三角形折叠问题中的角度运算
- 格式:doc
- 大小:89.50 KB
- 文档页数:2
专题7:折叠问题中的角度运算1如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′=2如图将六边形ABCDEF沿着直线GH折叠,使点A、B落在六边形CDEFGH的内部,则∠1+∠2=3如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=4已知△ABC是一张三角形的纸片.(1)如图①,沿DE折叠,使点A落在边AC上点A′的位置,∠DA′E与∠1的之间存在怎样的数量关系?为什么?(2)如图②所示,沿DE折叠,使点A落在四边形BCED的内部点A′的位置,∠A、∠1与∠2之间存在怎样的数量关系?为什么?(3)如图③,沿DE折叠,使点A落在四边形BCED的外部点A′的位置,∠A、∠1与∠2之间存在怎样的数量关系?为什么?5 65已知,如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的内部时,则∠A与∠1+∠2之间有一种数量关系:2∠A=∠1+∠2始终保持不变,为什么?.6如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)设∠AED的度数为x,∠ADE的度数为y,那么∠1、∠2的度数分别是多少?(用含有x或y的代数式表示)(2)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.折一折,想一想,如图所示,在△ABC中,将纸片一角折叠,使点C落在△ABC内一点C′上,若∠1=40°,∠2=30°(1)求∠C的度数;(2)试通过第(1)问,直接写出∠1、∠2、∠C三者之间的关系.如图(1),△ABC是一个三角形的纸片,点D、E分别是△ABC边上的两点;研究(1):若沿直线DE折叠,则∠BDA′与∠A的关系是∠BDA′=2∠A;研究(2):若折成图2的形状,猜想∠BDA′,∠CEA′和∠A关系,并说明理由;研究(3):若折成图3的形状,猜想∠BDA′,∠CEA′和∠A的关系,并说明理由.图1、图2、7如图①,把△ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置,通过计算我们知道:2∠A=∠1+∠2.请你继续探索:(1)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,如图②,此时∠A与∠1、∠2之间存在什么样的关系?为什么?请说明理由.(2)如果把四边形ABCD沿EF折叠,使点A、D落在四边形BCFE的内部A′、D′的位置,如图③,你能求出∠A、∠D、∠1与∠2之间的关系吗?(直接写出关系式即可)8三角形纸片ABC中,∠A=55°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内(如图),则∠1+∠2的度数为度.9如图,已知四边形ABCD,∠C=72°,∠D=81°.沿EF折叠四边形,使点A、B分别落在四边形内部的点A′、B′处,求∠1+∠2的大小.10、如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()11、将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E′、D′,已知∠AFC=76°,则∠CFD′等于12如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于13如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE;若∠B=50°,则∠BDF的度数为1 1如图,把一张长方形纸片ABCD,沿EF折叠后,ED′与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,则∠1等于14将一条两边沿互相平行的纸带按如图折叠.设∠1=x°,则∠α的度数为()15将长方形ABCD沿折痕EF折叠,使CD落在GH的位置,若∠FGH=55°,则∠HEF=()16如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=()17如图,D、E分别为△ABC的边AB、AC上的点,DE∥BC,将△ABC沿线段DE折叠,使点A落在BC上的点F处,若∠B=55°,则∠BDF的度数为()18如图所示,将一张长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置上,ED′的延长线与BC的交点为G.若∠EFG=80°,则∠BFC′的度数为()19如图a是长方形纸带,∠DEF=24°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数()20如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E 处,折痕为BD,则△AED的周长为()21如图,将长方形ABCD沿对角线BD折叠,使点C恰好落在如图C′的位置,若∠DBC=15°,则∠ABC′=()22一张长方形纸条折成如图的形状,如果∠1=130°,∠2=()23如图:将一张长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠EFG=55°,则∠1=()24如图,已知长方形ABCD,我们按如下步骤操作可以得到一个特定角:(1)以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF交AD于F,则∠AEF的度数25如图,将纸片△ABC沿着DE折叠压平,且∠1+∠2=72°,则∠A=()26如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()27如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E 处,折痕为BD,则△AED的周长为()28一个宽度相等纸条,按如图所示的方式折叠一下,已知∠3=120°,则∠1的度数为()29如图,把一张长方形纸条折叠后,若∠AOB′=70°,则∠OGC的度数为()30如图,∠A=60°,∠B=70°,将纸片的一角折叠,使点C落在△ABC内,若∠2=80°,则∠1的度数为()31如图(1)是长方形纸带,∠DEF=α,将纸带沿EF折叠成图(2),再沿BF折叠成图(3),则图(3)中的∠CFE 的度数是()32如图,生活中,将一个宽度相等的纸条按右图所示折叠一下,如果∠1=140°,那么∠2的度数为()33如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B =()34如图,一张长方形纸条沿AB折叠,如果∠1=124°,那么∠2的度数是()35如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=()36如图,一张三角形纸片△ABC,沿DE折叠使得顶点C落在边AB上,若DE∥AB,∠A=45°,则∠ADC的度数是()37如图所示,把一个三角形纸片ABC顶角向内折叠3次之后,3个顶点不重合,那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是()38如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为()39如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为()40如图,将五边形ABCDE沿AE对折到如图的位置,其中∠AEC=72°,则∠CED′=()41如图,在△ABC中,∠A=35°,在平面内沿直线DE将△ABC折叠后,量得∠BDA′=110°,那么∠CEA′的度数为()42如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()43如图,已知△ABC中,∠BAC=140°,现将△ABC进行折叠,使顶点B、C均与顶点A重合,求∠DAE的度数.。
初一数学第二学期名校优选小专题06 三角形折叠中的角度问题 【例题讲解】【原题再现】有这样一道题:如图1,将ABC ∆纸片沿DE 折叠,使点A 落在四边形BCDE 内点A '的位置.试探索A ∠与12∠+∠之间的数量关系,并说明理由.(1)小明提出一种正确的解题思路:连接AA ',则么1∠、2∠分别为AEA '∆、ADA '∆的外角,…… 请你按照小明的思路解决上述问题.(2)【变式探究】如图2,若将原题中“点A 落在四边形BCDE 内点A '的位置”变为“点A 落在四边形BCDE 外点A '的位置”,试猜想此时A ∠与1∠、2∠之间的数量关系,并说明理由.(3)【结论运用】将四边形纸片(90ABCD C ∠=︒,AB 与CD 不平行)沿EF 折叠成图3的形状,若1110∠=︒,240∠=︒,直接写出ABC ∠的度数.解:(1)图1中,结论:2∠BAC =∠1+∠2, 理由是:连接AA ′. ∵沿DE 折叠A 和A ′重合,∴∠DAE =∠DA ′E ,∠EA ′A =∠EAA ′,∠DA ′A =∠DAA ′, ∵∠1=∠EA ′A +∠EAA ′,∠2=∠DA ′A +∠DAA ′, ∴∠1+∠2=∠EA ′A +∠EAA ′+∠DA ′A +∠DAA ′=2∠BAC ; (2)如图2,结论:2∠A =∠1-∠2. 理由:设EA ′交AC 于J .∵∠1=∠EJA +∠A ,∠EJA =∠A ′+∠2, ∴∠1=∠A ′+∠A +∠2=2∠A +∠2, ∴2∠A =∠1-∠2; (2)如图,根据折叠知:∠AEF =∠A EF ',∠EFD =∠'EFD ,AEA'=∠AEF=180°-110°=70°,∵∠1=110°,∴∠2∴∠AEF=35°,∵∠2=40°,∴2∠EFD=180°+∠2=220°,∴∠EFD=110°,∴∠A+∠D=360°-(∠AEF+∠EFD)= 215°,∴∠B=360°-(∠A+∠D)-∠C = 55°.【综合演练】1.如图,在△ABC中,点D是BC上的点,将△ABD沿着AD翻折得到△AED,若∠B=∠BAE=50°,则∠CDE的度数是()A.25°B.30°C.35°D.40°2.如图,△ABC中∠A=40°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC 于点D,又将△BCD沿着BD翻折,点C恰好落在BE上的点G处,此时∠BDC=82°,则原三角形的∠B 的度数为()A.57°B.60°C.63°D.70°3.将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2的度数等于()A.10°B.15°C.20°D.25°4.如图,将三角形纸片ABC沿DE折叠,当点A落在四边形BCDE的外部时,测量得∠1=70°,∠2=152°,则∠A 为( )A .40°B .42°C .30°D .52°第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题(共0分)5.如图,三角形纸片ABC 中,70A ∠=︒,75B ∠=︒.将三角形纸片的一角折叠,使点C 落在ABC 内,那么12∠+∠=_____________︒.6.在△ABC 中,点E 、F 分别为边AB 、AC 上的点,把△ABC 沿EF 翻折,翻折后的图形如图所示.若1+2110∠∠=︒,则A ∠的度数为___________.7.如图,把一张长方形纸片ABCD 沿EF 折叠,∠1=55°,则∠2=________°.8.将△ABC 纸片沿DE 按如图的方式折叠.若∠C =50°,∠1=85°,则∠2等于______.三、解答题(共0分)9.如图,将ABC纸片沿DE折叠,使点A落在四边形BCDE内点'A的位置,∠+∠之间的数量关系,并说明理由.