问了解学生对天然地基性质和浅基础设计原理的掌握情况;2. 案例分析报告:评估学生对设计案例分析的能力,检查学生能否运用所学知识解决实际问题;3. 作业批改:检查学生对课堂内容的复习和理解,以及对设计案例的分析和处理能力。
绪论1.土的用途:可用作建筑物的地基;可用作土工建筑材料;充当建筑物2.土的基本特性:碎散性、多相性、多孔性3.土的特点:自然变异性和易变性4.地基:工程上把受建筑物荷载影响且应力应变不能忽略的那部分地层称为地基。
坚硬的天然地层直接作为建筑物地基的称为天然地基,软弱地层需要经过人工加固处理后作为建筑物地基的称为人工地基。
5.基础:把建筑物向地基地基传递荷载的下部结构称为基础。
基础地面至地面的垂直距离称为基础的埋置深度。
浅基础:埋置深度不大,在计算中基础的侧面摩擦力不必考虑,只需挖槽、排水等普通施工程序就可建造的基础;深基础:指埋置于深处的良好土层上,在计算中应考虑基础侧面的摩擦力,并需借助特殊施工方法建造的基础。
6.地基和基础的重要性:地基和基础是建筑物的根本;地基和基础是地下隐蔽工程,施工难度大;地基和基础工程造价高,工期长7.土力学的研究内容:土的基本性质;土体中的应力计算;地基变形量计算;土体稳定性分析8.基础工程(地基和基础的总称):基础设计和地基处理第一章1.土层:土是具有成层性的。
物质组成、物理化学状态基本一致,工程性质大致相仿的同一层土。
2.土体:由若干厚度不等、性质各异,以一定上下层序组合在一起的土层集合体。
3.土:残积土:无搬运;运积土:有搬运4.土的三相组成:固体颗粒、水、气。
固体颗粒构成土的骨架,没有液体时是干土,没有气体时是饱和土。
5.粒度:土粒的大小6.粒组:大小、性质相近的土粒合并为一组。
7.界限粒径:划分粒组的分界尺寸。
8.0.075毫米是把土分为细粒土和粗粒土的界限粒径。
9.土的颗粒级配:土中各粒组的相对含量占总质量的百分数10.土的颗粒级配是通过土的颗粒分析试验测定的。
粗粒土采用筛分法测定,细粒土采用沉降分析法(密度计法、移液管法)11.不均匀系数C u表明粒度的不均匀程度,C u越大,表明粒度的分布范围越大,土粒越不均匀,颗粒大小相差越悬殊,其级配越好。
曲率系数C c描述了级配曲线分布的连续程度,表明是否有某粒组缺失的情况。
土力学与地基基础引言土力学是研究土体力学性质及其对工程行为影响的科学。
地基基础则是建筑物或其他工程设施所依赖的地面部分。
理解土力学与地基基础对于工程设计和施工至关重要。
本文将介绍土力学的基本概念和原理,并探讨地基基础的类型和设计要点。
土力学的基本概念土力学是研究土壤在外力作用下的变形和破坏行为的学科。
它主要研究土壤的力学性质,如弹性模量、剪切强度、压缩性等,并探究这些性质对土壤的力学行为产生的影响。
土壤力学性质•弹性模量:土壤的弹性模量是衡量土壤抗变形能力的重要指标。
它表示了土壤在受到外力作用下产生的应变与应力的关系。
弹性模量越大,土壤的刚度越高,变形能力越小。
•剪切强度:剪切强度是土壤抵抗剪切力的能力。
它是衡量土壤抗剪切破坏的重要指标。
剪切强度受到多个因素的影响,如土壤类型、应力状态和水分含量等。
•压缩性:土壤的压缩性是指土壤在受到垂直应力作用下发生的体积变化。
压缩性与土壤的孔隙结构和水分含量密切相关。
不同类型的土壤具有不同的压缩性。
土壤的力学行为土壤在受到外力作用下会发生一系列的力学行为,如压缩、剪切和变形。
对于工程设计和施工来说,了解土壤的力学行为对工程的稳定性和安全性至关重要。
•压缩行为:土壤在受到垂直应力作用下,孔隙体积会减小,导致土壤整体发生压缩现象。
土壤的压缩行为会对建筑物和基础的沉降产生影响。
