简易直流电子负载
- 格式:doc
- 大小:239.00 KB
- 文档页数:17
直流电子负载仪简介直流电子负载仪(DC Electronic Load)是一种用于模拟电子负载的仪器,在电源电路测试、充电器测试、锂电池测试等领域都有广泛的应用。
它可以通过调节负载电流、电压和功率等参数来模拟各种实际负载条件,以验证电源电路的性能。
原理直流电子负载仪的基本原理是利用MOSFET(金属氧化物半导体场效应晶体管)来控制电路的电流、电压和功率等参数。
在负载电路中,电子负载仪相当于一个可编程、可调节的电阻负载,它可以帮助测试人员模拟各种实际负载条件。
特点直流电子负载仪具有以下特点:1.高精度:直流电子负载仪的电流精度一般可以达到0.01%或更高,电压精度可以达到0.1%或更高;2.大功率:直流电子负载仪的功率一般可以达到几千瓦甚至数十千瓦;3.多种负载模式:可以模拟恒流、恒压、恒功率、恒阻等多种负载模式;4.可编程、可调节:可以通过编程方式设置电流、电压、功率等参数,并可以动态调节;5.多种保护功能:具有过温、过流、过压、短路等多种保护功能,确保测试过程的安全和稳定。
应用直流电子负载仪在以下领域有着广泛的应用:1.电源电路测试:通过模拟实际负载条件,测试电源电路的性能,包括输出电压、电流、效率、峰值因数等;2.充电器测试:模拟各种充电条件,测试充电器的性能,包括充电电流、充电时间、电池状态等;3.电池测试:模拟各种放电条件,测试电池的性能,包括剩余容量、内阻、放电时间等;4.LED驱动器测试:测试LED驱动器的性能,包括输出电流、输出电压、效率、调光性能等;5.太阳能电池板测试:测试太阳能电池板的性能,包括输出电压、输出电流、效率等。
市场现状与展望目前,直流电子负载仪已成为电子测试领域中不可或缺的一部分。
尤其是随着新能源汽车、智能家居等产业的发展,对于电源电路测试的需求也越来越高,这为直流电子负载仪的市场提供了巨大的机会。
未来,随着科技的不断进步和市场的扩大,直流电子负载仪将会更加智能化、可靠性更高,同时也将会拥有更加丰富的功能和应用场景。
简易直流电子负载摘要:该设计以msp430 launchpad构成的最小系统为核心,由恒流电子负载模块、电压电流检测模块、人机交互等模块完成了简易直流电子负载系统。
采用高精度电流监控器ina282和16位高精度模数转换芯片ads1115构成电子负载电流、电压实时检测,并将检测到的电流信号与给定值比较调节恒流电子负载模块的pwm信号的占空比以实现恒流,并且将电压、电流检测数据进行处理得到被测稳压源的负载调整率。
测试结果表明该系统结构简单、高效、稳定。
关键词:开关电阻可调恒流负载数字控制中图分类号:tp368.1 文献标识码:a 文章编号:1007-3973(2013)008-115-031 系统方案1.1 具体指标如表11.2 恒流电子负载电路方案方案一:boost拓扑构成的恒流电子负载。
如图1所示,在特定的输入电压下,通过调节boost电路的pwm信号占空比可以使得输入电流发生改变,通过闭环控制可以达到恒定boost电路输入电流的目的。
这样,boost 电路充当了一个恒流负载。
该方案的优点是恒流负载的输入电流波形较好,对被测稳压源的影响较小;要求的输入电压可以做到很低,从而适应被测电源电压的范围很宽。
但缺点是开关管的电压电流应力较大,控制上不易稳定。
方案二:基于开关电阻的恒流电子负载。
如图2所示,开关s和电阻r构成开关电阻,特定直流电压vi加在开关管电阻上,调节pwm信号占空比可以调节电路的输入电流,通过闭环控制,可以实现输入电流的恒定,输入电流波形如图3。
该方案具有电路结构简单、控制方便、成本低廉、工作可靠等优点。
可以直接发出pwm低电平封锁开关管实现0输入电流的目的。
缺点是输入电压必须不低于某一特定的值才能正常运行和保证控制精度。
由于有先进的单片机、ad芯片、电流检测芯片等,通过电路参数的合理设计,可以将这些问题的影响降到最低。
综上,我们选方案二。
1.3控制方案对于开关电阻的控制可以采用模拟电路进行调制和控制,具有模拟控制的快速性、连续性等优点,但模拟电路的功能较单一,不便于实现课题要求的多功能化。
简易直流电子负载的设计直流电子负载是用来模拟电子设备在不同负载下的工作状态,进行性能评估、设计验证和电源测试等应用。
本篇文章将介绍如何设计一款简易直流电子负载。
1. 功能需求根据负载的应用场景和测试要求,确定需要支持哪些电压和电流范围,以及是否需要具备恒压模式或恒流模式切换等功能。
2. 电路部分直流电子负载的核心电路包括电源电路和负载电路。
电源电路提供给负载电路所需的电压和电流,负载电路则通过调整电阻来模拟负载。
(1) 电源电路电源电路应有较好的稳压和保护功能,以提供可靠的工作环境。
在设计时可以考虑采用集成电路LM317的恒压电源,它拥有很好的输出稳定性,能够稳定地提供实验所需的直流电源。
