高中解析几何知识点资料
- 格式:doc
- 大小:72.00 KB
- 文档页数:4
高中数学解析几何知识点总结一、平面解析几何在平面解析几何中,我们主要研究平面上的点、直线、圆、曲线等几何对象。
平面解析几何的基本思想是用代数方法研究几何问题,通过建立坐标系和引入坐标变量的方法,将几何问题转化为代数问题进行研究。
在平面解析几何中,有一些重要的知识点需要掌握,下面我们将逐一进行讲解。
1. 坐标系坐标系是平面解析几何的基本工具,它通过数轴的方式将平面上的点和几何对象进行了定位。
常见的坐标系有直角坐标系和极坐标系两种。
直角坐标系是由水平轴和垂直轴组成的,水平轴称为x轴,垂直轴称为y轴。
平面上的每个点通过它的横坐标x和纵坐标y来确定,就可以唯一确定一个点的位置。
例如,点A(x,y)表示了点A在坐标系中的位置。
极坐标系是以原点O和一条射线作为坐标轴,用点到原点的距离r和与射线的夹角θ来表示点的位置。
在极坐标系中,点的坐标表示为(r,θ)。
2. 直线的方程在直角坐标系中,直线可以用方程y=ax+b或者y=kx+b来表示,其中a、b、k为常数。
当a≠0时,直线的方程为y=ax+b,a称为直线的斜率,b称为直线的截距;当a=0时,直线的方程为y=b,其斜率为0,直线与y轴平行。
另外,直线还可以用斜截式、截距式、两点式等来表示,学生需要灵活掌握不同表示方法,并能够相互转化。
3. 圆的方程在平面解析几何中,圆是一个重要的几何对象,它的方程可以用不同的形式表示。
在直角坐标系中,圆的方程一般写为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为圆的半径。
4. 曲线的方程除了直线和圆之外,学生还需要学习其他曲线的方程,如抛物线、椭圆、双曲线等。
这些曲线都有各自的方程形式,在解析几何中有着重要的应用。
5. 解析几何的基本性质和定理在学习平面解析几何时,学生还需要掌握一些基本的性质和定理,如两点间的距离公式、直线的斜率公式、直线与圆的位置关系、圆与圆的位置关系等。
高中数学解析几何知识点总结大全解析几何是高中数学的重要分支之一,通过运用代数和几何的方法来研究几何图形的性质和变换。
下面是高中数学解析几何的知识点总结,供参考:一、直线与平面的位置关系1.直线与平面的交点个数:直线和平面可以有0个、1个或无数个交点。
2.平面与平面的位置关系:两个平面可以相交、平行或重合。
二、向量及其代数运算1.向量的概念:向量是具有大小和方向的量。
2.向量的表示方法:向量可以用有向线段或坐标表示。
3.向量的加法:向量的加法满足平行四边形法则。
4.向量的数乘:向量的数乘是一个向量与一个实数的乘积。
5.向量的数量积:向量的数量积是两个向量之间的乘积,结果是一个实数。
6.向量的乘法运算法则:分配律、结合律和交换律。
三、直线及其方程1.平面直角坐标系:平面直角坐标系包括坐标轴、坐标原点和相应的正方向。
2.直线的方程:直线可以用一般式、点斜式、两点式或截距式表示。
3.直线的性质:平行、垂直、斜率、倾斜角等。
4.直线的位置关系:两条直线可以相交、平行或重合。
四、曲线及其方程1.圆的方程:圆可以用标准方程、一般方程或截距方程表示。
2.椭圆、双曲线和抛物线的方程:椭圆、双曲线和抛物线可以用一般式表示。
3.曲线的性质:焦点、准线、离心率等概念的理解。
4.曲线的位置关系:两条曲线可以相交、相切或没有交点。
五、空间直线及其方程1.空间直线的方程:空间直线可以用对称式、参数方程或直角坐标式表示。
2.空间直线的位置关系:两条空间直线可以相交、平行或重合。
3.空间直线与平面的位置关系:空间直线可以与平面相交、平行或测度为零。
六、空间曲线及其方程1.空间曲线的方程:空间曲线可以用参数方程或直角坐标式表示。
2.空间曲线与平面的位置关系:空间曲线可以与平面相交、触及或完全包含。
七、立体图形1.点、线、面、体的概念:点是没有长度、宽度和高度的,线是一系列相连的点,面是一系列相连的线,体是一系列相连的面。
2.立体图形的表面积:立方体、长方体、正方体、球体、圆柱体、圆锥体和棱锥体的表面积计算公式。
高中数学解析几何知识点归纳总结
1. 直线与平面的位置关系
- 直线与平面的交点可以有三种情况:交于一点、平行或重合。
- 直线与平面的夹角可以分为三种情况:直线在平面内、直线
与平面垂直或直线在平面外。
- 两个平面的位置关系可以分为三种情况:相交于一直线、平
行或重合。
2. 平面的方程
- 平面的方程有两种形式:点法式和一般式。