•剪切行为:土壤在受到剪切力的作用下会发生剪切现象。
剪切行为会影响土体的强度和稳定性,对于土质较松散的地基来说尤为重要。
•变形行为:土壤的变形是指土壤在受到外力作用下,孔隙体积和形状发生改变的过程。
土壤的变形行为对工程的变形和稳定性具有重要影响。
地基基础的类型和设计要点地基基础是建筑物或其他工程设施所依赖的地面部分,它起着分散荷载、传递荷载和保证地面稳定的作用。
地基基础的类型和设计要点因不同的工程需求而有所差异。
1.浅基础:浅基础是指埋置在地表以下较浅深度的地基基础。
它通常用于荷载较小的建筑物和结构,如住宅、仓库和轻型工业厂房等。
第七节 浅基础单项选择题(下列选项中,只有一项符合题意)1.软弱下卧层验算公式P z+P cz≤f az,其中P cz为软弱下卧层顶面处土的自重应力值,下面说法正确的是( )。
[2019年真题]A.P cz的计算应当从基础底面算起B.P cz的计算应当从地下水位算起C.P cz的计算应当从基础顶面算起D.P cz的计算应当从地表算起【答案】D【解析】附加应力P z的计算应从基础底面算起,自重应力P cz的计算应当从地表算起。
2.条形基础埋深3m,宽3.5m,上部结构传至基础顶面的竖向力为200kN/m3,弯距为50kN·m,基础自重和基础上的土重可按综合重度20kN/m3考虑,基础底面边缘的最大压力值为( )。
[2013年真题]A.141.6kPаB.212.1kPаC.340.3kPаD.180.5kPа【答案】A【解析】基础底面边缘的最大压力值是需要叠加的,它和力的大小和力的位置种类有关。
单位宽度基础底面的抗弯惯性矩为:W =bh 2/6=(1×3.52)/6,则基础底面边缘的最大压力值为:max 2650200203kPa 1 3.5 3.5141.64kPaM F G p W A+=+⨯⎛⎫=++⨯ ⎪⨯⎝⎭=3.某匀质地基承载力特征值为120kPa ,基础深度的地基载力修正系数为1.5,地下水位深2m ,水位以上天然重度为16kN/m 3,水位以下饱和重度为20kN/m 3,条形基础宽3m ,则基础埋置深度为3m 时,按尝试修正后的地基承载力为( )。
[2010年真题]A .159kPaB .172.5kPaC .180kPaD .186kPa【答案】B【解析】根据《建筑地基基础设计规范》(GB 50007—2011)第5.2.4条规定,当基础宽度大于3m 或埋置深度大于0.5m 时,从载荷试验或其他原位测试、经验值等方法确定的地基承载力特征值,尚应按下式修正:f a =f ak +ηb γ(b -3)+ηd γm (d -0.5)。
周次第12周,第1、2 次课章节名称第7章天然浅基础设计授课方式课堂讲授(√);实践课()教学时数 4教学目标1、掌握天然浅基础的类型;2、掌握地基承载力设计;3、掌握浅基础的设计与计算;教学重点与难点重点:基础埋置深度,天然浅基础的设计,地基承载力计算难点:天然浅基础的设计,地基承载力计算地基、基础与上部结构相互作用的概念。
地基承载力设计值;基础底面尺寸的确定;软弱下卧层地基承载力的验算方法教学内容与设计第7章天然浅基础设计本章内容:7.5.1 按土的抗剪强度指标确定一、规范推荐的理论公式对竖向荷载偏心和水平力都不大的基础来说,当荷载偏心距e≤b/30(b为偏心方向基础边长)时,还可以采用《建筑地基基础设计规范》推荐的式7-5计算。
7.5.2 按地基载荷试验确定在现场通过一定尺寸的载荷板对扰动较少的地基土体直接施荷,所测得的成果一般能反映相当于1—2倍载荷板宽度的深度以内土体的平均性质。
这样大的影响范围为许多其它测试方法所不及。
载荷试验虽然比较可靠,但费时、耗资而不能多做。