(1)探索A∠与12(2)如果点A落在四边形BCDE外点''A的位置,A∠与1∠之间的数量关系有何变化,请说明理由.∠、210.在我们苏科版义务教育教科书数学七下第42页曾经研究过双内角平分线的夹角和内外角平分线夹角问题.聪聪在研究完上面的问题后,对这类问题进行了深入的研究,他的研究过程如下:(1)【问题再现】如图1,在△ABC中,∠ABC、∠ACB的角平分线交于点P,若∠A=50°.则∠P=_______;(2)【问题推广】如图2,在△ABC中,∠BAC的角平分线与△ABC的外角∠CBM的角平分线交于点P,过点B作BH⊥AP 于点H,若∠ACB=80°,求∠PBH的度数.(3)如图3,在△ABC中,∠ABC、∠ACB的角平分线交于点P,将△ABC沿DE折叠使得点A与点P重合,若∠1+∠2=100°,则∠BPC=_______;(4)【拓展提升】在四边形BCDE中,EB∥CD,点F在直线ED上运动(点F不与E,D两点重合),连接BF,CF,∠EBF、∠DCF 的角平分线交于点Q ,若∠EBF =α,∠DCF =β,直接写出∠Q 和α,β之间的数量关系. 11.如图,将一张三角形纸片ABC 的一角折叠,使得点A 落在四边形BCDE 的外部A '的位置且A '与点C 在直线AB 的异侧,折痕为DE ,已知90C ∠=︒,30A ∠=︒.(1)求12∠-∠的度数;(2)若保持A DE '的一边与BC 平行,求ADE ∠的度数.12.将ABC 纸片的一角CAB ∠折叠,使点A 落在点P 的位置,折痕为DE . (1)如图1,点A 落在ABC 内的点P 的位置.①若//PE AC ,那么PD 与AB 有怎样的位置关系,请说明理由; ②如图2,1∠、2∠与A ∠之间有怎样的数量关系?并说明理由;③连接CP 、BP ,已知CP 、BP 恰好分别平分ACB ∠、ABC ∠(如图3),1∠、2∠与CPB ∠之间有怎样的数量关系,并说明理由;(2)如图4,点A 落在ABC 外的点P 的位置.连接CP 、BP ,如果CP 、BP 恰好分别平分ABC 的两个外角MCB ∠,NBC ∠,那么1∠、2∠与CPB ∠之间的数量关系是______.(请直接写出结果)13.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ; (2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ; (3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 .14.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交射线BC 于点F .(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)(1)如图①,当AE ⊥BC 时,求证:DE ∥AC . (2)若10C B ∠-∠=︒,∠BAD =x° . ①如图②,当DE ⊥BC 时,求x 的值;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由. 15.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) . ① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由. 16.如图1,将△ABC 纸片沿DE 折叠,使点C 落在四边形ABDE 内点C ’的位置, (1)①若00120,250∠=∠=,则C ∠= ; ②若042C ∠=,则12∠+∠= ;③探索C ∠ 、1∠与2∠之间的数量关系,并说明理由; (2)直接按照所得结论,填空:①如图中,将△ABC 纸片再沿FG 、MN 折叠,使点A 、B 分别落在△ABC 内点A ’、B ’的位置,则123456∠+∠+∠+∠+∠+∠= ;②如图中,将四边形ABCD 按照上面方式折叠,则128∠+∠++∠= ; ③若将n 边形123n A A A A 也按照上面方式折叠,则122n ∠+∠++∠= ;(3)如图,将△ABC 纸片沿DE 折叠,使点C 落在△ABC 边AC 上方点'C 的位置, 探索C ∠、1∠与2∠之间的数量关系,并说明理由.17.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动,连接AB, (1)如图,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线,①点A 、B 在运动的过程中,∠ACB 的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB 的大小.②如图,将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,记作点C′,则∠ABO = °;如图,将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,记作点C′′,则∠ABO = °.(2)如图,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在△AEF中,如果有一个角是另一个角的32倍,求∠ABO的度数.答案与解析【例题讲解】【原题再现】有这样一道题:如图1,将ABC ∆纸片沿DE 折叠,使点A 落在四边形BCDE 内点A '的位置.试探索A ∠与12∠+∠之间的数量关系,并说明理由.(1)小明提出一种正确的解题思路:连接AA ',则么1∠、2∠分别为AEA '∆、ADA '∆的外角,…… 请你按照小明的思路解决上述问题.(2)【变式探究】如图2,若将原题中“点A 落在四边形BCDE 内点A '的位置”变为“点A 落在四边形BCDE 外点A '的位置”,试猜想此时A ∠与1∠、2∠之间的数量关系,并说明理由.(3)【结论运用】将四边形纸片(90ABCD C ∠=︒,AB 与CD 不平行)沿EF 折叠成图3的形状,若1110∠=︒,240∠=︒,直接写出ABC ∠的度数.解:(1)图1中,结论:2∠BAC =∠1+∠2, 理由是:连接AA ′. ∵沿DE 折叠A 和A ′重合,∴∠DAE =∠DA ′E ,∠EA ′A =∠EAA ′,∠DA ′A =∠DAA ′, ∵∠1=∠EA ′A +∠EAA ′,∠2=∠DA ′A +∠DAA ′, ∴∠1+∠2=∠EA ′A +∠EAA ′+∠DA ′A +∠DAA ′=2∠BAC ; (2)如图2,结论:2∠A =∠1-∠2. 理由:设EA ′交AC 于J .∵∠1=∠EJA +∠A ,∠EJA =∠A ′+∠2, ∴∠1=∠A ′+∠A +∠2=2∠A +∠2, ∴2∠A =∠1-∠2; (2)如图,根据折叠知:∠AEF =∠A EF ',∠EFD =∠'EFD ,AEA'=∠AEF=180°-110°=70°,∵∠1=110°,∴∠2∴∠AEF=35°,∵∠2=40°,∴2∠EFD=180°+∠2=220°,∴∠EFD=110°,∴∠A+∠D=360°-(∠AEF+∠EFD)= 215°,∴∠B=360°-(∠A+∠D)-∠C = 55°.【综合演练】1.如图,在△ABC中,点D是BC上的点,将△ABD沿着AD翻折得到△AED,若∠B=∠BAE=50°,则∠CDE的度数是()A.25°B.30°C.35°D.40°【答案】B【分析】根据翻折的性质得到∠BAD=∠EAD=25°,∠E=∠B=50°,根据三角形内角和定理推出∠ADE=∠ADB=105°,进一步计算即可解答.【解析】解:∵∠B=∠BAE=50°,将△ABD沿着AD翻折得到△AED,∴∠BAD=∠EAD=25°,∠E=∠B=50°,∴∠ADE=∠ADB=180°-50°-25°=105°,∴∠ADC=180°-∠ADB=75°,∴∠CDE=105°-75°=30°,故选:B.【点评】此题考查翻折的性质,三角形内角和定理,关键是掌握翻折的性质.2.如图,△ABC中∠A=40°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC 于点D,又将△BCD沿着BD翻折,点C恰好落在BE上的点G处,此时∠BDC=82°,则原三角形的∠B 的度数为()A .57°B .60°C .63°D .70°【答案】C【分析】根据折叠的性质可知:∠BDG =∠BDC =82°,∠ABE =∠A 'BE =∠A 'BG=∠A 'BC ,根据三角形外角性质可得:∠DBA =∠BDC ﹣∠A =82°﹣40°=42°,进一步可求出∠ABE =∠A 'BE =21°,∠ABC =3×21°=63°,即原三角形的∠B =63°.【解析】解:由折叠性质可得,∠BDG =∠BDC =82°,∠ABE =∠A 'BE =∠A 'BG=∠A 'BC , ∵∠BDC 是△BDA 的外角,∴∠DBA =∠BDC ﹣∠A =82°﹣40°=42°, ∴∠ABE =∠A 'BE =21°,∴∠ABC =3×21°=63°,即原三角形的∠B =63°, 故选:C .【点评】此题主要考查的是图形的折叠及三角形外角性质,能够根据折叠的性质发现∠BDG =∠BDC =82°,∠ABE =∠A 'BE =∠A 'BG=∠A 'BC 是解答此题的关键.3.将△ABC 纸片沿DE 按如图的方式折叠.若∠C =50°,∠1=85°,则∠2的度数等于( )A .10°B .15°C .20°D .25°【答案】B【分析】由四边形的内角和及三角形内角和即可求得. 【解析】∵180A B C ∠+∠+∠=︒,且∠C =50゜ ∴180130A B C ∠+∠=︒-∠=︒同理,在△CDE 中,180130CDE CED C ∠+∠=︒-∠=︒ 由折叠性质得:A A ∠'=∠,B B '∠=∠ ∴130A B ''∠+∠=︒在四边形A B ED ''中,360A B A DE DEB ''''∠+∠+∠+∠=︒ ∴12360A B CDE CED ''∠+∠+∠+∠+∠+∠=︒ ∴130851302360︒+︒+︒+∠=︒ ∴∠2=15゜ 故选:B .【点评】本题考查了折叠的性质,多边形的内角和定理等知识,掌握多边形内角和定理及折叠的性质是关键.4.如图,将三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 的外部时,测量得∠1=70°,∠2=152°,则∠A 为( )A .40°B .42°C .30°D .52°【答案】B【分析】利用四边形的内角和定理求出B C ∠+∠,再利用三角形的内角和定理可得结果. 【解析】解:∵1=70∠︒,2=152∠︒,∴3601236070152138B C ∠+∠=︒-∠-∠=︒-︒-︒=︒, ∴180()18013842A B C ∠=︒-∠+∠=︒-︒=︒, 故选:B .【点评】此题考查了多边形内角与外角、三角形内角和定理,熟练掌握相关知识是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明5.如图,三角形纸片ABC 中,70A ∠=︒,75B ∠=︒.将三角形纸片的一角折叠,使点C 落在ABC 内,那么12∠+∠=_____________︒.【答案】70【分析】延长AF、BE交于点D,根据∠A=70°,∠B=75°,可得∠D=35°,由将纸片的一角折叠,使点C落在△ABC内,可得∠DFC+∠DEC=290°,即可得答案.【解析】解:延长AF、BE交于点D,∵∠A=70°,∠B=75°,∴∠D=180°﹣∠A﹣∠B=35°,∴∠DFE+∠DEF=180°﹣∠D=145°,∵将纸片的一角折叠,使点C落在△ABC内,∴∠CFE=∠DFE,∠CEF=∠DEF,∴∠DFC+∠DEC=2(∠DFE+∠DEF)=290°,∴∠1+∠2=(180°﹣∠DFC)+(180°﹣∠DEC)=360°﹣(∠DFC+∠DEC)=360°﹣290°=70°,故答案为:70.