算法分析与设计(最大流问题)
- 格式:doc
- 大小:264.00 KB
- 文档页数:19
最大流常见算法最大流问题是图论中的一个重要问题,其求解方法有多种,本文将介绍最常见的几种算法。
一、最大流问题简介最大流问题是在一个网络中寻找从源点到汇点的最大流量的问题。
网络是由一些节点和连接这些节点的边构成的,每条边都有一个容量,表示该边所能承载的最大流量。
源点是流量的起点,汇点是流量的终点。
在网络中,还可能存在其他节点和边。
二、Ford-Fulkerson算法Ford-Fulkerson算法是最早用于解决最大流问题的算法之一。
该算法基于增广路径来不断增加流量,直到无法再找到增广路径为止。
1. 算法步骤(1)初始化:将所有边上的流量设为0。
(2)寻找增广路径:从源点开始进行深度优先或广度优先搜索,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。
(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。
(4)返回第二步,直到无法找到增广路径为止。
2. 算法分析Ford-Fulkerson算法可以保证在有限步内求解出最大流,但是其时间复杂度与增广路径的选择有关,最坏情况下可能需要指数级的时间复杂度。
三、Edmonds-Karp算法Edmonds-Karp算法是基于Ford-Fulkerson算法的一种改进算法。
该算法使用BFS来寻找增广路径,可以保证在多项式时间内求解出最大流。
1. 算法步骤(1)初始化:将所有边上的流量设为0。
(2)寻找增广路径:从源点开始进行BFS,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。
(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。
(4)返回第二步,直到无法找到增广路径为止。
2. 算法分析Edmonds-Karp算法相对于Ford-Fulkerson算法来说,在同样的网络中,其时间复杂度更低,可以保证在O(VE^2)的时间内求解出最大流。
但是在某些特殊情况下仍然可能需要指数级时间复杂度。
算法分析与设计在计算机科学领域,算法是解决问题的一种方法或步骤。
对于任何给定的问题,可能有许多不同的算法可用于解决。
算法的效率直接影响着计算机程序的性能,在实践中,我们通常需要进行算法分析和设计来确保程序的高效性和可靠性。
算法分析算法分析是用来评估算法性能的过程。
主要关注的是算法的效率和资源消耗。
常见的算法分析方法包括时间复杂度和空间复杂度。
时间复杂度时间复杂度描述了算法运行时间随输入规模增加而增加的趋势。
通常用大O符号表示,比如O(n)、O(log n)等。
时间复杂度越低,算法执行速度越快。
空间复杂度空间复杂度描述了算法在运行过程中所需的内存空间大小。
同样用大O符号表示。
空间复杂度越低,算法消耗的内存越少。
算法设计算法设计是指为了解决特定问题而创造新的算法的过程。
常见的算法设计方法包括贪心算法、分治法、动态规划等。
贪心算法贪心算法是一种在每一步选择当前状态下最优解的算法。
虽然贪心算法并不总是能得到全局最优解,但它的简单性和高效性使其在实际应用中很受欢迎。
分治法分治法将复杂问题分解为子问题来求解,然后将子问题的解合并起来得到原问题的解。
典型的应用有归并排序和快速排序等。
动态规划动态规划是一种将问题分解为重叠子问题、并存储子问题解的方法。
通过利用已解决的子问题来解决更大规模的问题,动态规划能够显著提高算法的效率。
结语算法分析和设计是计算机科学中至关重要的一部分,它帮助我们理解算法的效率和性能,并指导我们选择合适的算法来解决问题。
通过不断学习和实践,我们可以不断提升自己在算法领域的能力,为创造更高效、更可靠的计算机程序做出贡献。
算法分析与设计教学大纲一、课程概述二、预修条件1.数据结构基础知识。
2.编程语言基础。
三、授课目标1.掌握算法分析的基本方法和工具。
2.理解常见算法的设计思想和实现技巧。
3.能够独立设计、实现和优化算法解决实际问题。