- 点法式方程:通过平面上一点和法向量来确定平面方程。
- 一般式方程:由平面的法向量和一个常数项确定平面方程。
3. 直线的方程
- 直线的方程也有两种形式:点向式和一般式。
- 点向式方程:通过直线上一点和方向向量来确定直线方程。
- 一般式方程:由直线的法向量和一个常数项确定直线方程。
4. 平面和直线的距离
- 平面和直线的距离可以使用点到平面的距离公式或点到直线
的距离公式。
5. 直线与直线的位置关系
- 直线与直线的位置关系可以分为三种情况:相交于一点、平
行或重合。
6. 空间中的球面与圆
- 空间中的球面方程与二维平面上的圆方程类似。
- 空间中的球面与圆的方程可以通过中心点和半径来确定。
7. 二次曲线
- 二次曲线包括椭圆、双曲线和抛物线。
- 二次曲线的方程可以通过焦点、直径等要素来确定。
以上是高中数学解析几何的一些主要知识点。
通过研究和掌握
这些知识,你将能够更好地理解和应用解析几何的相关概念和方法。
高中数学解析几何知识点总结1.直线方程直线和圆的方程是解析几何中的重要知识点之一。
在直线方程的研究中,我们需要掌握以下几个要点:1.1 直线的倾斜角直线的倾斜角是指一条直线向上的方向与x轴正方向所成的最小正角。
当直线与x轴平行或重合时,其倾斜角为0度或180度。
需要注意的是,当直线垂直于x轴时,其斜率不存在。
1.2 直线方程的几种形式直线方程可以表示为点斜式、截距式、两点式和斜截式。
其中,当直线经过两点时,即在x轴和y轴上的截距分别为a和b(a≠0,b≠0)时,直线方程为y = (-a/b)x + 1.1.3 直线系直线系是指斜截式方程y = kx + b中的k和b均为确定的数值时,所表示的一组直线。
当b为定值,k变化时,它们表示过定点(0,b)的直线束;当k为定值,b变化时,它们表示一组平行直线。
2.平行和垂直的直线在解析几何中,平行和垂直的直线是常见的情况。
判断两条直线是否平行或垂直,需要注意以下几点:2.1 两条直线平行的条件两条直线平行的条件是:它们是两条不重合的直线,且在它们的斜率都存在的前提下,斜率相等。
需要特别注意的是,抽掉或忽视其中任一个“前提”都会导致结论的错误。
2.2 两条直线垂直的条件两条直线垂直的条件是:它们的斜率之积为-1.同样需要注意的是,在判断两条直线是否垂直时,需要确保它们的斜率都存在。
以上是解析几何中直线方程和平行、垂直直线的基本知识点总结。
掌握这些知识点,对于研究和理解解析几何的其他内容将会有很大的帮助。
本文主要介绍了直线和圆的方程,其中包括直线的平行和垂直方程,过定点的直线方程以及过两条直线交点的直线方程等内容。
同时还介绍了关于点和直线对称的性质,以及圆的标准方程和特例。
下面对每个部分进行小幅度的改写和格式修正。
一、直线方程1.直线的平行和垂直方程直线的平行和垂直方程是很重要的概念,它们可以帮助我们更好地理解直线的性质和特点。
其中,与直线 Ax+By+C=0平行的直线方程是 Ax+By+m=0(m为实数,且C≠m);与直线Ax+By+C=0 垂直的直线方程是Bx-Ay+m=0(m为实数)。
高三解析几何总结知识点解析几何是高中数学中的一个重要分支,通过运用坐标系和代数方法,研究几何图形的性质和变换规律。
在高三阶段,解析几何是帮助学生巩固和拓展几何知识的重要内容。
下面将对高三解析几何的知识点进行总结,并以例题进行说明。
一、直线的方程1. 一般式方程:Ax + By + C = 02. 点斜式方程:y - y₁ = k(x - x₁)3. 两点式方程:(y - y₁)/(x - x₁) = (y₂ - y₁)/(x₂ - x₁)例题:已知直线L过点A(3,-2),斜率为2,求直线L的方程。
解:利用点斜式方程,代入已知条件可得:y - (-2) = 2(x - 3)化简得:y + 2 = 2x - 6转化为一般式方程:2x - y + 8 = 0所以直线L的方程为2x - y + 8 = 0。
二、直线的位置关系1. 平行关系:两条直线的斜率相同。
2. 垂直关系:两条直线的斜率之积为-1。
3. 直线的交点:联立两条直线的方程,求解方程组得到交点坐标。
例题:已知直线L₁的方程为3x - y + 5 = 0,直线L₂过点B(1, 4)且与L₁垂直,求直线L₂的方程。
解:根据L₁的一般式方程,可以得到L₁的斜率为3。
由于L₂与L₁垂直,故L₂的斜率为-1/3。
利用点斜式方程可得:y - 4 = -1/3(x - 1)化简得:3y - 12 = -x + 1转化为一般式方程:x + 3y - 13 = 0所以直线L₂的方程为x + 3y - 13 = 0。