【点评】本题考查三角形中的折叠问题,解题的根据是掌握折叠的性质,灵活应用三角形内角和定理.6.在△ABC中,点E、F分别为边AB、AC上的点,把△ABC沿EF翻折,翻折后的图形如图所示.若∠的度数为___________.1+2110∠∠=︒,则A【答案】55︒【分析】如图,延长B′E交C′F的延长线于点A′,连接AA′.证明∠1+∠2=2∠EAF,可得结论.【解析】解:如图,延长B′E交C′F的延长线于点A′,连接AA′.∵∠1=∠EAA′+∠EA′A,∠2=∠F AA′+∠F A′A,∴∠1+∠2=∠EAF+∠EA′F,∵∠EAF=∠EA′F,∴∠1+∠2=2∠EAF=110°,∴∠A=55°.故答案为:55°.【点评】本题考查三角形内角和定理,翻折变换等知识,解题的关键是证明∠1+∠2=2∠EAF.7.如图,把一张长方形纸片ABCD沿EF折叠,∠1=55°,则∠2=________°.【答案】70【分析】根据长方形的对边平行知AD∥BC,得∠DEF=∠1=55°,再根据折叠的性质知∠GEF=∠DEF =55°,继而由∠AEG=180°−∠DEF−∠GEF可得答案.【解析】解:由题意知AD∥BC,∠1=55°,∴∠DEF=∠1=55°,根据折叠的性质知∠GEF=∠DEF=55°,则∠AEG=180°−∠DEF−∠GEF=180°-55°-55°=70°,∴∠2=70°,故答案为:70.【点评】本题考查了平行线的性质和折叠的性质,解题的关键是掌握两直线平行内错角相等的性质、折叠的性质.8.将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于______.【答案】15︒【分析】利用三角形的内角和定理以及折叠的性质,求出130CDE CED ∠+∠=︒,''130A B ∠+∠=︒,利用四边形内角和为360︒,即可求出∠2.【解析】解:在ABC ∆中,180130A B C ∠+∠=︒-∠=︒, 在CDE ∆中,180130CDE CED C ∠+∠=-∠=︒, 由折叠性质可知:''130A B A B ∠+∠=∠+∠=︒ , 四边形''DEB A 的内角和为360︒,''''360A B ADE B ED ∴∠+∠+∠+∠=︒,1A DE CDE ∠=∠+∠','2B ED CED ∠=∠+∠,''12()360CDE CED A B ∴∠+∠+∠+∠+∠+∠=︒,130CDE CED ∠+∠=︒,''130A B ∠+∠=︒,且∠1=85°, 215∴∠=︒,故答案为:15︒.【点评】本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.9.如图,将ABC 纸片沿DE 折叠,使点A 落在四边形BCDE 内点'A 的位置,(1)探索A ∠与12∠+∠之间的数量关系,并说明理由.(2)如果点A 落在四边形BCDE 外点''A 的位置,A ∠与1∠、2∠之间的数量关系有何变化,请说明理由. 【答案】(1)2∠A =∠1+∠2,理由见解析 (2)∠A =12(∠2-∠1),理由见解析【分析】(1)根据折叠性质得出∠AED=∠A′ED,∠ADE=∠A′DE,根据三角形内角和定理得出∠AED+∠ADE=180°-∠A,代入∠1+∠2=180°+180°-2(∠AED+∠ADE)求出即可;(2)先根据翻折的性质表示出∠1、∠2,再根据四边形的内角和定理列式整理即可得解.(1)2∠A=∠1+∠2,理由是:∵沿DE折叠A和A′重合,∴∠AED=∠A′ED,∠ADE=∠A′DE,∵∠AED+∠ADE=180°-∠A,∠1+∠2=180°+180°-2(∠AED+∠ADE),∴∠1+∠2=360°-2(180°-∠A)=2∠A.(2)∵沿DE折叠A和A'′重合,∴∠AED=∠A′'ED,∠ADE=∠A′'DE,又∵∠1=∠A'ED-∠BED=∠AED-(180°-∠AED)=2∠AED-180°,∠2=180°-2∠ADE,∠AED+∠ADE=180°-∠A,∴12∠1+90°+90°-12∠2=180°-∠A,即∠A=12(∠2-∠1).【点评】本题考查了折叠的性质,三角形外角性质,三角形内角和定理及四边形内角和的应用,主要考查学生运用定理进行推理和计算的能力.10.在我们苏科版义务教育教科书数学七下第42页曾经研究过双内角平分线的夹角和内外角平分线夹角问题.聪聪在研究完上面的问题后,对这类问题进行了深入的研究,他的研究过程如下:(1)【问题再现】如图1,在△ABC中,∠ABC、∠ACB的角平分线交于点P,若∠A=50°.则∠P=_______;(2)【问题推广】如图2,在△ABC中,∠BAC的角平分线与△ABC的外角∠CBM的角平分线交于点P,过点B作BH⊥AP 于点H,若∠ACB=80°,求∠PBH的度数.(3)如图3,在△ABC中,∠ABC、∠ACB的角平分线交于点P,将△ABC沿DE折叠使得点A与点P重合,若∠1+∠2=100°,则∠BPC=_______;(4)【拓展提升】在四边形BCDE中,EB∥CD,点F在直线ED上运动(点F不与E,D两点重合),连接BF,CF,∠EBF、∠DCF的角平分线交于点Q,若∠EBF=α,∠DCF=β,直接写出∠Q和α,β之间的数量关系.当F 在D 、E 之间时,如图4-2所示:同理可得112222FBQ EBF QCF DCF αβ∠=∠===,∠∠,180180FBC FCB DCF EBF αβ∠+∠=︒-∠-=︒--∠,∴1801802Q QBC QCB QBF FBC FCB QCF αβ+=︒--=︒----=∠∠∠∠∠∠∠;当点F 在D 点右侧时,如图4-3所示:同理可得1801802Q QBC QCB QBF FBC DCB QCD αβ-=︒--=︒----=∠∠∠∠∠∠∠; 综上所述,F 在E 左侧2Q βα-∠=;F 在ED 中间2Q αβ+∠=;F 在D 右侧2Q αβ-∠=.【点评】本题主要考查了三角形内角和定理,角平分线的定义,三角形外角的性质,平行线的性质,垂线的定义,熟知相关知识是解题的关键.11.如图,将一张三角形纸片ABC 的一角折叠,使得点A 落在四边形BCDE 的外部A '的位置且A '与点C 在直线AB 的异侧,折痕为DE ,已知90C ∠=︒,30A ∠=︒.(1)求12∠-∠的度数;(2)若保持A DE '的一边与BC 平行,求ADE ∠的度数. 【答案】(1)60°;(2)45°或30°【分析】(1)先求出∠B 的度数,在根据四边形内角和求出∠1+∠BFD 的度数,由∠BFD =∠A ′FE 和∠A ′的度数可求出答案.(2)分EA '∥BC 和DA '∥BC 两种情况讨论.当DA '∥BC 时,先求出∠A ′DA =90°,再根据折叠可得出∠ADE =45°;当EA '∥BC 时,根据平行线的性质求出∠2=∠ABC =60°,由(1)得出∠1=120°,再根据折叠可求出∠ADE 的度数.【解析】解:(1)由折叠可知,30A A '∠=∠=︒在A EF '△中,2180A A FE ''∠+∠+∠=︒2180150A AFE A FE ''∴∠=︒-∠-∠=︒-∠在ABC 中,18060B C A ∠=︒-∠-∠=︒在四边形BCDF 中,1360C B BFD ∠+∠+∠+∠=︒1360210C B BFD BFD ∴∠=︒-∠-∠-∠=︒-∠因为BFD A FE '∠=∠1221015060∴∠-∠=︒-︒=︒(2)①当//DA BC '时,90ADA ACB '∠=∠=︒ADE 沿DE 折叠A DE '1452ADE A DE ADA ''∴∠=∠=∠=︒②当//EA BC '时,260ABC ∠=∠=︒由(1)知,1260∠-∠=︒,1260120∴∠=∠+︒=︒,ADE 沿DE 折叠A DE '()11801302ADE A DE ADA ''∴∠=∠=∠=︒-∠=︒综上,∠ADE 的度数为:45°或30°.【点评】本题考查了翻折变换的性质,三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和等于180°,平行线的性质,属于综合题,但难度不大.熟记性质准确识图是解题的关键.12.将ABC 纸片的一角CAB ∠折叠,使点A 落在点P 的位置,折痕为DE .(1)如图1,点A 落在ABC 内的点P 的位置.①若//PE AC ,那么PD 与AB 有怎样的位置关系,请说明理由;②如图2,1∠、2∠与A ∠之间有怎样的数量关系?并说明理由;③连接CP 、BP ,已知CP 、BP 恰好分别平分ACB ∠、ABC ∠(如图3),1∠、2∠与CPB ∠之间有怎样的数量关系,并说明理由;(2)如图4,点A 落在ABC 外的点P 的位置.连接CP 、BP ,如果CP 、BP 恰好分别平分ABC 的两个外角MCB ∠,NBC ∠,那么1∠、2∠与CPB ∠之间的数量关系是______.(请直接写出结果)【答案】(1)①//PD AB ,理由见解析;②122A ∠+∠=∠,理由见解析;③123604CPB ∠+∠+︒=∠,理由见解析;(2)124360CPB ∠+∠+∠=︒,理由见解析【分析】(1)①若//PE AC ,则可推出ADE DEP ∠=∠,然后根据翻折的性质可推出PDE DEA ∠=∠,从而得出结论即可;②根据翻折的性质推出()123602ADE AED ∠+∠=︒-∠+∠,然后结合三角形的内角和推出180A ADE AED ︒-∠=∠+∠,从而代入替换得出结论即可;③根据CP 、BP 恰好分别平分ACB ∠、ABC ∠,可推出()12PCB PBC ACB ABC ∠+∠=∠+∠,然后结合②的结论进行变形整理即可; (2)根据题意可推出()12ACB ABC CPB ∠+∠=∠,然后结合三角形的内角和以及(1)中②的结论,综合整理求解即可.【解析】(1)//PD AB ,理由如下:∵//PE AC ,∴ADE DEP ∠=∠,由翻折的性质可得:ADE PDE ∠=∠,AED PED ∠=∠,∴PDE DEA ∠=∠,∴//PD AB ;②122A ∠+∠=∠,理由如下:由翻折的性质可得:ADE PDE ∠=∠,AED PED ∠=∠,∴11802ADE ∠=︒-∠,21802AED ∠=︒-∠,∴()123602ADE AED ∠+∠=︒-∠+∠,在ADE 中,180A ADE AED ︒-∠=∠+∠,∴()1236021802A A ∠+∠=︒-︒-∠=∠,在ABC 中,由②可知,∠ACB ∠+∠在PBC 中,180CPB ︒-∠12∠+∠+2)1∠+∠CP 、BP 恰好分别平分ABC 的两个外角)ACB ,PBC ∠∴在PBC 中,180PBC ∠=(11801802ABC ︒-∠︒-∠整理得:(12ACB ∠在ABC 中,∠由②可知,∠ACB ∠+∠1118022⎡︒-⎢⎣13.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠.(1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ;(3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 . 【答案】(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式;(4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【解析】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点评】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.14.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交射线BC 于点F .(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)(1)如图①,当AE ⊥BC 时,求证:DE ∥AC .