具体参考图一图一 LM317电源电路(2) 负载电路负载电路是根据不同的测试要求设计的。
通常,它由电阻和开关组成。
通过控制开关状态,可以改变电流流过的电阻值,从而模拟不同的负载情况。
具体参考图二图二负载电路在此电路中,当开关S1和S2同时闭合,负载电路中的电阻为R1+R2,此时电流为I=V/R,R为R1+R2。
当仅闭合S2,电路中的电阻为R1,此时电流为I=V/R1。
3. 控制部分控制部分负责检测电路输入参数,控制负载电路中的开关状态,以实现恒压或恒流模式。
通过引脚连接信号发生器和AD转换器,可以实现对测试信号的自动控制和测量。
4. PCB设计根据电路设计要求,制作 PCB 设计图并下单生产。
需要注意的是,在 PCB的布局设计时,不同信号的逻辑分开布局,尽量避免出现复杂的交叉干扰。
5. 其他需要注意的是,电路部分虽然简单,但是在设计和实现的过程中,需要充分考虑设备的安全性和可靠性,尽量避免出现安全事故。
总之,设计简易直流电子负载需要考虑功能需求、电路部分、控制部分、PCB设计等各个环节。
只有当以上各个方面都考虑周全,才能制作出高质量的直流电子负载,以满足各种测试需求。
2013全国大学生电子设计竞赛直流电子负载系统(高职高专组F)摘要本设计以STC89C52单片机为核心控制系统,采用了DA输出控制电路、AD电压电流检测电路、显示电路、键盘电路。
通过运放、负反馈控制环路来控制MOSFET的栅极电压使其内阻变化,从而实现恒流工作模式。
MOS管既作为电流的控制器件同时也作为被测电源的负载,控制部分采用STC89C52单片机来完成,设定值通过键盘输入送往单片机,再通过DA输出电路产生基准电压送往PI控制器与实际电压相比较,用A/D转换器把电路中的电压电流的模拟信号转换为数字信号,通过单片机来控制转化,然后用液晶显示显示出即时的电压电流。
关键词:电子负载;单片机;恒流模式;A/D转换;D/A转换Abstract: This design with the core of STC89C52 MCU , using Da output control circuit, ad voltage and current detection circuit, display, keyboard, ing negative feedback control loop amplifier, to control grid voltage of the MOS to its internal resistance change, resulting in constant current mode of operation.MOS both as a current control devices at the same time as the measured power load control part using stc89c52 single - chip computer to complete the set value input from the keyboard to the SCM, and then by DA output circuit voltage sent to the PI controller with the actual voltage compared.In A / D converter circuit for voltage and current analog signals into digital signals by single - chip Microcomputer to control the conversion, and then use the LCD display shows the instantaneous voltage and current.Key word :electronic load ; MCU; constant current mode ; Ad conversion ; DA conversion目录1.系统方案设计 (4)1.1系统总体方案设计论证 (5)1.2系统具体设计方案............................................................................................................................................................................................................................ .. (6)1.2.1控制单元模块论证与选择................................................................................................................................................... . (6)1.2.2显示模块论证与选择 (6)1.2.3键盘模块论证与选择 (6)1.2.4 D\A转换模块的论证与选择 (7)2.