三、直线的距离和垂足1. 点到直线的距离:利用点到直线的距离公式,d = |Ax₀ + By₀ + C|/√(A² + B²)2. 直线的垂足:垂直于直线的直线与给定直线的交点。
例题:已知直线L的方程为2x - 3y + 6 = 0,点P(4, -2),求点P到直线L的距离和直线L的垂足的坐标。
解:根据点到直线的距离公式,代入已知条件可得:d = |2(4) - 3(-2) + 6|/√(2² + (-3)²)化简得:d = 4/√13所以点P到直线L的距离为4/√13。
解析几何知识点总结高中几何学是数学的一部分,涵盖了从平面到空间的所有形状和大小的研究。
解析几何是几何学的一个分支,它利用代数运算和坐标系来描述各种形状和位置。
在高中数学的学习中,解析几何是一个重要的知识点。
在本文中,将详细介绍一些高中解析几何的知识点。
1. 二元一次方程二元一次方程是运用解析几何的基本方法之一。
我们可以通过它来描述到两个物体之间的空间位置关系。
下面是二元一次方程的一般式子:ax + by + c = 0。
其中,a、b、和c是常数,x和y是未知数。
在解析几何中,二元一次方程代表一条直线。
该直线的斜率(k)和截距(b)可以得出如下公式:k = -a/b,b = -c/b。
直线的一般式子可以根据两个点或点与斜率之间的关系来确定。
如果已知直线上的两个点A(x1, y1)和B(x2, y2),可以通过计算斜率和截距来得出该直线的一般式子:k = (y2 – y1) / (x2 – x1),b = y – kx。
其中,k为直线的斜率,b为直线的截距。
另一种方法是给定点和斜率的值。
如果直线上有一个点P(x0, y0)和斜率k,可以使用如下公式:y – y0 = k(x – x0)。
这种表示形式称为点斜式。
2. 圆的方程在解析几何中,圆的方程描述了圆的位置和半径。
标准方程如下:(x – a)^2 + (y – b)^2 = r^2。
其中,a和b是圆心的坐标,r是圆的半径。
通过对圆的方程进行简单的变形,可以从常数中得出圆的标准方程。
该变形将方程写成如下形式:x^2 + y^2 + Dx + Ey + F = 0。
其中,D、E和F是常数。
该表达式描述的圆方程称为一般圆方程。
3. 空间几何解析几何不仅适用于平面几何,还可以用于空间几何。
在空间几何中,一个点由三个坐标表示。
直线可以通过两点或点和向量表示,而平面可以通过三个点或点和两条直线表示。
空间几何中的一些重要概念包括向量,对称和距离。
向量是大小和方向的量,可以使用两点之间的差值来描述。
: . x - x高中数学解析几何知识点大总结第一部分 直线一、直线的倾斜角与斜率 1.倾斜角α(1)定义:直线 l 向上的方向与 x 轴正向所成的角叫做直线的倾斜角。
(2)范围:0︒ ≤ α < 180︒2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.k = tan α(1).倾斜角为 90︒ 的直线没有斜率。
(2)每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于 x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在 这两种情况,否则会产生漏解。
(3)设经过 A( x , y ) 和 B( x , y ) 两点的直线的斜率为 k ,11 2 2则当 x ≠ x 时, k = tan α = y 1 - y2 ;当 x 1 2 x - x1 12= x 时, α = 90o ;斜率不存在;2二、直线的方程1.点斜式:已知直线上一点 P (x 0,y 0)及直线的斜率 k (倾斜角α)求直线的方程用点斜式: y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为 x = x ;2.斜截式:若已知直线在 y 轴上的截距(直线与 y 轴焦点的纵坐标)为b ,斜率为 k ,则直线方程: y = kx + b ;特别地,斜率存在且经过坐标原点的直线方程为: y = kx注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