(2)若10C B ∠-∠=︒,∠BAD =x°. ①如图②,当DE ⊥BC 时,求x 的值; ②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.【答案】(1)见解析;(2)①5x =,②存在,15x =或30.【分析】(1)根据折叠的性质得到∠B=∠E ,根据平行线的判定定理证明;(2)①根据三角形内角和定理分别求出∠C=60°,∠B=30°,根据折叠的性质计算即可;②分∠EDF=∠DFE 、∠DFE=∠E 、∠EDF=∠E 三种情况,列方程解答即可.【解析】(1)∵AE ⊥BC∴∠EAC+∠C=90°∵∠BAC=90°∴∠B+∠C=90°∴∠B=∠EAC∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E∴∠EAC=∠E∴DE ∥AC(2)①∵∠B+∠C=90°,10C B ∠-∠=︒∴∠B=40°,∠C=50°∵DE ⊥BC∴∠EDF=90°∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E=40°,∠BAD=∠EAD=x °∴∠DFE=50°∵∠DFE=B BAF ∠+∠∴24050x +=∴5x =②由题意可得,∠ADC=40x +, ∠ABD=140x - ,∠EDF=140(40)1002x x x --+=-∠DFE=402x +(ⅰ)若∠EDF=∠DFE ,可得100-2402x x =+,解得15x =(ⅱ)若∠EDF=∠E ,可得100-240x =解得30x =(ⅲ)若∠DFE =∠E ,可得40240x +=解得0x =(舍去)综上可得15x =或30.【点评】本题考查了三角形折叠中的角度问题,熟知折叠的性质,平行的判定定理是解题的关键.15.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) .① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由. 【答案】(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角; (2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【解析】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去);当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去);综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点评】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.16.如图1,将△ABC 纸片沿DE 折叠,使点C 落在四边形ABDE 内点C ’的位置,(1)①若00120,250∠=∠=,则C ∠= ;②若042C ∠=,则12∠+∠= ;③探索C ∠ 、1∠与2∠之间的数量关系,并说明理由;(2)直接按照所得结论,填空:①如图中,将△ABC 纸片再沿FG 、MN 折叠,使点A 、B 分别落在△ABC 内点A ’、B ’的位置,则123456∠+∠+∠+∠+∠+∠= ;②如图中,将四边形ABCD 按照上面方式折叠,则128∠+∠++∠= ; ③若将n 边形123n A A A A 也按照上面方式折叠,则122n ∠+∠++∠= ;(3)如图,将△ABC 纸片沿DE 折叠,使点C 落在△ABC 边AC 上方点'C 的位置, 探索C ∠、1∠与2∠之间的数量关系,并说明理由.【答案】(1)①35︒;②84︒;③212C=+∠∠∠;(2)①360︒;②720︒;③3602(n )︒-;(3)221C=∠∠-∠【分析】(1)①由邻补角的定义可知∠CEC′=160°,∠CDC′=130°,根据折叠的性质可求出∠CED=80°,∠CDE=65°,然后根据三角形内角和定理求解即可;②由三角形内角和可求出∠CED+∠CDE=138°,再由折叠的性质可知∠CEC′+∠CDC′=276°,然后根据邻补角的定义可求出12∠+∠=84°;③由邻补角定义可知1+'=180CEC ∠∠︒,从而2+'=180CDC ∠∠︒,所以,∠1+ ∠CEC′+ ∠2+ ∠CDC′=360 °,结合+'+'+'=360C CEC C CDC ∠∠∠∠︒,可求出2=1+2C ∠∠∠;(2)① 由(1)得12∠∠+=2∠C ,34∠+∠=2∠B ,56∠+∠=2∠A ,从而123456∠+∠+∠+∠+∠+∠=2(∠A+∠B +∠C),结合三角形内角和求解即可;②由①可知,128∠+∠++∠= 2(∠A+∠B +∠C+∠D),结合四边形内角和求解即可;③由①可知,()()122218023602n n n ∠+∠++∠=⨯︒⨯-=︒⨯- ;(3)由外角的性质可知∠2=∠3+∠C ,∠3=∠1+∠C ,整理可得2=21C ∠∠-∠.【解析】解:(1)①∵00120,250∠=∠=,∴∠CEC′=160°,∠CDC′=130°,∵ ∠CED=80°,∠CDE=65°,∴∠C= 180°-80°-65°=35°;②∵042C ∠=,∴ ∠CED+∠CDE=180°-42°=138°,∴∠CEC′+∠CDC′=276°,∴12∠+∠=360°-276°=84°;③2=1+2C ∠∠∠,因为1+'=180CEC ∠∠︒,2+'=180CDC ∠∠︒,所以1+'+2+'=360CEC CDC ∠∠∠∠︒,因为在四边形'CEC D 中,+'+'+'=360C CEC C CDC ∠∠∠∠︒,所以1+2=+'C C ∠∠∠∠,因为='C C ∠∠,所以2=1+2C ∠∠∠.(2)① 由①得12∠∠+=2∠C ,34∠+∠=2∠B ,56∠+∠=2∠A ,∴123456∠+∠+∠+∠+∠+∠=2(∠A+∠B +∠C)=360°; ②∵12∠∠+=2∠C ,34∠+∠=2∠B ,56∠+∠=2∠A ,78∠+∠=2∠D ,∴128∠+∠++∠= 2(∠A+∠B +∠C+∠D)=2×360°=720°; ③∵n 边形内角和是()1802n ︒⨯-,∴()()122218023602n n n ∠+∠++∠=⨯︒⨯-=︒⨯- ;(3)2=21C ∠∠-∠.∵∠2=∠3+∠C ,∠3=∠1+∠'C =∠1+∠C ,∴∠2=∠1+∠C +∠C=∠1+2∠C ,∴2=21C ∠∠-∠.【点评】本题考查了折叠性质,三角形内角和定理,多边形的内角和定理,三角形外角的性质及图形类的规律与探究.熟练掌握折叠的性质和三角形内角和定理是解(1)的关键,利用(1)中规律是解(2)的关键,熟练掌握三角形外角的性质是解(3)的关键.17.直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动,连接AB,(1)如图,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线,①点A 、B 在运动的过程中,∠ACB 的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB 的大小.②如图,将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,记作点C′,则∠ABO = °;如图,将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,记作点C′′,则∠ABO = °.(2)如图,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其延长线交于E 、F ,在△AEF 中,如果有一个角是另一个角的32倍,求∠ABO 的度数.【答案】(1)①∠ACB 的大小不变,∠ACB=45°;②30°,60°;(2)∠ABO 为60°或72°.【分析】(1)①由直线MN 与直线PQ 垂直相交于O ,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=12∠PAB ,∠ABC=12∠ABM ,于是得到结论; ②由于将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,得到∠CAB=∠BAQ ,由角平分线的定义得到∠PAC=∠CAB ,根据三角形的内角和即可得到结论;根据将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,得到∠ABC=∠ABN ,由于BC 平分∠ABM ,得到∠ABC=∠MBC ,于是得到结论;(2)由∠BAO 与∠BOQ 的角平分线相交于E 可知∠EAO=12∠BAO ,∠EOQ=12∠BOQ ,进而得出∠E 的度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF=90°,在△AEF 中,由一个角是另一。
折叠问题中的角度运算1、三角形纸片ABC中,∠A=55°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内(如图),则∠1+∠2的度数为_____度。
分析:利用三角形的内角和和四边形的内角和即可求得.解:∠A+∠B+∠C=180°,∠C=180°-∠A-∠B=180°-55°-75°=50°①,∠C+∠CED+∠CDE=180°,∠CED+∠CDE=180°-∠C=180°-50°=130°②,∠B+∠A+∠CED+∠CDE+∠1+∠2=360°③,把①②分别代入③得75°+55°+130°+∠1+∠2=360°,得∠1+∠2=100°2、如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处。
若∠A=22°,则∠BDC等于______。
分析:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°-∠A=68°。
由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°。
3、如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于______。
分析:根据折叠前后角相等可知.解:∵∠1=50°,∴∠AEF=180°-∠BFE=180°-(180°-50°)÷2=115°.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.4、如图,把一张长方形纸条ABCD沿EF折叠,若∠1=56°,则∠EGF应为______.分析:本题根据平行线的性质和翻折的性质,求解即可.解答:解:因为折叠,且∠1=56°,所以∠C′FB=180°-2×56°=68°,∵D′E//C′F,∴∠EGF=∠C′FB=68°.5、如图,D、E分别为△ABC的边AB、AC上的点,DE∥BC,将△ABC沿线段DE折叠,使点A落在BC上的点F处,若∠B=55°,则∠BDF的度数为______。