四、教学内容1.算法基础知识(1)算法的概念和分类(2)算法分析的基本概念和方法(3)复杂度分析(4)递归与递归算法(5)分治法与减治法2.基本算法设计(1)贪心算法(2)动态规划算法(3)回溯算法3.高级算法设计(1)图算法:最短路径、最小生成树等(2)网络流算法:最大流、最小割等(4)近似算法:近似算法的基本思想与应用4.数据结构与算法分析(1)线性表和链表(2)栈和队列(3)树和二叉树(4)图和图的遍历算法五、教学方法1.理论课讲授:通过教师讲解、演示和示范等方式,让学生掌握算法基本知识和分析方法。
2.实践教学:通过课程设计和编程实践,让学生动手实践算法设计与实现,并对其进行分析和优化。
3.讨论与交流:组织学生进行小组讨论和互动交流,培养学生的合作学习能力和问题解决能力。
六、教学评估1.平时成绩:考察学生的课堂参与、作业完成情况和实验报告质量。
2.期中考试:考察学生对课程内容的掌握和理解。
3.期末考试:考察学生对课程内容的整体把握和综合应用能力。
七、参考教材1. 算法导论(第3版)- Thomas H. Cormen等2. 算法设计与分析基础(第4版)- Levitin A. V.八、教学资源1.电子课件和习题集。
2.在线编程平台和算法分析工具。
九、教学进度安排1.第1-2周:算法基础知识2.第3-5周:基本算法设计3.第6-8周:高级算法设计4.第9-11周:数据结构与算法分析5.第12-14周:综合应用与实践6.第15周:复习与总结备注:以上为算法分析与设计教学大纲的基本框架和内容,具体教学安排和进度可根据实际情况进行调整补充。
MATLAB中的网络流与最大流最小割问题求解方法随着社会信息化的不断发展,网络已经成为了人们日常生活中不可或缺的一部分。
而网络的流量管理对于网络的高效运行至关重要。
在网络流领域中,最大流最小割问题是一种经典且重要的问题,它在图论和算法设计领域都具有广泛的应用。
在本文中,我们将介绍MATLAB中的网络流与最大流最小割问题求解方法。
一、网络流与最大流最小割问题简介网络流问题是指在网络中有一定容量限制的边上,如何使得网络中的流量达到最大的问题。
最大流最小割问题则是网络流问题的一个特殊情况,其中要求找到一个最小割,使得割后网络中的流量达到最大。
通常情况下,网络流问题常常以有向图的形式表示,每条边上都被赋予了一个容量,并存在一个源点和一个汇点。
二、MATLAB中的网络流包在MATLAB中,有许多优秀的网络流包可以用来求解网络流与最大流最小割问题。
其中,最为常用的是Network Flow Toolbox和Combinatorial Optimization Toolbox。
这两个包提供了一系列的函数和算法,可以帮助我们解决各种类型的网络流问题。
三、网络流与最大流最小割问题的建模与求解在使用MATLAB解决网络流与最大流最小割问题之前,首先我们需要进行问题的建模。
通常情况下,我们需要确定图的结构、边的容量和源点与汇点的位置。
在建模完成后,我们可以使用MATLAB中的网络流包提供的函数进行求解。
1. 使用Network Flow Toolbox求解网络流问题Network Flow Toolbox是MATLAB中一个常用的网络流包,它提供了一系列函数用于求解网络流与最大流最小割问题。
其中最常用的函数是maxflow函数,它可以用来计算网络中的最大流。
首先,我们需要使用网络流对象来表示图结构。
在建立网络流对象后,我们可以使用addnode函数向图中添加节点,使用addedge函数向图中添加边。
同时,我们可以使用setcaps函数来指定边的容量。
算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。
频率计数是指计算机执行程序中的某一条语句的执行次数。
多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。
指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。
2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。
3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。
4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。
5. 解:①n=11; ②n=12; ③n=982; ④n=39。
第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。