3.两点式:若已知直线经过 ( x , y ) 和 ( x , y ) 两点,且( x ≠ x , y ≠ y 则直线的方程:11 2 2 1 2 1 2y - y 1 =y - y 21x - x1 ;2 1注意:①不能表示与 x 轴和 y 轴垂直的直线;②当两点式方程写成如下形式 ( x 2 - x 1 )( y - y 1 ) - ( y 2 - y 1 )( x - x 1 ) = 0 时,方程可以适应在于任何一条直线。
高中数学解析几何知识点总结直线:倾斜角与斜率:定义:直线与x轴正向所成的角称为直线的倾斜角,其正切值即为直线的斜率。
范围:倾斜角的范围为0°到180°。
特殊情况:当直线垂直于x轴时,斜率不存在。
直线方程:点斜式:已知直线上一点P(x0,y0)及直线的斜率k,则直线方程为y-y0=k(x-x0)。
注意,当斜率不存在时,此形式不适用。
斜截式:已知直线在y 轴上的截距b和斜率k,则直线方程为y=kx+b。
圆:圆的标准方程:描述圆的基本形式。
圆心与半径:定义圆的中心和大小。
切线、弧长、扇形、弓形:描述圆上或圆周围的特定部分。
二次曲线:椭圆:定义、标准方程、焦点、准线等性质。
双曲线:定义、标准方程、焦点、准线等性质。
抛物线:定义、标准方程、焦点、准线等性质。
向量:向量的运算:包括向量的加减、数量积、向量积等。
向量的性质:如向量的模、方向余弦等。
向量的几何应用:平面向量:涉及平面上点的坐标表示、点和点之间的距离、线段的中点、向量共线与垂直、三角形的重心、内心、外心、垂心等概念。
空间向量:涉及空间向量的坐标表示、点和点之间的距离、平面的方程、直线与平面的位置关系、平面与平面的位置关系、球与球的位置关系等概念。
空间中的直线与平面:直线的参数方程和对称方程:描述直线在三维空间中的位置和方向。
平面的一般式和截距式方程:描述平面在三维空间中的位置和方向。
以上仅为高中数学解析几何部分的主要知识点概述,具体内容可能因教材版本和学校教学计划而有所差异。
在实际学习过程中,还需结合具体教材和课堂讲解来深入理解各个知识点。
解析几何知识点一、基本内容(一)直线的方程1、直线的方程确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围.2、两条直线的位置关系两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠外注意到角公式与夹角公式的区别.(2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断.(二)圆的方程(1)圆的方程1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化.2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标(,)22D E --,半径。
3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x r =条件时,能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切.4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ),1PA PB k k =-求出圆方程(x-x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式(三)曲线与方程(1)求曲线方程的五个步骤:(1)建立适当的直角坐标系,用(x ,y )表示曲线上任意一点M 的坐标;建标(2)写出适合条件P 的点M 的集合P ={M |P (M )}; 设点(3)用坐标表示条件P (M ),列出方程f (x ,y )=0 列式(4)化方程f (x ,y )=0为最简方程 化简(5)证明以化简后的方程的解为坐标的点都是这条曲线上的点.除个别情况外,化简过程都是同解变形过程,步骤(5)可以不写,也可以省略步骤(2),直接列出曲线方程.(2)求曲线方程主要有四种方法:(1)条件直译法:如果点运动的规律就是一些几何量的等量关系,这些条件简单、明确,易于表达,我们可以把这些关系直译成含“x ,y ”(或ρ,θ)的等式,我们称此为“直译法”.(2)代入法(或利用相关点法):有时动点所满足的几何条件不易求出,但它随另一动点的运动而运动,称之为相关点.如果相关点满足的条件简明、明确,就可以用动点坐标把相关的点的坐标表示出来,再用条件直译法把相关点的轨迹表示出来,就得到原动点的轨迹.(3)几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律.