系统理论分析与计算 (7)2.1电子负载及恒流电路的分析 (7)2.2电压、电流的测量及精度分析 (8)2.3电源负载调整率的测试原理 (8)3.电路与程序设计 (8)3.1电电路设计 (8)3.1.1控制单元模块设计 (8)3.1.2恒流模块设计 (9)3.1.3 键盘模块设计 (10)3.1.4 A/D与D/A转换模块设计 (11)3.1.5 电源模块设计 (12)3.2程序设计 (13)4.系统测试 (13)4.1测试方案及测试条件 (13)4.1.1测试方案 (13)4.1.2测试条件 (14)4.2测试数据 (14)4.3测试结果分析 (15)5.结论 (15)参考文献 (16)1 系统方案设计电子负载系统由软、硬件共同组成。
(保密区域)第七届电工电子创新设计大赛决赛《简易直流电子负载》测试报告编号:基于MSP430F149单片机的恒流电子负载系统设计摘要: 设计一台恒流(CC)工作模式的简易直流电子负载。
以MSP430F149单片机为核心。
通过AD采集电流检测模块测量到的电流信息, 算法处理后, 利用D/A输出模块控制V/I转换电路从而实现恒流。
并且将电压、电流检测数据进行处理得到被测直流稳压源的负载调整率。
系统在工作中, 无论电子负载两端电压是否变化, 流过电子负载的电流为一个设定的恒定值。
关键词: 恒流;MSP430F149;V/I转换电路;数字控制Design of A DC Constant Current Electronic Load SystemBased on MSP430F149Abstract:Th.repor.i.base.o.th.desig.o..simpl.D.electroni.loa.o.constan.current .Th.syste.realiz.th.C.workin.mod.b.utilizin.th.MSP430F14.a.th.core,A.samplin.a n.detectiv.modul.t.measur.th.current,D/.outpu.modul.t.contro.th.V/.transfor.ci rcui.afte.bein.processe.b.algorithm.Besides,th.loa.regulatio.ca.b.automaticall .measure.b.processin.th.voltag.an.curren.samplin.data.Whe.th.syste.i.working,n .matte.ho.th.voltag.ove.th.loa.change,th.curren.throug.i.i..constan.value.Key Words:CC;MSP430F149;V/I transform circuit;Digital Control1.概述及方案选择在电路中,负载是用来消耗电源输出能量的装置。
直流“电子负载”设计直流电子负载是一种能够模拟真实工作情况并对电流进行调节的设备。
它可以用于测试和验证直流电源、电池、太阳能电池和风能电池等直流电源的性能。
本文将介绍直流电子负载的设计原理、主要特点以及在各个领域的应用。
一、直流电子负载的设计原理直流电子负载的设计原理主要基于非线性电阻网络和控制电路。
通过控制电阻网络的状态,可以实现对电流的调节。
整个直流电子负载主要包括两个部分:控制电路部分和非线性电阻网络部分。
控制电路主要负责接收控制信号,并对非线性电阻网络进行控制。
控制信号可以来自于外部的操作控制台或者计算机控制界面。
在得到控制信号后,控制电路会根据信号的大小和方向调整非线性电阻网络的状态,从而实现对电流的调节。
非线性电阻网络由多个管脚连接起来,形成一个复杂的电阻网络。
通过调整各个管脚之间的电阻状态,可以实现不同的电流调节要求。
非线性电阻网络的设计需要考虑到电流的范围、精度和稳定性等因素,以确保直流电子负载的性能达到设计要求。
二、直流电子负载的主要特点1.高精度控制:直流电子负载能够对电流进行精确控制,可以满足各种电流调节要求,尤其适用于对电源和电池性能的测试和验证。
2.大电流容量:直流电子负载具有较大的电流容量,可以承受较高的电流负载,同时保持稳定的输出。
3.快速响应:直流电子负载能够迅速响应控制信号,并在极短的时间内实现电流的调节,以满足实时的工作需求。
4.多功能应用:直流电子负载可以根据需要进行不同的电流调节模式,如恒流、恒压、恒功率等模式,适用于不同的测试和验证场景。
5.保护功能:直流电子负载具有多种保护功能,如过流保护、过压保护、过功率保护等,可以有效保护被测试设备以及负载本身的安全性。