2. 解:通过分治算法的一般设计步骤进行说明。
3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(−−=n n f n② )log *()(n n n f O =6. 解:算法略。
运筹学最大流问题例题(原创版)目录一、运筹学最大流问题的基本概念二、最大流问题的求解方法三、最大流问题例题详解四、总结与展望正文一、运筹学最大流问题的基本概念运筹学最大流问题是一种在网络中寻找最大流量的问题。
给定一个有向图 G(V,E),其中仅有一个点的入次为零称为发点(源),记为 vs;仅有一个点的出次为零称为收点(汇),记为 vt;其余点称为中间点。
对于G 中的每一条边 (vi,vj),相应地给一个数 cji(cji 0),称为边 (vi,vj) 的容量。
最大流问题的目标是找到从源点到汇点的最大流量。
二、最大流问题的求解方法求解最大流问题的方法主要有两种:增广链路算法(如Ford-Fulkerson 算法)和最短路算法(如 Dijkstra 算法和Bellman-Ford 算法)。
增广链路算法主要思想是不断寻找增广链路,即在网络中寻找一条从源点到汇点的路径,使得路径上的每条边都有剩余容量。
最短路算法则是通过寻找源点到汇点的最短路径来解决最大流问题。
三、最大流问题例题详解假设有如下网络图:```vs --> v1 --> v2 --> vt| | |3 2 1```其中,vs 为源点,vt 为汇点,边 (vs,v1) 的容量为 3,边 (v1,v2) 的容量为 2,边 (v2,vt) 的容量为 1。
现在需要求解从 vs 到 vt 的最大流量。
利用增广链路算法,我们可以得到如下流程:1.初始化流量为 0,即所有边的流量均为 0。
2.从源点 vs 开始,遍历所有邻接点,找到有剩余容量的边,将其流量加 1,直到所有邻接点都遍历完毕。
3.更新流量,将当前点的流量分配给下一个邻接点,直到到达汇点 vt。
4.重复步骤 2-3,直到网络中不存在增广链路。
按照以上步骤,我们可以得到最大流量为 2。
四、总结与展望运筹学最大流问题是网络科学中的一个基本问题,有着广泛的应用。
通过增广链路算法和最短路算法,我们可以有效地解决最大流问题。
三种⽹络流(最⼤流)的实现算法讲解与代码[洛⾕P3376题解]⽹络流(最⼤流)的实现算法讲解与代码定义对于给定的⼀个⽹络,有向图中每个的边权表⽰可以通过的最⼤流量。
假设出发点S⽔流⽆限⼤,求⽔流到终点T后的最⼤流量。
起点我们⼀般称为源点,终点⼀般称为汇点内容前置1.增⼴路在⼀个⽹络从源点S到汇点T的⼀条各边剩余流量都⼤于0(还能让⽔流通过,没有堵住)的⼀条路。
2.分层预处理出源点到每个点的距离(每次寻找增⼴路都要,因为以前原本能⾛的路可能因为⽔灌满了,导致不能⾛了).作⽤是保证只往更远的地⽅放⽔,避免兜圈⼦或者是没事就⾛回头路(正所谓⼈往⾼处⾛⽔往低处流).3.当前弧优化每次增⼴⼀条路后可以看做“榨⼲”了这条路,既然榨⼲了就没有再增⼴的可能了。
但如果每次都扫描这些“枯萎的”边是很浪费时间的。
那我们就记录⼀下“榨取”到那条边了,然后下⼀次直接从这条边开始增⼴,就可以节省⼤量的时间。
这就是当前弧优化具体怎么实现呢,先把链式前向星的head数组复制⼀份,存进cur数组,然后在cur数组中每次记录“榨取”到哪条边了。
[#3 引⽤⾃]()解决算法Ford-Fulkerson 算法(以下简称FF算法)FF算法的核⼼是找增⼴路,直到找不到为⽌。
(就是⼀个搜索,⽤尽可能多的⽔流填充每⼀个点,直到没有⽔⽤来填充,或者没有多余的节点让⽔流出去)。
但是这样的⽅法有点基于贪⼼的算法,找到反例是显⽽易见的,不⼀定可以得到正解。
为了解决这种问题,我们需要⼀个可以吃后悔药的⽅法——加反向边。
原本我们的DFS是⼀条路⾛到⿊的,现在我们每次进⼊⼀个节点,把⽔流送进去,同时建⽴⼀个权值与我们送⼊的⽔流量相等,但是⽅向相反的路(挖⼀条路让⽔流能够反向流回来,相当于给⽔流吃⼀颗后悔药)。
我们给了FF算法⼀颗后悔药之后就可以让他能够找到正确的最⼤流。
Ford-Fulkerson算法的复杂度为O(e×f) ,其中 e 为边数, f为最⼤流上代码。
By ----Kash最近在在学习网络流,但是网上的网络流资料比较分散,所以总结一下,希望为大家带来帮助网络流定义:流网络G(V,E)是一个V有向图,其中S为源点,T为汇点。