(4)参数法:有时很难直接找出动点的横纵坐标之间关系.如果借助中间参量(参数),使x,y之间的关系建立起联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程.(四)圆锥曲线(1)椭圆(1)椭圆的定义平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.这里应特别注意常数大于|F1F2|因为,当平面内的动点与定点F1,F2的距离之和等于|F1F2|时,其动点轨迹就是线段F1F2;当平面内的动点与定点F1,F2的距离之和小于|F1F2|时,其轨迹不存在.(2)椭圆的标准方程之所以称它为标准方程,是因为它的形式最简单,这与利用对称性建立直角坐标系有关.同时,还应注意理解下列几点,1)标准方程中的两个参数a和b,确定了椭圆的形状和大小,是椭圆的定形条件.2)焦点F1,F2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型.也就是说,知道了焦点位置,其标准方程只有一种形式,不知道焦点位置,其标准方程具有两种类型.3)任何一个椭圆,只需选择适当的坐标系,其方程均可以写成标准形式,当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式.1)范围:焦点在x轴时,椭圆位于直线x=±a和y=±b所围成的矩形里.2)对称性:椭圆关于x轴,y轴和原点都是对称的,这时坐标轴为椭圆的对称轴,原点是椭圆的对称中心.椭圆的对称中心叫做椭圆中心.3)顶点:椭圆与对称轴的交点为椭圆的顶点A1(-a,0)A2(a,0)B1(0,b)B2(0,-b)线段A1A2,B1B2分别叫做椭圆的长轴,短轴,长分别为2a,2b.<1.e越接近于1,则椭圆越扁,反之,e越接近于0,椭圆越接近于圆.5)焦半径:椭圆上任一点到焦点的距离为焦半径.如图所示,当焦点在x轴上时,任一点到左焦点的焦半径为r1=a+ex0.6)|A1F1|=a-c|A1F1|=a+c10)椭圆的第二定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(e<1=的点的轨迹.。
高中数学解析几何知识点总结解析几何是数学中的一个重要分支,它是几何和代数的结合,通过代数方法研究几何问题。
在高中数学学习中,解析几何是一个重要的知识点,它涉及到直线、圆、曲线等图形的性质和相关定理。
下面将对高中数学解析几何的知识点进行总结。
一、直线的方程。
1.点斜式方程。
点斜式方程是解析几何中直线的一种常见方程形式,它的形式为y-y₁=k(x-x₁),其中(x₁,y₁)为直线上的一点,k为直线的斜率。
利用点斜式方程,可以方便地确定直线的位置和性质。
2.一般式方程。
一般式方程是直线的另一种常见方程形式,它的形式为Ax+By+C=0,其中A、B、C为常数且A和B不同时为0。
一般式方程可以直接得到直线的斜率和截距,方便进行直线的分析和运算。
二、圆的方程。
1.标准方程。
圆的标准方程是(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。
通过标准方程,可以直接得到圆的圆心和半径,方便进行圆的性质和位置分析。
2.一般方程。
圆的一般方程是x²+y²+Dx+Ey+F=0,其中D、E、F为常数。
一般方程可以通过配方和化简得到圆的标准方程,也可以直接得到圆的圆心坐标和半径长度。
三、曲线的方程。
1.抛物线的方程。
抛物线的一般方程为y=ax²+bx+c,其中a、b、c为常数且a≠0。
抛物线是解析几何中的重要曲线,通过抛物线的方程可以确定抛物线的开口方向、顶点坐标等重要性质。
2.椭圆的方程。
椭圆的一般方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆的中心坐标,a、b分别为椭圆在x轴和y轴上的半轴长度。
椭圆是解析几何中的另一种重要曲线,通过椭圆的方程可以确定椭圆的中心、长短轴长度等重要性质。
综上所述,高中数学解析几何知识点总结包括直线的方程、圆的方程和曲线的方程。
通过对这些知识点的学习和掌握,可以帮助学生更好地理解和运用解析几何知识,提高数学解题能力。
解析几何知识点
一、基本内容
(一)直线的方程
1、直线的方程
确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围.