专题38 图形折叠中的直角三角形问题【精典讲解】1、如图例3-1,在Rt △ABC 中,∠ACB =90°,∠B =30°,BC =3,点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为直角三角形时,BD 的长为ACBF EDAC BFED图例3-1 图例3-2图例3-3【解析】从题目所给的“当△AEF 为直角三角形时”条件出发,以直角顶点所在位置进行分类讨论. 通过观察及分析可知∠BED =∠DEF =60°,所以∠AEF =180-120°=60°. 即点E 不可能为直角顶点.分两种情况考虑: ①当∠EAF =90°时,如图例3-2所示. ∵∠B =30°,BC =3∴3303=33AC tan BC =︒⨯=,2=23AB AC = ∵∠EAF =90°∴∠AFC =60°,∠CAF =30°在Rt △ACF 中,有:3cos =32AF AC CAF =÷∠÷,24BF AF == 由折叠性质可得:∠B =∠DFE =30°,122BD DF BF === ②当∠AFE =90°时,如图例3-3所示.由折叠性质得:∠B =∠DFE =30°,122BD DF BF === ∴∠AFC =60°,∠F AC =30°∴3tan 313CF FAC AC =∠⨯=⨯= 所以,BF =2,112BD DF BF === 综上所述,BD 的长为2或1.【点睛】本题难度适中,要求学生具备分类讨论思想及数形结合解决问题的能力,另外还需要熟练运用勾股定理及相似三角形知识. 通过此题,可总结出:①遇到直角三角形存在性问题时,分类讨论的出发点在于直角顶点的位置;②解决直角三角形存在性问题的方法是数形结合,先作出符合题意的图形,再用勾股定理或相似三角形、三角函数性质解题.2、如图例4-1,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处.当△CEB ′为直角三角形时,BE 的长为 .ABCDEB'ABC DEB'图例4-1 图例4-2 图例4-3【解析】此题以“当△CEB ′为直角三角形时”为突破口,分析可能是直角顶点的点,得出存在两种情况,即点B ′及点E 分别为直角顶点.分两种情况考虑:①当∠CEB ′=90°时,如图例4-2所示.由折叠性质得:AB =AB ′,四边形ABE B ′是矩形. 所以四边形ABE B ′是正方形. 此时,BE =AB =3.②当∠CB ′E =90°时,如图例4-3所示.由折叠性质知,∠AB ′C =90°,所以∠AB ′C+∠CB ′E =180°. ∴点A 、B ′、C 共线在Rt △ABC 中,由勾股定理得AC =5 由折叠得:AB = AB ′=3 所以B ′C =2设BE =x ,则B ′E =x ,EC =4-x在Rt △ABC 中,由勾股定理得:EC 2=B ′E 2+B ′C 2 即:(4-x )2=x 2+22 解得:x =1.5.综上所述,BE 的值为3或1.5.【点睛】本题解题关键在准确对问题进行分类讨论且作出相应图形,要求学生掌握三点共线的理由,折叠的性质及勾股定理的应用.3、如图例5-1,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MB C ∆为直角三角形,则BM 的长为 .A (B')BCMN ABCM NB'图例5-1图例5-2图例5-3【解析】通过观察及分析可知,C 点不可能为直角顶点,分两种情况讨论. ①当∠CM B ′=90°时,如图例5-2所示.由折叠知:∠BMN =∠B ′MB =45°,又因为∠B =45°,所以∠BNM =90°,∠MNB ′=90° 即∠BNM +∠MN B ′=180°,所以B 、N 、B ′三点共线,此时B ′与点A 重合.所以,12122BM BC +==①当∠CB ′M =90°时,如图例5-3所示.由折叠知∠B =∠B ′=45°,因为∠C =45°,可得∠B ′MC =45°,所以△B ′MC 是等腰直角三角形设BM = B ′M =x ,B ′C =x ,则MC =2x因为BC =2+1所以x +2x =2+1 解得:x =1,即BM =1.综上所述,BM 的值为212+或1. 【点睛】根据题意判断出C 点不可能为直角顶点,分两种情况讨论,利用等腰直角三角形的三边关系求解. 4、 如图例6-1,在∠MAN =90°,点C 在边AM 上,AC =4,点B 为边AN 上一动点,连接BC ,△A’BC 与△ABC 关于BC 所在直线对称. D 、E 分别为AC 、BC 的中点,连接DE 并延长交A’B 所在直线于点F ,连接A’E . 当△A’EF 为直角三角形时,AB 的长为 .M N AA'FEDC B图例6-1图例6-2图例6-3【解析】分两种情况讨论.①当∠A’FE=90°时,如图例6-2所示. ∵D、E分别为AC、BC的中点∴DE是三角形ABC的中位线即DE∥BA∴∠A’BA=90°∴四边形AB A’C为矩形由折叠得AC=A’C∴四边形AB A’C为正方形即AB=AC=4.②当∠A’EF=90°时,如图例6-3所示. ∵∠A’EF=∠CDE=90°∴A’E∥CD∴∠DCE=∠CEA’由折叠知:∠DCE=∠A’CE∴∠CEA’=∠A’CE∴A’C=A’E=4又∵E是BC中点即A’E是Rt△A’BC的中线∴BC=2A’E=8在Rt△A’BC中,由勾股定理得,A’B=43由折叠性质得:AB=A’B=43.综上所述,AB的长为4或43.【点睛】利用中位线性质(三角形的中位线平行于第三边)及正方形判定,用勾股定理求解.【针对训练】1、矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为( )A.3 B.32C.2或3 D.3或32【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC=2243=5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得x=32,∴BE=32;②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为32或3.故选D.【点睛】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.2、如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则ADDF的值为A.1113B.1315C.1517D.1719【解析】【分析】根据折叠的性质可得出DC =DE 、CP =EP ,由∠EOF =∠BOP 、∠B =∠E 、OP =OF 可得出△OEF ≌△OBP (AAS ),根据全等三角形的性质可得出OE =OB 、EF =BP ,设EF =x ,则BP =x 、DF =4﹣x 、BF =PC =3﹣x ,进而可得出AF =1+x .在Rt △DAF 中,利用勾股定理可求出x 的值,即可得出答案. 【详解】根据折叠,可知:△DCP ≌△DEP ,∴DC =DE =4,CP =EP .在△OEF 和△OBP 中,∵90EOF BOPB E OP OF ∠∠∠∠=⎧⎪==︒⎨⎪=⎩,∴△OEF ≌△OBP (AAS ),∴OE =OB ,EF =BP .设EF =x ,则BP =x ,DF =DE ﹣EF =4﹣x .又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC ﹣BP =3﹣x ,∴AF =AB ﹣BF =1+x .在Rt △DAF 中,AF 2+AD 2=DF 2,即(1+x )2+32=(4﹣x )2,解得:x =0.6,∴DF =4﹣x =3.4,∴1517AD DF =. 故选C .【点睛】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF =1+x ,求出AF 的长度是解题的关键.3、如图,已知正方形ABCD 的边长为3,E 是BC 上一点,3,Q 是CD 上一动点,将△CEQ 沿直线EQ 折叠后,点C 落在点P 处,连接PA .点Q 从点C 出发,沿线段CD 向点D 运动,当PA 的长度最小时,CQ 的长为( )A .333-B .33-C .32D .3【解析】试题解析:如图所示:在Rt △ABE 中,AE=.∵BC=3,BE=,∴EC=3-.由翻折的性质可知:PE=CE=3-.∵AP+PE≥AE , ∴AP≥AE -PE .∴当点A 、P 、E 一条直线上时,AP 有最小值.∴AP=AE-PE=2-(3-)=3-3.故选A .考点:翻折变换(折叠问题).4、如图,矩形ABCD 中,3AB =,4BC =,点E 是BC 边上一点,连接AE ,把矩形沿AE 折叠,使点B 落在点B '处.当CEB '∆为直角三角形时,BE 的长为____________.【解析】 【分析】当△CEB′为直角三角形时,有两种情况: ①当点B′落在矩形内部时,如答图1所示.连结AC ,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠E B′C=90°,所以点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x ,则EB′=x ,CE=8-x ,然后在Rt △CEB′中运用勾股定理可计算出x .②当点B′落在AD 边上时,如答图2所示.此时四边形ABEB′为正方形. 【详解】由题意知,需分两种情况讨论:①当90CB E ︒'∠=时,如图1,由折叠得,90AB E B ︒'∠=∠=,AB AB '=, ∴180AB C ︒'∠=,∴,,A B C '三点共线.在矩形ABCD 中,3AB =,4BC =, ∴5AC =. ∵AB AB 3'==, ∴2B C AC AB ''=-=.设BE x =,则4CE BC BE x =-=-,B E x '=,在Rt B CE '∆中,222B E B C CE ''+=,即2222(4)x x +=-,解得32x =. ②当90B EC ︒'∠=时,如图2,由折叠可知ABE AB E '∆∆≌, ∴BE B E '=,90B AB E ︒'∠=∠=, ∴四边形ABEB '是正方形, ∴3BE AB ==.综上所述,当CEB '∆为直角三角形时,BE 的长为32或3.故答案是:32或3. 【点睛】考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.5、如图,在矩形ABCD 中,AB =6,AD =23,E 是AB 边上一点,AE =2,F 是直线CD 上一动点,将△AEF 沿直线EF 折叠,点A 的对应点为点A ′,当点E ,A ′,C 三点在一条直线上时,DF 的长为_____.【解析】【分析】利用勾股定理求出CE,再证明CF=CE即可解决问题.(注意有两种情形)【详解】解:如图,由翻折可知,∠FEA=∠FEA′,∵CD∥AB,∴∠CFE=∠AEF,∴∠CFE=∠CEF,∴CE=CF,在Rt△BCE中,EC==,∴CF=CE=,∵AB=CD=6,∴DF=CD﹣CF=6﹣,当点F在DC的延长线上时,易知EF⊥EF′,CF=CF′=,∴DF=CD+CF′=故答案为6﹣或.【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,本题的突破点是证明△CFE的等腰三角形,属于中考常考题型.6、如图,在菱形ABCD中,∠DAB=45°,AB=4,点P为线段AB上一动点,过点P作PE⊥AB交直线AD 于点E,将∠A沿PE折叠,点A落在F处,连接DF,CF,当△CDF为直角三角形时,线段AP的长为__________.【解析】【分析】分两种情形讨论:①如图1,当DF⊥AB时,△CDF是直角三角形;②如图2,当CF⊥AB时,△DCF是直角三角形,分别求出即可.【详解】分两种情况讨论:①如图1,当DF⊥AB时,△CDF是直角三角形.∵在菱形ABCD中,AB=4,∴CD=AD=AB=4.在Rt△ADF中,∵AD=4,∠DAB=45,DF=AF=22,∴AP12=AF2=.②如图2,当CF⊥AB时,△DCF是直角三角形.在Rt△CBF中,∵∠CFB=90°,∠CBF=∠A=45°,BC=4,∴BF=CF2,∴AF2,∴AP12=AF=22+综上所述:线段AP2或22+.222+【点睛】本题考查了菱形的性质,等腰直角三角形的性质,折叠的性质,熟练掌握折叠的性质是解题的关键,正确画出图象,注意分类讨论的思想,属于中考常考题型.专题39 图形折叠中的等腰三角形问题【精典讲解】1、如图例7-1,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为 .A BCDB'F E图例7-1【解析】根据△CDB ′为等腰三角形,以CD 为腰或底分三种情况讨论,①DB ′=DC ;②CB ′=CD ;③CB ′=DB ′. 