定义:C(u,v)为u到v的容量,其中对于每条边(u,v)∈E,有C(u,v)≥0。
否则C(u,v)=0。
定义:f(u,v)为u到v的流量,对所有u,v∈V, 有f(u,v)≤c(u,v)。
∑f(u,v)称作网络的流,记作f(S,T) 定义:max(∑f(u,v))=max(f(S,T))为网络的最大流量。
记住|f(s,t)|残留网络定义:Cf(u,v)为u到v的残留容量, Cf(u,v)=C(u,v)-f(u,v)。
定义:残留网络Ef={(u,v)∈VXV,Cf(u,v)}石油残留边组成的网络。
定义:增广路径是起点为S,终点为T的一组边集,其中Cf(p)=min{cf(u,v):(u,v)∈p}称为增广路径的容量。
最大流最小割定义:割(S,T)将网络分成两部分,割得流等于∑c(u,v) ,(u∈S,v∈T) 记作c(S,T)。
明显f(S,T)≤c(S,T),我们以后用c(S,T) 表达最小割。
定理:若残留网络中不存在增广路,则当前流为最大流定理:最大流等于最小割证明:假设残留图Gf不存在增广路径,根据以下规则划分两个点集合S={v∈V:Gf 存在从s到v的路径}T={v∈V:v∉S}因为Gf不存在增广路,所以t ∉ S, 对顶点u,v, 若u∈S,f(u,v)=c(u,v),则v属于T,否则v属于 S,此时 f(S,T)=C(S,T),f(S,T)<=C(S,T) 所以f(S,T)为最大流,此时残留图中无增广路Ford-Fulkerson方法Ford-Fulkerson方法每次在残留图中寻找增广路,直到图中没有增广路结束。
伪代码:Memset(f,0,sizeof(f));While(exist path from s to t){Cf=min{cf(u,v): (u,v)in p}For(each (u,v) in p )F[u,v]+=cf;F[v,u]-=cf;}Ford-Fulkerson方法中寻找增广路可用BFS,或者DFS完成,其中DFS完成的算法效率低下。
最大流问题实际应用场景引言最大流问题是图论中的常见问题之一,也是一种典型的网络流问题。
其应用场景广泛,涉及到物流配送、通信网络、水资源管理等领域。
通过对最大流问题的深入研究和解决,可以优化资源利用,提升系统性能,实现资源的合理分配与调度。
铁路货运优化铁路货运优化是最大流问题在实际应用中的一个典型场景。
铁路系统通常由一系列的节点(火车站)和边(铁路线路)组成,货物需要在不同的火车站之间进行运输。
通过求解最大流问题,可以确定铁路货运系统的最大吞吐量,从而在不同的火车站之间合理调度货物的运输量,提高铁路货运的效率。
问题建模1.将所有火车站表示为图的节点,铁路线路表示为图的边。
2.将每个火车站看作一个节点,引入超级源点S和超级汇点T。
3.设置超级源点S和超级汇点T,并将超级源点与火车站相连,容量设置为该站发出货物的总量;将超级汇点与火车站相连,容量设置为该站需要接收货物的总量。
4.将铁路线路表示为图的边,设置其容量为该线路的运输能力。
求解方法1.构建图模型后,可以利用网络流算法(如Ford-Fulkerson算法)求解最大流问题,得到最大的货物运输量。
2.根据最大流的结果,可以对不同的火车站之间的货物进行分配和调度,优化运输效率。
电力网络优化电力网络是一个复杂而庞大的系统,其中电力的产生、输送和分配需要进行合理的管理和优化。
最大流问题可以用于解决电力网络中的优化问题,如电力输送、线路负载平衡等。
问题建模1.将电力网络中的输电线路表示为图的边,变电站、发电站、负荷站等设备表示为图的节点。
2.引入超级源点S和超级汇点T,将变电站与超级源点S相连,容量设置为变电站的最大供电能力;将负荷站与超级汇点T相连,容量设置为负荷站的需求。
3.通过将发电站、变电站和负荷站之间的连接路径建模为图的边,设置其容量为线路的输送能力。
求解方法1.构建图模型后,可以使用最大流算法求解最大流问题,得到电力网络的最大输送能力,即最大负荷容量。
智慧树知到《算法分析与设计》章节测试答案第一章1、给定一个实例,如果一个算法能得到正确解答,称这个算法解答了该问题。
A:对B:错答案: 错2、一个问题的同一实例可以有不同的表示形式A:对B:错答案: 对3、同一数学模型使用不同的数据结构会有不同的算法,有效性有很大差别。