三、直流电子负载的应用领域1.电源测试:直流电子负载可以模拟负载情况,测试电源的性能指标,如输出电流、输出电压、稳定性等。
2.电池测试:直流电子负载可以模拟不同工作条件下对电池进行测试,如充放电测试、容量测试、循环寿命测试等。
9.2 简易直流电子负载电子负载仪是电源制作和电池性能测试必不可少的一种仪器。
它是由电子器件组成的模拟负载,用来检测各类电源带负荷特性和化学电源输出性能的仪器。
在恒电流测试时加以同步计时,就可精确测出电池容量值。
9.2.1 功能要求设计和制作一台恒流(CC)工作模式的简易直流电子负载。
技术要求:电流设置范围为100mA~1000mA ,设置分辨率为10mA,设置精度为±1%。
当电子负载两端电压变化10V时,要求输出电流变化的绝对值小于变化前电流值的1%。
具有过压保护功能,过压阈值电压为18V±0.2V。
能实时测量并数字显示电子负载两端的电压,电压测量精度为±(0.02%+0.02%FS ),分辨力为1mV。
能实时测量并数字显示流过电子负载的电流,电流测量精度为±(0.1%+0.1%FS),分辨力为1mA。
具有直流稳压电源负载调整率自动测量功能,测量范围为0.1%~19.9%,测量精度为±1%。
为方便,本题要求被测直流稳压电源的输出电压在10V以内。
9.2.2总体方案论证系统的关键在设计恒流源电路和高精度A/D转换电路。
1.恒流源电路方案【方案一】恒流源可以通过一个经典的数控稳压源来实现。
在输出回路串联一个电流取样电阻,通过实测电流与给定电流的比较,运用恰当的控制算法,调整输出电压使实测与给定两个电流相等,就可以达到恒流的目的。
此种方案最大的问题是:不论是输入电源电压变化,还是负载变化,都要经过一段时间才能使电流稳定。
【方案二】最好的方案是一个硬件的闭环稳流电路,稳流的过程几乎不需要时间。
图9.2.1就是一个典型电路。
根据集成运放虚短的概念可得:I L ≈ V i / RR为电流取样电阻,由于R固定,因此I L完全由V i决定,只要V i不变,则I L不变,这就是恒流原理。
对某一特定的V i下的I L,无论是V CC或是R L变化,利用负反馈的自动调节作用,都能维持I L的稳定。
直流电子负载器的基本原理直流电子负载器(DC Electronic Load)是一种能够模拟真实负载电流特性并对电子设备进行负载测试的仪器。
其主要原理是通过模拟负载电流和电压来对被测试设备进行负载测试,并能够实时测量参数和反馈给被测试设备。
1.恒流源:直流电子负载器的主要功能之一是模拟不同负载条件下的恒流特性。
恒流源通常由高精度的运放和电阻组成。
在测试中,恒流源通过调节电阻值以控制负载电流的大小。
具体来说,运放根据输入的电压信号调整输出电流,而反馈电路则测量输出电流并将其与设定的目标电流进行比较,从而实现闭环控制。
通过这种方式,负载器可以在不同负载电流下模拟真实工作条件。
2.电压源:直流电子负载器的另一个重要功能是模拟负载电压。
电压源通常由运放和电阻组成。
当被测试的设备需要反馈电压信号时,电压源会提供一个与设备需求相匹配的电压值。
恒流源和电压源可以独立或同时操作,以模拟不同的工作条件。
3.测量电路:直流电子负载器配备了高精度的测量电路,用于测量被测试设备的电流、电压、功率等参数。
一般来说,测量电路包括模拟前端和数字信号处理部分。
模拟前端负责将被测试设备的电流和电压信号转换为数字信号,并进行放大和滤波。
数字信号处理部分负责采集和处理模拟前端输出的数字信号,通过数学算法计算电流、电压、功率等参数,并将其显示在负载器的屏幕上。
4.控制电路:直流电子负载器还配备了一套控制电路,用于设定负载条件、实时监测和调整负载参数。
这个控制电路通常由微处理器、控制芯片和外部接口等组成。
通过控制电路,用户可以设定负载器的工作模式、目标电流和目标电压,并可以实时监测被测试设备的电流、电压和功率。
负载器还可以根据设定的负载条件和安全措施进行自动保护,以避免设备被过载或过热。
综上所述,直流电子负载器模拟恒流源和电压源的特性,通过测量和控制电路来实现对被测试设备的负载测试。
其主要原理是通过恒流源和电压源模拟真实负载条件,并通过测量电路测量被测试设备的电流、电压和功率等参数。
2012年江苏省大学生电子设计竞赛(TI杯)简易直流电子负载(C题)设计报告二O一二年八月八日摘要:本系统设计的直流电子负载,以TI的MSP430F169单片机为主控芯片,包括控制器、矩阵键盘、液晶显示、恒流电路、辅助电源电路、电压电流检测电路。
系统以比例—积分调节作为恒流控制核心,电流采样采用TI提供的ADS1115和INA282芯片,辅助电源采用TI提供的TPS54331和LM2576电源芯片。
以三极管TIP42C为功率器件,通过控制其基极电流达到控制负载电流的目的。
本系统还扩展了简单的恒阻、恒压、动态带载以及描绘U-I特性曲线的功能。
本报告着重阐述了系统框架、工作原理、软硬件设计,并给出了系统各项数据测试表。