对于①DB ′=DC ,作图方法以E 为圆心BE 长为半径作弧,以D 为圆心CD 长为半径作弧,两弧交点即为B ′. 对于②CB ′=CD ,作图方法以E 为圆心BE 长为半径作弧,以C 为圆心CD 长为半径作弧,两弧交点即为B ′. 对于③CB ′=DB ′,作图方法以E 为圆心BE 长为半径作弧,弧与CD 垂直平分线的交点为B ′.A BCDB'FEA BC DB'(F )EA BCDB'F EMN图例7-2 图例7-3 图例7-4详解:①DB ′=DC , 如图例7-2所示. 易知:DB ′=DC =16.②CB ′=CD ,如图例7-3所示.由折叠性质可知:BF = B ′F =CD =16,此时F 点与C 点重合,不符题意.③CB′=DB′,如图例7-4所示.由题意得,DN=CN=8,因为AE=3,所以EM=5. B′E=BE=13.在Rt△EB′M中,由勾股定理得,B′M=12.所以B′N=4.在Rt△DB′N中,由勾股定理得,B′D=54.综上所述,B′D的长为16或54.【点睛】以CD为腰或底分三种情况讨论,排除其中一种,利用勾股定理求解.【针对训练】1、如图,在矩形ABCD中,AB=2,BC=4,P为边AD上一动点,连接BP,把△ABP沿BP折叠,使A 落在A′处,当△A′DC为等腰三角形时,AP的长为()A.2 B 23C.223D.243【解析】【分析】根据△A′DC为等腰三角形,分三种情况进行讨论:①A'D=A'C,②A'D=DC,③CA'=CD,分别求得AP的长,并判断是否符合题意.【详解】①如图,当A′D=A′C时,过A′作EF⊥AD,交DC于E,交AB于F,则EF垂直平分CD,EF垂直平分AB∴A'A=A'B由折叠得,AB=A'B,∠ABP=∠A'BP ∴△ABA'是等边三角形∴∠ABP=30°∴AP=223333 AB==;②如图,当A'D=DC时,A'D=2由折叠得,A'B=AB=2∴A'B+A'D=2+2=4连接BD,则Rt△ABD中,BD=22222425AB AD+=+=∴A'B+A'D<BD(不合题意)故这种情况不存在;③如图,当CD=CA'时,CA'=2由折叠得,A'B=AB=2 ∴A'B+A'C=2+2=4∴点A'落在BC 上的中点处此时,∠ABP=12∠ABA'=45° ∴AP=AB=2.综上所述,当△A′DC 为等腰三角形时,AP 的长为2 33或2. 故选C. 【点睛】本题以折叠问题为背景,主要考查了等腰三角形的性质,解决问题的关键是画出图形进行分类讨论,分类时注意不能重复,不能遗漏.2、如图,菱形ABCD 的边,8AB =,60B ∠=,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点'A .当'CA 的长度最小时,'C Q 的长为( )A .5B .7C .8D .132【解析】 【分析】作CH AB ⊥于H ,如图,根据菱形的性质可判断ABC ∆为等边三角形,则3432CH AB ==4AH BH ==,再利用7CP =勾股定理计算出,再根据折叠的性质得点'A 在以点P 为圆心,PA 为半径的弧上,利用点与圆的位置关系得到当点'A 在PC 上时,'CA 的值最小,然后证明CQ CP =即可. 【详解】解:作CH AB ⊥于H ,如图,菱形ABCD 的边8AB =,60B ∠=,ABC ∆∴为等边三角形,CH AB ∴==,4AH BH ==, 3PB =,1HP ∴=,在Rt CHP ∆中,7CP ==, 梯形APQD 沿直线PQ 折叠,A 的对应点'A ,∴点'A 在以点P 为圆心,PA 为半径的弧上, ∴当点'A 在PC 上时,'CA 的值最小,APQ CPQ ∴∠=∠,而//CD AB ,APQ CQP ∴∠=∠,CQP CPQ ∴∠=∠, 7CQ CP ∴==.故选:B.【点睛】考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC上时CA′的长度最小.3、如图,在矩形ABCD中,AB=,BC=3,将△ABC沿对角线AC折叠,点B恰好落在点P处,CP与AD交于点F,连接BP交AC于点G,交AD于点E,下列结论不正确的是()A.B.△PBC是等边三角形C.AC=2AP D.S△BGC=3S△AGP【解析】【分析】如图,首先运用勾股定理求出AC的长度,进而求出∠ACB=30°,此为解决该题的关键性结论;运用翻折变换的性质证明△BCP为等边三角形;运用射影定理求出线段CG、AG之间的数量关系,进而证明选项A、B、C成立,选项A不成立.【详解】如图,∵四边形ABCD为矩形,∴∠ABC=90°;由勾股定理得:AC2=AB2+BC2,而AB=,BC=3,∴AC=2,AB=AC,∴∠ACB=30°;由翻折变换的性质得:BP⊥AC,∠ACB=∠ACP=30°,BC=PC,AB=AP,BG=PG,∴GC=BG=PG,∠BCP=60°,AC=2AP,∴△BCP为等边三角形,故选项B、C成立,选项A不成立;由射影定理得:BG2=CG•AG,∴AG=BG,CG=3AG,∴S△BCG=3S△ABG;由题意得:S△ABG=S△AGP,∴S△BGC=3S△AGP,故选项D正确;故选:A.【点睛】考查了翻折变换的性质、矩形的性质、射影定理、三角形的面积公式等几何知识点及其应用问题;解题的关键是灵活运用矩形的性质、射影定理等几何知识点来分析、判断、推理或解答;对综合的分析问题解决问题的能力提出了较高的要求.4、如图,将一张正方形纸片ABCD对折,使CD与AB重合,得到折痕MN后展开,E为CN上一点,将△CDE 沿DE所在的直线折叠,使得点C落在折痕MN上的点F处,连接AF,BF,BD.则下列结论中:①△ADF是等边三角形;②tan∠EBF=2-;③S△ADF=S正方形ABCD;④BF2=DF·EF.其中正确的是()A.①②③B.①②④C.①③④D.②③④【解析】【分析】由正方形的性质得出AB=CD=AD,∠C=∠BAD=∠ADC=90°,∠ABD=∠ADB=45°,由折叠的性质得出MN垂直平分AD,FD=CD,BN=CN,∠FDE=∠CDE,∠DFE=∠C=90°,∠DEF=∠DEC,由线段垂直平分线的性质得出FD=FA,得出△ADF是等边三角形,①正确;设AB=AD=BC=4a,则MN=4a,BN=AM=2a,由等边三角形的性质得出∠DAF=∠AFD=∠ADF=60°,FA=AD=4a,FM=AM=2a,得出FN=MN-FM=(4-2)a,由三角函数的定义即可得出②正确;求出△ADF的面积=AD•FM=4a2,正方形ABCD的面积=16a2,得出③错误;求出∠BFE=∠DFB,∠BEF=∠DBF,证出△BEF∽△DBF,得出对应边成比例,得出④正确;即可得出结论.【详解】∵四边形ABCD是正方形,∴AB=CD=AD,∠C=∠BAD=∠ADC=90°,∠ABD=∠ADB=45°,由折叠的性质得:MN垂直平分AD,FD=CD,BN=CN,∠FDE=∠CDE,∠DFE=∠C=90°,∠DEF=∠DEC,∴FD=FA,∴AD=FD=FA,即△ADF是等边三角形,①正确;设AB=AD=BC=4a,则MN=4a,BN=AM=2a,∵△ADF是等边三角形,∴∠DAF=∠AFD=∠ADF=60°,FA=AD=4a,FM=AM=2a,∴FN=MN-FM=(4-2)a,∴tan∠EBF==2-,②正确;∵△ADF的面积=AD•FM=×4a×2a=4a2,正方形ABCD的面积=(4a)2=16a2,∴,③错误;∵AF=AB,∠BAF=90°-60°=30°,∴∠AFB=∠ABF=75°,∴∠DBF=75°-45°=30°,∠BFE=360°-90°-60°-75°=135°=∠DFB,∵∠BEF=180°-75°-75°=30°=∠DBF,∴△BEF∽△DBF,∴,∴BF 2=DF•EF ,④正确; 故选B . 【点睛】本题是相似形综合题目,考查了正方形的性质、折叠的性质、线段垂直平分线的性质、等边三角形的判定与性质、相似三角形的判定与性质、三角函数等知识;本题综合性强,有一定难度,证明三角形是等边三角形和证明三角形相似是解决问题的关键.5、已知ABC 中, AC BC =, Rt C ∠=∠.如图,将ABC 进行折叠,使点A 落在线段BC 上(包括点B 和点C ),设点A 的落点为D ,折痕为EF ,当DEF 是等腰三角形时,点D 可能的位置共有( ).A .2种B .3种C .4种D .5种 【解析】(1)当点D 与C 重合时,∵AC=BC ,AE=DE (即CE ),AF=DF (即CF ),∴此时△AFC (即△AFD )是等腰直角三角形,点E 是斜边AC 的中点, ∴EF=DE ,∴△EDF 为等腰三角形.(2)当点D 与B 点重合时,点C 与E 重合, ∵AC=BC ,AF=DF (即BF ),∴此时EF=12AB=DF (即BF ), ∴△DEF 是等腰三角形;(3)当点D 移动到使DE=DF 的位置时,△DEF 是等腰三角形. 综上所述,当△DEF 为等腰三角形时,点D 的位置存在3中可能. 故选B.6、如图,正方形ABCD 的边长是16,点E 在边AB 上,3AE =,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF ∆沿EF 折叠,点B 落在'B 处,若'CDB ∆恰为等腰三角形,则'DB 的长为______.【解析】 【分析】根据翻折的性质,可得B’E 的长,根据勾股定理可得CE 的长,然后再根据等腰三角形的判定进行分情况讨论 【详解】需分三种情况讨论:(1)若'DB DC =,则'16DB =(易知此时点F 在BC 上且不与点C 、B 重合);(2)若'CB CD =,因为'EB EB =,'CB CB =,所以点E 、C 在'BB 的垂直平分线上,则EC 垂直平分'BB ,由折叠可知点F 与点C 重合,不符合题意,则这种情况不成立;(3)如图,若''CB DB =,作'B G AB ⊥与AB 交于点G ,交CD 于点H .因为AB CD ∥,所以'B H CD ⊥.因为''CB DB =,所以182DH CD ==,所以8AG DH ==,则5GE AG AE =-=,因为'13B E BE ==.在'Rt B EG ∆中,由勾股定理求得'12B G =,所以''4B H GH B G =-=.在'Rt B DH ∆中,由勾股定理求得'45DB =DB 或45.综上,'16【点睛】本题考查折叠性质和勾股定理,本题关键在于能够对等腰三角形的情况进行分类讨论7、在菱形ABCD中,∠B=60°,BC=2cm,M为AB的中点,N为BC上一动点(不与点B重合),将△BMN 沿直线MN折叠,使点B落在点E处,连接DE,CE,当△CDE为等腰三角形时,线段BN的长为_____.【解析】【分析】分两种情况:①如图1,当DE=DC时,连接DM,作DG⊥BC于G,由菱形的性质得出AB=CD=BC=2,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出33BG=BC+CG=3,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,证明△ADM≌△EDM,得出∠A=∠DEM=120°,证出D、E、N三点共线,设BN=EN=x,则GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②如图2,当CE=CD上,CE=CD=AD,此时点E与A重合,N与点C重合,CE=CD=DE=DA,△CDE是等边三角形,BN=BC=2(含CE=DE这种情况).