A:对B:错答案: 对4、问题的两个要素是输入和实例。
A:对B:错答案: 错5、算法与程序的区别是()A:输入B:输出C:确定性D:有穷性答案: 有穷性6、解决问题的基本步骤是()。
(1)算法设计(2)算法实现(3)数学建模(4)算法分析(5)正确性证明A:(3)(1)(4)(5)(2)B:(3)(4)(1)(5)(2)C:(3)(1)(5)(4)(2)D:(1)(2)(3)(4)(5)答案: (3)(1)(5)(4)(2)7、下面说法关于算法与问题的说法错误的是()。
A:如果一个算法能应用于问题的任意实例,并保证得到正确解答,称这个算法解答了该问题。
B:算法是一种计算方法,对问题的每个实例计算都能得到正确答案。
C:同一问题可能有几种不同的算法,解题思路和解题速度也会显著不同。
D:证明算法不正确,需要证明对任意实例算法都不能正确处理。
答案: 证明算法不正确,需要证明对任意实例算法都不能正确处理。
8、下面关于程序和算法的说法正确的是()。
A:算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。
B:程序是算法用某种程序设计语言的具体实现。
C:程序总是在有穷步的运算后终止。
D:算法是一个过程,计算机每次求解是针对问题的一个实例求解。
答案: 算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。
,程序是算法用某种程序设计语言的具体实现。
,算法是一个过程,计算机每次求解是针对问题的一个实例求解。
9、最大独立集问题和()问题等价。
A: 最大团B:最小顶点覆盖C:区间调度问题D:稳定匹配问题答案:最大团,最小顶点覆盖10、给定两张喜欢列表,稳定匹配问题的输出是()。
最大流算法在网络问题中的应用网络问题是计算机科学中的一个重要领域,主要研究节点之间的连通性,以及数据在网络中的传输和处理方式。
网络问题的解决方法之一就是最大流算法。
最大流算法可以用来求解网络流问题,是一种常用的优化算法。
下面将详细介绍最大流算法在网络问题中的应用。
一、最大流算法的定义最大流算法(Maximum Flow Algorithm)是计算最大流问题的常用算法,用于解决网络流问题。
最大流问题是在网络中从源点s 到汇点t的最大可行流问题,也可以理解为管道输送液体的最大流量问题。
最大流算法求解的本质就是如何找到一条从源点到汇点的路径,并计算出最大流量,以使所有流量达到最大。
二、最大流算法的应用最大流算法的应用非常广泛,在交通、卫星通信、电信等领域均有广泛应用。
下面分别从交通、卫星通信和电信三个方面来介绍最大流算法的应用。
1、交通领域在交通领域,最大流算法可以应用于城市道路布局规划、交通信号灯调度和公交线路规划等问题。
以城市道路布局规划为例,我们可以通过最大流算法来确定城市中心和周边地区之间的交通流量。
这样,我们就可以在城市道路规划过程中根据交通流量分配道路宽度和车行道数量,以确保道路能够承载最大交通流量。
2、卫星通信领域在卫星通信领域,最大流算法可以应用于网络拓扑设计、路由设计和带宽分配等问题。
通过最大流算法,我们可以确定卫星通信网中每个节点之间的最大传输速率,以便于选择最佳的路径或设计最优的路由方案。
此外,最大流算法也可以用于带宽管理,以确保卫星通信网中的每个节点都能够按照其需求获得足够的带宽。
3、电信领域在电信领域,最大流算法可以应用于网络拓扑设计、路由设计和负载均衡等问题。
电信网络中的节点之间互相连通,通过最大流算法,我们可以确定节点之间的最大传输速率,并根据传输速率设计最优的路由方案,以确保数据传输的完整性和可靠性。
此外,最大流算法还可以用于网络负载均衡,以确保所有节点的负载能够均衡分配。
《算法分析与设计》作业参考答案作业一一、名词解释:1.递归算法:直接或间接地调用自身的算法称为递归算法。
2.程序:程序是算法用某种程序设计语言的具体实现。
二、简答题:1.算法需要满足哪些性质?简述之。
答:算法是若干指令的有穷序列,满足性质:(1)输入:有零个或多个外部量作为算法的输入。
(2)输出:算法产生至少一个量作为输出。
(3)确定性:组成算法的每条指令清晰、无歧义。
(4)有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。
2.简要分析分治法能解决的问题具有的特征。