测试结果表明,该系统具有稳定性强、调节速度快的特点,很好地达到了题目要求的性能指标。
关键词:直流电子负载恒流恒阻恒压动态带载 U-I特性曲线Abstract:The design of the system DC electronic load involves the master chip--TI's MSP430F169 MCU controller, matrix keyboard, LCD, constant current circuit, the auxiliary power supply circuit, voltage and current detection circuit. System to proportional - integral adjustment as a constant current control core, proportional to speed up the adjustment speed, integral system without static error.The current sample provided by TI ADS1115 and INA282 chip. Auxiliary power is provided by TI TPS54331 and the LM2576 power chip. Transistor TIP42C power devices controlled by controlling the base current to achieve the purpose of load current. The system also extends the simple constant resistance, constant voltage and simulate dynamic load. This report focuses on a systems framework, working principle, hardware and software design, and gives the system the data test sheet. The test results show that the system stability, adjust the speed and quickness, a good performance to the subject requirements.Key words:DC Electronic Load constant current constant resistance constant pressure Dynamic load U-I characteristic curve一、系统方案1.1赛题分析题目要求实现一个恒定电流工作模式的直流电子负载,并且电流值能够任意设定,同时还要求实时检测电压值和电流值,并且达到一定的精度,系统还要求能够实现检测直流稳压电源的负载调整率。
设计中利用PI调节使得负载电流恒定,利用MSP430F169控制器实现电流设定和功能切换,以TIP42C三极管为功率器件,通过控制其基极电流来控制负载电流。
电压采样采用简易的电阻分压电路,电流采样采用TI提供的高精度、宽共模范围的电流采样芯片INA282,通过单片机检测空载和满载时的两个电压值可以顺利计算出直流稳压电源的负载调整率。
1.2核心技术系统以PNP型三极管TIP42C为功率器件,用来消耗直流稳压电源提供的功率;以比例—积分调节来调节电路电流,一是使得电路电流恒定、二是使得电路电流跟随给定的变化;以MSP430F169为主控器,来实现电压电流采样、电流值设定以及工作模式选择。
1.3系统结构与功能图1 系统结构示意图系统以TIP42C为功率器件,以PI调节为恒流控制核心,以MSP430F169为主控制器,可以实现键盘设定、液晶显示、DA给定以及电压电流的采样。
1.3.1恒流模式当设定一个电流值之后,单片机通过内部计算给出相应的DA值,此时PI 开始起调节作用,最后实现给定端与输入端达到一定,从而实现输出电流跟随给定的变化。
(Rw为0欧姆)1.3.2恒阻模式在恒流模式基础之上进行简单的扩展之后,可以实现恒阻模式。
当设定负载等效的电阻值之后,单片机根据检测到的输入端电压计算出应该给定的电流值,从而实现恒阻模式。
(Rw为0欧姆)1.3.3恒压模式恒压模式采用比较法,当设定电压值之后,单片机比较设定值与检测值的大小,当实际值比设定值小时,通过减小DA值来减小电路电流,从而减小电阻Rw 上的压降来增加电子负载上的电压,从而实现恒压控制。
(Rw不为0)1.3.4动态带载系统可以简单地模拟一个动态负载,实现负载电流按照梯形图样变化,动态负载的相关参数可以简单设置,同时单片机还可以通过电流采样芯片将电流波形在12864液晶上画出来。