2、两条直线的位置关系
两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠
外注意到角公式与夹角公式的区别.
(2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断.
(二)圆的方程
(1)圆的方程
1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化.
2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标(,)22
D E
--,半径。
3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能
使圆心在y 轴上;满足
b r =时,能使圆与x r =条件时,能使圆与x -y =0相切;
满足|a |=|b |=r 条件时,圆与两坐标轴相切.
4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x
-x 1)(x -x 2)+(y -y 1)(y -y 2)=0
(2) 直线与圆的位置关系
①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式
(三)曲线与方程
(1)求曲线方程的五个步骤:
(1)建立适当的直角坐标系,用(x ,y )表示曲线上任意一点M 的坐标;建标 (2)写出适合条件P 的点M 的集合P ={M |P (M )}; 设点 (3)用坐标表示条件P (M ),列出方程f (x ,y )=0 列式 (4)化方程f (x ,y )=0为最简方程 化简 (5)证明以化简后的方程的解为坐标的点都是这条曲线上的点.
除个别情况外,化简过程都是同解变形过程,步骤(5)可以不写,也可以省略步骤(2),直接列出曲线方程.
(2)求曲线方程主要有四种方法:
(1)条件直译法:如果点运动的规律就是一些几何量的等量关系,这些条件简单、明确,易于表达,我们可以把这些关系直译成含“x ,y ”(或ρ,θ)的等式,我们称此为“直译法”. (2)代入法(或利用相关点法):有时动点所满足的几何条件不易求出,但它随另一动点的运动而运动,称之为相关点.如果相关点满足的条件简明、明确,就可以用动点坐标把相关的点的坐标表示出来,再用条件直译法把相关点的轨迹表示出来,就得到原动点的轨迹.
(3)几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律.
(4)参数法:有时很难直接找出动点的横纵坐标之间关系.如果借助中间参量(参数),使x,y之间的关系建立起联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程.(四)圆锥曲线
(1)椭圆
(1)椭圆的定义
平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.
这里应特别注意常数大于|F1F2|因为,当平面内的动点与定点F1,F2的距离之和等于|F1F2|时,其动点轨迹就是线段F1F2;当平面内的动点与定点F1,F2的距离之和小于|F1F2|时,其轨迹不存在.
(2)椭圆的标准方程
之所以称它为标准方程,是因为它的形式最简单,这与利用对称性建立直角坐标系有关.同时,还应注意理解下列几点,
1)标准方程中的两个参数a和b,确定了椭圆的形状和大小,是椭圆的定形条件.
2)焦点F1,F2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型.也就是说,知道了焦点位置,其标准方程只有一种形式,不知道焦点位置,其标准方程具有两种类型.
3)任何一个椭圆,只需选择适当的坐标系,其方程均可以写成标准形式,当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式.
1)范围:焦点在x轴时,椭圆位于直线x=±a和y=±b所围成的矩形里.
2)对称性:椭圆关于x轴,y轴和原点都是对称的,这时坐标轴为椭圆的对称轴,原点是椭圆的对称中心.椭圆的对称中心叫做椭圆中心.
3)顶点:椭圆与对称轴的交点为椭圆的顶点A1(-a,0)A2(a,0)B1(0,b)B2(0,-b)线段A1A2,B1B2分别叫做椭圆的长轴,短轴,长分别为2a,2b.
<1.e越接近于1,则椭圆越扁,反之,e越接近于0,椭圆越接近于圆.
5)焦半径:椭圆上任一点到焦点的距离为焦半径.
如图所示,当焦点在x轴上时,任一点到左焦点的焦半径为r1=a+ex0.
6)|A1F1|=a-c|A1F1|=a+c
10)椭圆的第二定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(e<1=的点的轨迹.。