答:分析分治法能解决的问题主要具有如下特征:(1)该问题的规模缩小到一定的程度就可以容易地解决;(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; (3)利用该问题分解出的子问题的解可以合并为该问题的解;(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
3.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
答:将递归算法转化为非递归算法的方法主要有:(1)采用一个用户定义的栈来模拟系统的递归调用工作栈。
该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。
(2)用递推来实现递归函数。
(3)通过Cooper 变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。
后两种方法在时空复杂度上均有较大改善,但其适用范围有限。
三、算法编写及算法应用分析题: 1.冒泡排序算法的基本运算如下: for i ←1 to n-1 dofor j ←1 to n-i do if a[j]<a[j+1] then交换a[j]、a[j+1];分析该算法的时间复杂性。
答:排序算法的基本运算步为元素比较,冒泡排序算法的时间复杂性就是求比较次数与n 的关系。
(1)设比较一次花时间1;(2)内循环次数为:n-i 次,(i=1,…n ),花时间为:∑-=-=in j i n 1)(1(3)外循环次数为:n-1,花时间为:2.设计一个分治算法计算一棵二叉树的高度。
算法分析与设计题目:最大流算法院系:软件工程班级:软件11-2班:慕永利学号: 23 号目录1算法提出背景........................................................... - 3 - 2 问题实例及解决......................................................... - 3 - 3算法论述............................................................... - 4 -3.1、可行流.......................................................... - 4 -3.2 最大流.......................................................... - 5 -3.3最大流算法....................................................... - 6 -3.3.1 增广路径................................................. - 6 -3.3.2沿增广路径增广............................................. - 7 -3.3.3样例:..................................................... - 8 -3.3.4定理:.................................................... - 13 -3.3.5算法的实现:.............................................. - 13 -3.3.6 优化...................................................... - 16 - 4算法应用.............................................................. - 18 -1算法提出背景一个通信网络,在理想条件下,将网络平面化,并假设网络中各节点及其之间的任意通信链路均无流量限制,在这种情况下,就无需使用最大流最小割算法,只需要寻找一条最短路由即可。
但是在现实生活中,我们不可能拥有这样理想的网络条件,作为正常的通信网络,不管是用户,还是基站,或者是他们之间的不管是无线或者有线信道,其容量都不可能是无限的。
我们的任务是:在一定的限制条件下,对一个具有广泛意义的网络求解其最大流,并进行流量分配。