【详解】解:分两种情况,①如图1,当DE=DC时,连接DM,作DG⊥BC于G,∵四边形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°-60°=30°,∴CG=12CD=1,∴DG=3CG=3,BG=BC+CG=3,∵M为AB的中点,∴AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,AD=ED,AM=EM ,DM=DM,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三点共线,设BN=EN=x,则GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得:(3-x)²+(3)² =(x+2)²,解得:x=45,,即BN=45;②当CE=CD时,CE=CD=AD,此时点E与A重合,N与点C重合,如图2所示:CE=CD=DE=DA ,△CDE 是等边三角形,BN=BC=2(符合题干要求); 综上所述,当△CDE 为等腰三角形时,线段BN 的长为45或2; 故答案为45或2. 【点睛】本题考查了折叠变换的性质、菱形的性质、全等三角形的判定与性质、三点共线、勾股定理、直角三角形的性质、等腰三角形的性质等知识,熟练掌握并灵活运用是解题的关键.专题40 图形折叠中的落点固定问题【精典讲解】1、如图例8-1,矩形ABCD 中,AD =5,AB =7,点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D ′落在∠ABC 的角平分线上时,DE 的长为 .图例8-1DCB AD'D'DCB A D'E M N图例8-2图例8-3【解析】如图例8-2.发现有两个不同的D’点,对不同的位置分别求解.如图例8-3所示.因为BD′是∠ABC的平分线所以∠D′BN=45°,D′N=NB由折叠知AD′=AD=5.设D′N=NB=x,则AN=7-x在Rt△AD′N中,由勾股定理得,AD′2=D′N2+AN252=x2+(7-x)2,解得x=3或4.①当x=3时,D′M=2,AN=4. 设DE=y,则D′E=y,EM=4-y 在Rt△ED′M中,由勾股定理得,ED′2=D′M2+EM2即y2=22+(4-y)2,解得y=5 2 .②当x=4时,D′M=1,AN=3. 设DE=y,则D′E=y,EM=3-y 在Rt△ED′M中,由勾股定理得,ED′2=D′M2+EM2y2=12+(3-y)2,解得y=5 3 .综上所述,DE的长为52或53.【点睛】D′落在∠ABC的角平分线上,作出∠ABC的角平分线,再以A为圆心以AD长半径画弧,弧与∠ABC 的角平分线的交点即为D’点. 根据折叠中,折痕是对应点连线的垂直平分线作出折痕.2、如图例9-1,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE 折叠,点B落在点B’处,过点B’作AD的垂线,分别交AD、BC于点M、N,当点B’为线段MN的三等分点时,BE的长为.图例9-1【解析】取线段AB 的三等分点P 、G ,过点P 、G 作PQ ∥AD ,GH ∥AD以点A 为圆心,以AB 长为半径画弧,该弧与PQ 、GH 的交点即为B ’. 如图例9-2.BA B'B'C D P G Q HBA B'C DG H E NMBA B'C D PQE NM图例9-2图例9-3 图例9-4①取弧BB ’与GH 的交点,如图例9-3所示因为BG = B ’N =1,B ’M =AG =2,由折叠得AB =AB ’=3.在Rt △AGB ’中,由勾股定理得:B ’G 5,所以AM 5. 因为∠MAB ’=∠EB ’N 所以cos ∠MAB ’=cos ∠EB ’N即:'''AM B NAB B E=设BE = B ’E =x 513x= 解得:x 355BE 355②取弧BB ’与PQ 的交点,如图例9-4所示因为BP= B’N=2,B’M=AP=1,由折叠得AB=AB’=3.在Rt△APB’中,由勾股定理得:B’P=22,所以AM=22.因为∠MAB’=∠EB’N所以cos∠MAB’=cos∠EB’N即:''' AM B N AB B E=设BE= B’E=x,则222 3x=解得:x=322,即BE=322.综上所述,BE的长为355或322.【点睛】根据题意画出图形后,利用一线三直角的线段比例相等求解.【针对训练】1、如图,将边长为6的正方形纸片ABCD对折,使AB与DC重合,折痕为EF,展平后,再将点B折到边CD上,使边AB经过点E,折痕为GH,点B的对应点为M,点A的对应点为N(1)若CM=x,则CH=(用含x的代数式表示);(2)求折痕GH的长.【解析】(1)∵CM=x,BC=6,∴设HC=y,则BH=HM=6﹣y,故y2+x2=(6﹣y)2,整理得:y=﹣x2+3,∵∠HMC+∠MHC=90°,∴∠EMD=∠MHC,∴△EDM∽△MCH,∴=,∴=,解得:HC=﹣x2+2x,故答案为:﹣x2+3或﹣x2+2x;(2)方法一:∵四边形ABCD为正方形,∴∠B=∠C=∠D=90°,设CM=x,由题意可得:ED=3,DM=6﹣x,∠EMH=∠B=90°,故∠HMC+∠EMD=90°,∵∠HMC+∠MHC=90°,∴∠EMD=∠MHC,∴△EDM∽△MCH,∴=,即=,解得:x1=2,x2=6,当x=2时,∴CM=2,∴DM=4,∴在Rt△DEM中,由勾股定理得:EM=5,∴NE=MN﹣EM=6﹣5=1,∵∠NEG=∠DEM,∠N=∠D,∴△NEG∽△DEM,∴=,∴=,解得:NG=,由翻折变换的性质,得AG=NG=,过点G作GP⊥BC,垂足为P,则BP=AG=,GP=AB=6,当x=2时,CH=﹣x2+3=,∴PH=BC﹣HC﹣BP=6﹣﹣=2,在Rt△GPH中,GH===2.当x=6时,则CM=6,点H和点C重合,点G和点A重合,点M在点D处,点N在点A处.MN同样经过点E,折痕GH的长就是AC的长.所以,GH长为6.方法二:有上面方法得出CM=2,连接BM,可得BM⊥GH,则可得∠PGH=∠HBM,在△GPH和△BCM中,∴△GPH≌△BCM(SAS),∴GH=BM,∴GH=BM==2.2、已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图①,当∠BOP=30°时,求点P的坐标;(2)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,求m(用含有t的式子表示);(3)在(2)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果).【解析】(1)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(2,6);(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴=,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴=,∴m=t2﹣t+6(0<t<11);(3)过点P作PE⊥OA于E,如图3,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴=,在△PC′E和△OC′B′中,,∴△PC′E≌△OC′B′(AAS),∴PC'=OC'=PC,∴BP=AC',∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11﹣2t,∴=,∵m=t2﹣t+6,∴3t2﹣22t+36=0,解得:t1=,t2=故点P的坐标为(,6)或(,6).3、如图,在菱形纸片ABCD中,AB=15,tan∠ABC=,将菱形纸片沿折痕FG翻折,使点B落在AD边上的点E处,若CE⊥AD,则cos∠EFG的值为.【解析】如图,过点A作AH⊥BC于点H,连接BE,过点P作PE⊥AB,∵AB=15,tan∠ABC=,∴AH=9,BH=12,∴CH=3,∵四边形ABCD是菱形,∴AB=BC=15,AD∥BC,∵AH⊥BC,∴AH⊥AD,且AH⊥BC,CE⊥AD,∴四边形AHCE是矩形∴EC=9,AE=CH=3,∴BE===3,∵将菱形纸片沿折痕FG翻折,使点B落在AD边上的点E处,∴BF=EF,BE⊥FG,BO=EO=∵AD∥BC,∴∠ABC=∠P AE,∴tan∠ABC=tan∠P AE=,且AE=3,∴AP=,PE=,∵EF2=PE2+PF2,∴EF2=+(15﹣EF+)2,∴EF=,∴FO===∴cos∠EFG==,故答案为:4、如图,在菱形ABCD中,AB=5,tan D=,点E在BC上运动(不与B,C重合),将四边形AECD沿直线AE翻折后,点C落在C′处,点D′落在D处,C′D′与AB交于点F,当C′D'⊥AB时,CE长为.【解析】如图,作AH⊥CD于H,交BC的延长线于G,连接AC′.由题意:AD=AD′,∠D=∠D′,∠AFD′=∠AHD=90°,∴△AFD′≌△AHD(AAS),∴∠F AD′=∠HAD,∵∠EAD′=∠EAD,∴∠EAB=∠EAG,∴=(角平分线的性质定理,可以用面积法证明)∵AB∥CD,AH⊥CD,∴AH⊥AB,∴∠BAG=90°,∵∠B=∠D,∴tan B=tan D==,∴=,∴AG=,∴BG===,∴BE:EG=AB:AG=4:3,∴EG=BG=,在Rt△ADH中,∵tan D==,AD=5,∴AH=3,CH=4,∴CH=1,∵CG∥AD,∴=,∴CG=,∴EC=EG﹣CG=﹣=.故答案为.5、如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=5.【解析】∵折叠,∴△ADE≌△AD'E,∴AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,∵四边形ABCD是矩形,∴AB∥CD,∴∠DEA=∠EAB,∴∠EAB=∠AEB,∴AB=BE,∴D'B=BE﹣D'E=AB﹣1,在Rt△ABD'中,AB2=D'A2+D'B2,∴AB2=9+(AB﹣1)2,∴AB=5故答案为:56、如图,矩形ABCD中,AB=8,BC=10,点N为边BC的中点,点M为AB边上任意一点,连接MN,把△BMN沿MN折叠,使点B落在点E处,若点E恰在矩形ABCD的对称轴上,则BM的长为5或.【解析】①当E在矩形的对称轴直线PN上时,如图1此时∠MEN=∠B=90°,∠ENB=90°,∴四边形BMEN是矩形.又∵ME=MB,∴四边形BMEN是正方形.∴BM=BN=5.②当E在矩形的对称轴直线FG上时,如图2,过N点作NH⊥FG于H点,则NH=4.根据折叠的对称性可知EN=BN=5,∴在Rt△ENH中,利用勾股定理求得EH=3.∴FE=5﹣3=2.设BM=x,则EM=x,FM=4﹣x,在Rt△FEM中,ME2=FE2+FM2,即x2=4+(4﹣x)2,解得x=,即BM=.故答案为5或.7、如图,在矩形ABCD中,AB=6,点E 在边AD上且AE =4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B 1与边AD交于点G,如果DG=3,那么BF的长为.【解析】∵△CDG∽△A'EG,A'E=4∴A'G=2∴B'G=4由勾股定理可知CG'=则CB'=由△CDG∽△CFB'设BF=x∴解得x=故答案为第41 页共41 页。