1.3.5 U-I特性曲线描绘在测量负载调整率时,系统还可以显示稳压电源输出电压与输出电流的关系。
当电流在0到1A变化时,DA每改变一次,测量一次稳压电源输出电压,并将此曲线在12864液晶上实时描绘出来。
1.4实现方法与方案选择1.4.1主控制器方案一:使用89C51单片机,由于51单片机编程较简单,通俗易懂,但是要想达到本题要求需要外加DA芯片。
方案二:使用MSP430F169单片机, MSP430 单片机是 16 位的单片机,采用了精简指令集( RISC )结构,只有简洁的 27 条指令,功能强,运行的速度快。
同时自带DA,因此可以简化外围电路。
同时430功耗低,符合时代要求。
综合可虑我们选择方案二。
1.4.2 AD采样电路方案一:采样MSP430F169单片机自带的12位AD采样功能,根据计算难以达到题目要求的精度。
方案二:采用TI公司提供的16位高精度AD采样芯片ADS1115,此芯片的精度明显高于单片机自带的AD采样功能。
两者相比方案二能够更好地满足题目的要求。
1.4.3恒流主电路利用TIP42C三极管作为电路的功率器件,电路的功率基本上耗散在功率器件上,恒流理论上可以通过软件实现,也可以通过硬件实现。
方案一:软件实现恒流,单片机实时监测主回路电流,然后与基准值比较,根据比较结果改变DA的给定值。
软件实现较灵活,调节时间较长,精度高。
方案二:硬件实现恒流,通过经典的比例—积分调节来实现恒流控制,这样在软件方面可以简化很多,同时PI调节能够迅速调节主回路电流,使得主回路电流跟随给定变化。
方案三:软件与硬件共同实现恒流。
PI调节实现电流快速跟定,软件实现微调,使精度更高。
综合考虑响应速度和精度,选择方案三。
1.4.4负载电流采样方案一:采用康铜丝采样电流,普通运放构成差分放大电路,将康铜丝上的压降进行一定的比例放大送进AD,此方案简单,但康铜丝具有一定的温漂,普通运放的精度较低。
方案二:采用0.01欧姆的精密电流采样电阻,精密电流采样电阻的精度可以达到1%。
采用TI公司提供的电流监视芯片INA282,此芯片的共模抑制比为140dB,±1.4%的精度误差。
为了更好地达到题目要求的精度,我们选择方案二。
二、分析计算2.1 AD的计算AD采用数字滤波的方法,一方面是多次测量求平均,减小随机误差,另一方面,对数据进行排序后去除最大值与最小值,减小毛刺对测量的影响,两种方法共同作用,使AD测量出的数据更加稳定与准确。
2.2 DA的计算本题要求DA数据与电流大小实现一一对应的关系,及输入一个电流值即可映射出对应的DA数据。
由于误差的存在,DA数据与电流值难以实现完全线性关系,所以程序中采用分段线性拟合的方法,对不同值段的电流分别拟合其映射关系,使DA数据与电流对应的更加准确。
对于运用此种方法之后还存在的小误差,我们在程序里加了一个微调,可以实现电流精确设定。
三、电路设计3.1电路机理3.1.1主电路原理图TIP42C为功率器件,INA282进行电流监视,运放实现电压放大和PI调节,压为15±0.03V3.2.4能实时测量并数字显示电子负载两端的电压,电压测量精度为±0.02%,分辨力为0.1mV。
3.2.5能实时测量并数字显示流过电子负载的电流,电流测量精度为±0.2%,分辨力为0.1mA。
3.2.6具有直流稳压电源负载调整率自动测量功能,测量范围为0.01%~80%,测量精度为±1%。
3.2.7能简单地工作于恒阻模式、恒压、动态带载模式以及简单地描绘U-I 特性曲线。
四、程序设计4.1软件功能结构图5 总体框架图4.2主要模块实现流程图6 电流设定图7 电流测量图8 负载调整率测量图9 电流测量微调图10 恒阻模块图11 恒压模块图12 模拟动态负载模块五、测试方案5.1电流电压校准方法5.1.1电压校准方法我们通过改变电源箱的输入电压,测量多组数据来进行电压采样校准,为了使测量能够达到一定的精度,我们使用六位半的数字万用表,将电表实测电压值与AD采样寄存器里面的数字量进行线性拟合,得到一条直线,根据这条直线在单片机里进行一定的运算,从而将实际电压值在电表里显示出来。
5.1.2电流校准方法系统要校准两组电流值,设定电流和实测电流,实际电流与实测电流。
校准实际电流与实测电流,我们运用了与电压校准一样的方法。
在校准设定电流与实测电流时,我们将DA给定的数字量与实测电流数据一一记录下来,分析数据之后,发现线性度不是很好,为了达到题目要求达到的精度,我们采取了分段线性化,将整体数据分成十段。
为了使精度更高,我们在程序里面进行了一个小的补偿,这样设定电流值和实测电流值之间的误差可以小到0.2mA。
5.2测试仪器直流稳压电源YB1731C5A示波器TDS210六位半数字万用表TH1961四位半数字万用表VC9806+三位半数字万用表VC890D六、测试结果6.1数据测量与分析6.1.1结果表明在100mA到1000mA之内可以实现电流任意设定,分辨力为1mA,精度小于±1%。