以及如何对网络弧进行修改以达到网络最优化最大化。
随着计算机网络业务的日益繁忙,通信流量激增而致使网络发生拥塞出现瓶颈部位,甚至造成网络停滞或瘫痪,所以对大型网络拓扑结构的优化设计是网络规划的首要任务。
网络的优化通常采用扩充网络最大容量和网络增强性连接来优化网络设计。
要解决网络拥塞的问题,首要找出网络流通中的阻塞部分即是网络流通图的最小割集,通过扩充最小割集中饱和弧的容量来改善整个网络的流通能力。
2 问题实例及解决有一自来水管道输送系统,起点是S,目标是T,途中经过的管道都有一个最大的容量。
3算法论述3.1、可行流每条弧 ( u, v )上给定一个实数f(u,v),满足:有 0 <= f ( u,v ) <= c( u, v ),则f(u,v)称为弧( u, v )上的流量。
如果有一组流量满足条件:源点s :流出量 = 整个网络的流量汇点t :流入量 =整个网络的流量中间点:总流入量 = 总流出量那么整个网络中的流量成为一个可行流。
区分:容量和流量3.2 最大流在所有的可行流中,流量最大的一个流的流量如:图2中可行流7也是最大流。
最大流可能不只一个。
3.3最大流算法Ford-Fulkerson (福特-福克森)算法:步骤:(1)如果存在增广路径,就找出一条增广路径(2)然后沿该条增广路径进行更新流量(增加流量)3.3.1增广路径从 s 到 t 的一条简单路径,若边 ( u, v ) 的方向与该路径的方向一致,称 ( u, v ) 为正向边,方向不一致时称为逆向边。
简单路:1à3 à 2à4à5中。
(1,3)(2,4)(4,5)是正向边。
(3,2)是逆向边。
增广路径:若路径上所有的边满足:①所有正向边有:f ( u, v ) < c ( u, v)②所有逆向边有:f ( u, v ) > 0则称该路径为一条增广路径(可增加流量)两条增广路径:1à3à51à3 à 2à4à5增加流量=?3.3.2沿增广路径增广1)先设d为为正无穷(可增加流,余流量)若( u, v ) 是正向边d = min ( d, c ( u, v ) – f (u, v ) )若( u, v ) 是逆向边d = min ( d, f ( u, v ) )2 )对与该增广路径上的边若( u, v ) 是正向边,f ( u, v ) = f ( u, v ) + d;若( u, v ) 是逆向边,f ( u, v ) = f ( u, v ) – d;增广后,总流量增加了d3.3.3样例:开始流量为:sum=0一条增广路径: 1à2à3à5,d=min{4,2,4} =2 ,增加流量: 2 Sum=2一条增广路径:1à2à4à5,d=min{4-2,3,5} =2 ,增加流量: 2 Sum=2+2=4一条增广路径: 1à3à 2 à 4 à5,d=min{6,2,3-2,5-2} =1 增加流量: 1,Sum=4+1=5一条增广路径: 1à3à5,d=min{6-1,4-2} =2 增加流量: 2 Sum=5+2=73.3.4定理:可行流 f 为最大流,当且仅当不存在关于f 的增广路径证:若 f 是最大流,但图中存在关于 f 的增广路径,则可以沿该增广路径增广,得到的是一个更大的流,与 f 是最大流矛盾。
所以,最大流不存在增广路径。
Ford-Fulkerson方法(增广流)求最大流(福特-福克森):步骤:(1)如果存在增广路径,就找出一条增广路径 DFS,BFS(2)然后沿该条增广路径进行更新流量增加流量)While 有增广路径 do 更新该路径的流量迭代算法3.3.5算法的实现:c [ u, v ]:容量f [ u, v ]:流量B[i]:保存找到的增广路径,记录路径上结点i的前驱结点。
Sum:最大流量。
假定:1是源点S;n是汇点T。