规范只要求对一级建筑物采用载荷试验,理论公式计算及其它原位试验等方法综合确定,对于成份或结构很不均匀的土层,如杂填土、裂隙土、风化岩等,它则显出用别的方法所难以代替的作用。
规范地基承载力表所提供的经验性数值也是以静载荷试验成果为基础的。
有关载荷试验方法以及确定承载力和变形参数的内容已经分别在第三章和第六章中介绍,此处不再赘述。
新书198页,“由于建筑物基础面积。
”7.5.3 按规范承载力表确定我国国家标准《建筑地基基础设计规范GBJ7—89》以各地区静载荷试验资料为基础,通过统计分析,对各类土建立了按野外鉴别结果、室内物理、力学指标,或现场动力触探试验锤击数查取地基承载力基本值0f或标准值k f的表格。
除岩石地基外,所有表格都是针对基础宽度b≤3m、埋置深度d≤0.5m的情况作出的,具体的计算步骤可以看规范。
§7.6 浅基础的设计与计算7.6.1 轴心荷载作用下基础底面积的确定7.6.2 偏心荷载作用下基础底面积的确定7.6.3 软弱下卧层的验算当地基受力层范围内存在软弱下卧层(承载力显著低于持力层的高压缩性土层)时,按持力层土的承载力计算得出基础底面所需的尺寸后,还必须对软弱下卧层进行验算,要求作用在软弱下卧层顶面处的附加应力与自重应力之和不超过它的承载力设计值,即新书201页7-7 。
一、名词解释1、自重应力:由土体自身重力在地基内所产生的应力2、粘性土:塑性指数大于10的土.。
3、正常固结土:超固结比等于1的土。
4、最终沉降量:地基土层在建筑物荷载作用下,。
不断产生压缩,至压缩稳定后地基表面的沉降量.5、压缩模量:在完全侧限条件下,。
竖向压应力与压应变的比值6、地基承载力:地基承受荷载的能力7、临塑荷载:地基土开始出现(塑性区)剪切破坏时的地基压力8、主动土压力:当挡土墙向离开土体方向偏移至墙后土体达到极限平衡状态时,作用在墙背上的土压力9、附加应力:由建筑物的荷载或其他外载在地基内所产生的应力称为附加应力。
10、软弱土层:把处于软塑、流塑状态的粘性土层,处于松散状态的砂土层,以及未经处理的填土和其他高压缩性土层视作软弱土层。
11、换填垫层法:换填垫层法是一种直接置换地基持力层软弱土的处理方法,施工时将基底下一定深度的软弱土层挖除,分成回填砂、碎石、灰土等强度较大的材料,并加以夯实振密。
12、桩基:依靠桩把作用在平台上的各种载荷传到地基的基础结构.。
13、地基处理:软弱地基通常需要经过人工处理后再建造基础,这种地基加固称为地基处理。
14.地基受建筑物荷载的影响。
,建筑物下一定范围内土层将产生应力和变形,应力和变形不可忽略的那部分地层称为地基.15.重力式挡土墙重力式挡土墙一般由砖。
、石或混凝土材料建造,依靠墙身的自重来抵抗由于土压力引起的倾覆力矩.16.含水率土中水的质量与土粒质量之比(用百分数表示)称为土的含水率。
17.基底压力建筑物荷载通过基础传递给地基的压力。
18.固结度.。
某一时刻的沉降量和最终沉降量之比。
19.土的抗剪强度。
土的抗剪强度是指土体抵抗剪切破坏的极限强度。
20.基底压力.建筑物荷载通过基础传递给地基的压力21、固结度。
22、某一时刻的沉降量和最终沉降量之比。
23、软土地基有哪些处理方法。
机械压实法、强夯法、换填法、预压固结法、挤密法、振冲法、深层水泥搅拌法、托换法24、主应力面:如果某一平面上只有法向应力,没有切向应力,则该平面称为称为主应力面。
土力学与地基基础知识点总结土力学与地基基础知识点总结1. 引言土力学(soil mechanics)是研究土体力学性质和力学行为的学科,它在土木工程中具有重要的地位。
地基基础则是土力学应用的一个重要领域,它关乎着建筑物的稳定性和安全性。