1):DFS找增广路径function findflow(k:integer):boolean; {找结点k的后继结点i }var i:integer;beginif k=n then exit(true); {找到了一条增广路径}for i:=1 to n doif(b[i]=-1) and((c[k,i]-f[k,i]>0)or(f[i,k]>0)) thenbeginb[i]:=k;if findflow(i) then exit(true);end;exit(false);end;2) procedure addflow;//沿增广路径增广(增加流量)d:=maxint; {增量}i:=n; {沿增广路径的终点向起点反向求d}while b[i]<>0 dobeginif c[b[i],i]>0 then d:=min(d,c[b[i],i]-f[b[i],i]); {正向边}if c[i,b[i]]>0 then d:=min(d,f[i,b[i]]);{逆向边}i:=b[i];end;i:=n;while b[i]<>0 do {逆向更新每条边的流量}beginif c[b[i],i]>0 then inc(f[b[i],i],d); {正向边} if c[i,b[i]]>0 then dec(f[i,b[i]],d); {逆向边} i:=b[i];end;inc(sum,d); {总流量增加d}主程序:for i:=1 to n do b[i]:= -1; {初始化增广路径}b[1]:=0;while findflow(1) do {增广流}beginaddflow;for i:=1 to n do b[i]:=-1;b[1]:=0;end;writeln(sum); {输出最大流}for i:=1 to n do {输出每条边的流量}for j:=1 to n doif f[i,j]>0 then writeln(i,'-->',j,' ',f[i,j]);3.3.6 优化残留网络 d 的设置:若存在 ( u, v ) 则d ( u, v ) = c ( u, v ) – f ( u, v )d ( v, u ) = f ( u, v )d ( u, v ) 是从 u 到 v 能增加的最大流量理解:(u,v) 的流量为f(u,v),作为正向边还可以增加的量是c ( u, v ) – f ( u, v ),作为逆向边,还可以增加的流量为: f ( u, v )。
增广路上正向边流量增加,逆向边增加流量减少。
d ( u, v ) = c ( u, v )d ( v, u ) = 0深搜找增广路径过程function find( k:integer ):boolean;if k=n then exit(true);for i:=1 to n doif (b[i]= -1) and (d[k,i]>0) then[ b[i]:=k;if find(i) then exit(true);// 此处b[i]不需要变回-1]exit(false);// b[1]=0; b[2~ n]= -1; 主函数中调用find(1)广搜找增广路径过程function bfsbfs:boolean; a 是广搜队列for i:=1 to n do b[i]:=-1; b 是前驱b[1]:=0; a[1]:=1; open:=0; closed:=1;while open<closed do[ inc(open); k:=a[open];for i:=1 to n do d 是残余流量if (b[i]= -1) and (d[k,i]>0) then[inc(closed); a[closed]:=i;b[i]:=k;if i=n then exit(true); 找到增广路] ]exit(false); 没找到增广路增广过程min:=maxint;i:=n;while b[i]<>0 (i<>1) do //逆向求增加流min[ if min>d[b[i],i] then min:=d[b[i],i];i:=b[i];]i:=n;while b[i]<>0 (i<>1) do// //逆向修改流量[ dec(d[b[i],i],min); inc(d[i,b[i]],min);i:=b[i];]inc(sum,min); sum是总流量4算法应用在现实生活中,在实际的网络中,网络的结点和边都是有容量限制的. 很多情况下我们需要知道在一个有容量限制的网络中两个指定结点(分别称为源点和汇点)之间最多能传输多少流量,并确定达到这个最大流量的传输策略. 网络最大流问题(简称最大流问题)就是描述这个问题的数学模型.最大流问题是网络流理论的重要组成部分,它是一个经典的组合优化问题,同时也可以看做是特殊的线性规划问题. 除了解决实际网络中的问题以外,最大流问题在电力、交通、通信、计算机网络等工程领域和物理、化学等科学领域有着广泛的应用,许多其它的组合优化问题也可以通过最大流问题求解。