本文将从土力学的基础概念、土体性质、土力学参数和地基基础设计等方面,对土力学与地基基础的关键知识点进行总结。
2. 土力学的基础概念(1)土体:土力学研究的对象是由固体颗粒、空隙和水分组成的土体。
土体可以分为粘性土和非粘性土两大类。
(2)土力学三性:土体的强度、变形和渗透性是土力学研究的三个基本性质。
(3)边界条件:土体的力学行为与边界条件密切相关,包括自由边界、刚性边界和过渡边界。
(4)固结与压缩:土体在受到外力作用的过程中,会发生固结与压缩现象。
固结是指土体体积的减小,而压缩则是指土体产生的应力与应变的变化。
3. 土体性质(1)颗粒组成:土体的颗粒组成对其力学性质有很大影响,不同颗粒组成的土体具有不同的工程特性。
(2)粒径分布:土体中颗粒的粒径大小分布对土体的密实度、渗透性和抗剪强度等性质有影响。
(3)含水量:土体中水分的含量决定了土体的湿度状态,并影响其强度和固结性质。
(4)比表面积:土体颗粒的比表面积对水分和颗粒间的黏聚力有影响,是研究土体吸力和渗透性的重要参数。
4. 土力学参数(1)有效应力和孔隙水压力:有效应力是指实际应力减去孔隙水压力,对土体的强度和变形特性有重要影响。
(2)孔隙比和孔隙比因子:孔隙比是指土体的孔隙体积与固相体积的比值,是研究土体压缩性和渗透性的重要参数。
(3)剪切强度和摩擦角:土体的剪切强度与颗粒间的黏聚力和内摩擦角有关,是研究土体稳定性的重要指标。
(4)压缩指数和压缩预应力:土体的压缩指数和压缩预应力是研究土体固结性质的重要参数,对土体的固结行为有影响。
5. 地基基础设计(1)承载力计算:地基基础的主要设计目标是保证建筑物的稳定和安全,需要进行承载力计算来确定地基基础的尺寸和形式。
一、天然地基上的浅基础设计(土力学与地基基础教案)二、章节名称:第一章天然地基与基础概述三、教学目标:1. 了解天然地基的定义、分类及特性。
2. 掌握基础的概念、分类及功能。
3. 理解天然地基与基础的关系。
四、教学内容:1. 天然地基的定义、分类及特性。
2. 基础的分类、功能及设计原则。
3. 天然地基与基础的相互关系。
五、教学过程:1. 导入:通过展示天然地基与基础的实际案例,引发学生对天然地基与基础的兴趣。
2. 讲解:讲解天然地基的定义、分类及特性,基础的分类、功能及设计原则。
3. 互动:组织学生进行小组讨论,探讨天然地基与基础的相互关系。
4. 案例分析:分析典型天然地基与基础设计的案例,让学生更好地理解理论知识。
六、教学方法:1. 讲授法:讲解天然地基与基础的基本概念、分类及特性。
2. 互动法:组织学生进行小组讨论,提高学生的参与度。
3. 案例分析法:分析实际案例,让学生更好地理解理论知识。
七、教学评价:1. 课堂参与度:观察学生在小组讨论中的表现,评估学生的参与度。
2. 案例分析报告:评估学生在案例分析中的表现,包括分析的深度和广度。
3. 课后作业:检查学生对课堂内容的掌握程度。
八、教学资源:1. PPT课件:展示天然地基与基础的图片、案例等。
2. 案例资料:提供典型天然地基与基础设计案例,供学生分析。
九、教学建议:1. 建议学生在课前预习相关章节,了解天然地基与基础的基本概念。
2. 鼓励学生在课堂积极参与,提出自己的观点和疑问。
3. 学生在课后要认真完成作业,巩固课堂所学知识。
十、课后作业:2. 列举基础的分类和功能。
3. 描述天然地基与基础的相互关系。
六、天然地基上的浅基础设计(土力学与地基基础教案)七、章节名称:第二章地基承载力计算八、教学目标:1. 理解地基承载力的概念及其重要性。
2. 掌握地基承载力的计算方法。
3. 学会根据地基承载力确定基础尺寸。
九、教学内容:1. 地基承载力的概念及其影响因素。