三角形折叠求角类型一 三角形折叠1.如图 在折纸活动中 小明制作了一张三角形纸片(即ABC ∆) 点D 、E 分别在边AB 、AC 上 将ABC ∆沿着DE 折叠压平后点A 与'A 重合 若75A ∠=︒ 则12∠+∠= ( )A .150︒B .210︒C .105︒D .75︒【答案】A【解析】【分析】 连接A A ' 根据折叠的性质可得∠EA D '=∠EAD=75° 然后根据三角形外角的性质和等量代换即可得出结论.【详解】解:连接A A '由折叠的性质可得∠EA D'=∠EAD=75°∠∠1和∠2分别为∠EA A'和∠DA A'的外角∠∠1=∠EA A'+∠EAA'∠2=∠DA A'+∠DAA'∠∠1+∠2=∠EA A'+∠EAA'+∠DA A'+∠DAA'=(∠EA A'+∠DA A')+(∠EAA'+∠DAA')=∠EA D'+∠EAD=150°故选A.【点睛】此题考查的是三角形中的折叠问题掌握折叠的性质和三角形外角的性质是解决此题的关键.2.如图把△ABC纸片沿DE折叠当A落在四边形BCDE内时则∠A与∠1+∠2之间有始终不变的关系是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3A=∠1+∠2D.3∠A=2(∠1+∠2)【答案】B【解析】【分析】本题问的是关于角的问题当然与折叠中的角是有关系的∠1与∠AED的2倍和∠2与∠ADE的2倍都组成平角结合△AED的内角和为180°可求出答案.【详解】∠∠ABC纸片沿DE折叠∠∠1+2∠AED=180°,∠2+2∠ADE=180°∠∠AED=12(180°−∠1),∠ADE=12(180°−∠2)∠∠AED+∠ADE=12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2)在△ADE中,∠A=180°−(∠AED+∠ADE)=180°−[180°−12(∠1+∠2)]= 12(∠1+∠2)则2∠A=∠1+∠2 故选择B项.【点睛】本题考查折叠和三角形内角和的性质 解题的关键是掌握折叠的性质.3.已知:如图所示 将△ABC 的∠C 沿DE 折叠 点C 落在点C '处 设,C α∠= ∠AEC ′=β ∠BDC '=γ 则下列关系式成立的是( )A .2α=β+γB .α=β+γC .α+β+γ=180°D .α+β=2γ【答案】A【解析】【分析】 通过平角关系用∠CEC ′、∠CDC ′表示出β、γ 通过三角形的内角和用∠CEC ′、∠CDC ′表示出∠C 、∠C ′ 计算可得结论.【详解】解:由折叠的性质知:∠C =∠C ′=α.∠∠AEC ′+∠CEC ′=180° ∠BDC ′+∠CDC ′=180°∠β=180°-∠CEC ′ γ=180°-∠CDC ′.∠β+γ=360°-∠CEC ′-∠CDC ′.∠∠C +∠CEC ′+CDC ′+∠C ′=360°∠2α=360°-∠CEC ′-∠CDC ′.∠β+γ=2α.故选:A .【点睛】本题考查了三角形的内角和 掌握折叠的性质 用含∠CEC ′、∠CDC ′表示出α、β、γ是解决本题的关键. 4.如图,将∠ABC 沿着DE 翻折,使B 点与B'点重合,若∠1+∠2=80°,则∠B 的度数为( )A .20°B .30°C .40°D .50°【答案】C【解析】【分析】 由折叠的性质可知','BED B ED BDE B DE ∠=∠∠=∠,再利用平角的定义可求出BED BDE ∠+∠的度数 进而利用三角形内角和可求∠B 的度数.【详解】由折叠的性质可知','BED B ED BDE B DE ∠=∠∠=∠∠1'180,2'180BED B ED BDE B DE ∠+∠+∠=︒∠+∠+∠=︒ ∠11(36012)(36080)14022BED BDE ∠+∠=︒-∠-∠=⨯︒-︒=︒ ∠180()18014040B BED BDE ∠=︒-∠+∠=︒-︒=︒故选C【点睛】本题主要考查折叠的性质及三角形内角和定理 掌握折叠的性质及三角形内角和定理是解题的关键. 5.如图 三角形纸片ABC 中 ∠A =65° ∠B =75° 将∠C 沿DE 对折 使点C 落在∠ABC 外的点C′处 若∠1=20° 则∠2的度数为( )A .80°B .90°C .100°D .110°【答案】C【解析】【分析】 先根据平角的定义和翻折变换的性质求出∠DEC 再根据三角形内角和定理求出∠CDE 即可得出答案.解:∠A=65° ∠B=75° ∠1=20°∠∠C=∠C′ =180°-∠A -∠B=40°由翻折变换的性质可得:∠DEC=∠DE C′∠DEC+∠DEB=∠DEC+∠DE C′-∠1=180°∠∠DEC=100°∠∠CDE=∠ED C′=180°-∠C -∠DEC=40°∠∠2=180°-∠CDE -∠ED C′=100°.故选C.【点睛】本题主要考查了翻折变换的性质与三角形内角和定理 解题关键是准确识图 理清题目中角的关系. 6.如图 将三角形纸片ABC 沿DE 折叠 当点A 落在四边形BCED 的外部时 测量得∠1=70° ∠2=132° 则∠A 为( )A .40°B .22°C .30°D .52°【答案】B【解析】【分析】 利用四边形的内角和定理求出B C ∠+∠ 再利用三角形的内角和定理可得结果.【详解】∠1=70∠︒ 2=132∠︒∠3601236070132158B C ∠+∠=︒-∠-∠=︒-︒-︒=︒∠180()18015822A B C ∠=︒-∠+∠=︒-︒=︒故选:B .本题主要考查了多边形的内角和定理及三角形的内角和定理 关键是运用多边形的内角和定理求出B C ∠+∠的度数.7.如图所示 把ABC 沿直线DE 翻折后得到A DE ' 如果36A EC '∠=︒ 那么AED =∠___度.【答案】72【解析】【分析】根据折叠的性质:折叠前后图形的形状和大小不变 只是位置改变 对应边和对应角相等 可以得到AED A ED '∠=∠ 再根据平角的定义即可求解.【详解】 ABC 沿直线DE 翻折后得到A DE '∴AED A ED '∠=∠180AED A ED A EC ''∠+∠+∠=︒ 36A EC '∠=︒∴18036722AED ︒-︒∠==︒. 故答案为:72.【点睛】本题考查了折叠的性质 三角形折叠中的角度问题 它属于轴对称 熟练掌握折叠的性质是解题的关键. 8.如图 把ABC 纸片沿DE 折叠 使点B 落在图中的B '处 设'B ∠EC ∠= 1 'B ∠DA ∠=2.若B ∠=25︒ 则∠2∠-1=______︒【答案】50【解析】【分析】由折叠性质求得'25B ∠=︒ 由三角形的外角性质 用1∠表示 2∠ 进而求得21∠-∠.【详解】解:25B ∠=︒'25B B ∠∠∴==︒31'125B ∠∠∠∠=+=+︒2312525B ∠∠∠∠=+=+︒+︒2150∠∠∴-=︒故答案为50.【点睛】本题主要考查三角形外角的性质 折叠的性质 关键是根据三角形的外角的性质表示出1∠与2∠的关系式.类型二多边形折叠9.如图将四边形纸片ABCD沿EF折叠点A落在A1处若∠1+∠2=90°则∠A的度数是()A.45°B.40°C.35°D.30°【答案】A【解析】【分析】根据翻折变换的性质和平角的定义求出∠3+∠4 再利用三角形的内角和定理列式计算即可得解.【详解】解:∠四边形纸片ABCD沿EF折叠点A落在A1处∠∠3+∠4=12(180°-∠1)+12(180°-∠2)=180°-12(∠1+∠2)∠∠1+∠2=90°∠∠3+∠4=180°-12×90°=180°-45°=135°在∠AEF中∠A=180°-(∠3+∠4)=180°-135°=45°.故选:A.【点睛】本题考查了三角形的内角和定理翻折变换的性质平角的定义熟记各性质并整体思想的利用是解题的关键.10.如图所示在四边形纸片ABCD中∠A=80° ∠B=70° 将纸片沿着MN折叠使C D分别落在直线AB 上的C'D处则∠AMD'+∠BNC'等于()A .50°B .60°C .70°D .80°【答案】B【解析】【分析】 首先根据四边形内角和定理可得∠D+∠C=210° 再利用折叠性质可得∠'MD B =∠D ∠'NC A =∠C 即∠'MD B +∠'NC A =210° 从而得出∠'MD A +∠'NC B =150° 最后进一步利用三角形内角和定理求解即可.【详解】∠∠A=80° ∠B=70°∠∠D+∠C=360°−∠A −∠B=210°由折叠性质可得:∠'MD B =∠D ∠'NC A =∠C∠∠'MD B +∠'NC A =210°∠∠'MD A +∠'NC B =360°−(∠'MD B +∠'NC A )=150°∠∠'AMD +∠'BNC =360°−(∠'MD A +∠'NC B )−(∠A +∠B )=60°故选:B .【点睛】本题主要考查了三角形与四边形内角和定理以及折叠的性质 熟练掌握相关概念是解题关键.11.如图所示 将三角形纸片ABC 沿DE 折叠 使点B 落在点B ′处 若EB ′恰好与BC 平行 且∠B =80° 则∠CDE =_____°.【答案】130【解析】【分析】先求出∠B=∠B′=80° ∠BDE=∠B′DE根据平行线的性质得到∠B′DC=80° 进而得到∠BD B′=100° ∠BDE=50° 即可求出∠CDE=130°.【详解】解:由折叠的定义得∠B=∠B′=80° ∠BDE=∠B′DE∠EB′∠BC∠∠B′=∠B′DC=80°∠∠BD B′=180°-∠B′DC=100°∠∠BDE=∠B′DE=50°∠∠CDE=180°-∠BDE=130°.故答案为:130【点睛】本题考查了折叠的定义平行线的性质邻补角的定义等知识熟知相关知识并根据图形灵活应用是解题关键.12.如图△ABC中将边BC沿虚线翻折若∠1+∠2=102°,则∠A的度数是______.【答案】51°【解析】【分析】延长折叠后的直线交于A’ 根据折叠的性质及内角和即可求解.【详解】如图延长折叠后的直线交于A’由于折叠∠∠1+2∠3=180° ∠2+2∠4=180°∠∠1+∠2=102° ∠1+2∠3+∠2+2∠4=360°∠2∠3+2∠4=258°∠∠3+∠4=129°∠∠A=∠A’=180°-(∠3+∠4)=51°【点睛】此题主要考查折叠的性质 解题的关键是根据折叠作出辅助线进行求解.13.将一张纸如图所示折叠后压平 点F 在线段BC 上 EF 、GF 为两条折痕 若∠1=57° ∠2=20° ∠3的度数_____度【答案】23【解析】【分析】根据折叠的性质可知 1EFB '∠=∠ 3GFC '∠=∠ 然后对123180EFB GFC '∠+∠+∠+∠+∠'=︒计算求解即可.【详解】解:由折叠的性质可知 157EFB '∠=∠=︒ 3GFC '∠=∠∠123180EFB GFC '∠+∠+∠+∠+∠'=︒ ∠1805757203232︒-︒-︒-︒∠==︒ 故答案为:23°.【点睛】本题考查了折叠的性质 角的计算.解题的关键在于找出角度的数量关系.14.利用折纸可以作出角平分线 如图1则OC 为AOB ∠的平分线 如图2、图3 折叠长方形纸片 OC OD 均是折痕 折叠后 点A 落在点'A 点B 落在点'B 连接'OA .①如图2 若点'B 恰好落在'OA 上 且32AOC ∠=︒ 则BOD ∠=__________;②如图3 当点'B 在'COA ∠的内部时 连接'OB 若44AOC ∠=︒ 61BOD ∠=︒ 求''A OB ∠的度数为__________.【答案】 58︒ 30【解析】【分析】①由题意知AOC A OC '∠=∠ BOD B OD '∠=∠ 根据180AOC A OC BOD B OD ''∠+∠+∠+∠=︒ 计算求解即可;② 由题意知AOC A OC '∠=∠ BOD B OD '∠=∠ 根据180AOC A OC A OD BOD ''∠+∠+∠+∠=︒ 求出A OD '∠的值 进而根据A OB B OD A OD ''''∠=∠-∠计算求解即可.【详解】解:①由题意知AOC A OC '∠=∠ BOD B OD '∠=∠∠180AOC A OC BOD B OD ''∠+∠+∠+∠=︒ 32AOC ∠=︒∠58BOD ∠=︒故答案为:58°.②由题意知AOC A OC '∠=∠ BOD B OD '∠=∠∠180AOC A OC A OD BOD ''∠+∠+∠+∠=︒ 44AOC ∠=︒ 61BOD ∠=︒∠1802446131A OD '∠=︒-⨯︒-︒=︒∠30A OB B OD A OD ''''∠=∠-∠=︒故答案为:30°.【点睛】本题考查了角平分线.解题的关键在于找出角度的数量关系.类型三 多次折叠15.如图所示 把一个三角形纸片ABC 顶角向内折叠3次之后 3个顶点不重合 那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是()A.180°B.270°C.360°D.无法确定【答案】C【解析】【详解】由题意知∠1+∠2+∠3+∠4+∠5+∠6=∠B+∠B'+∠C+∠C'+∠A+∠A'∠∠B=∠B' ∠C=∠C' ∠A=∠A'∠∠1+∠2+∠3+∠4+∠5+∠6=2(∠B+∠C+∠A)=360° 故选C.16.如图将∠ABC沿DE、HG、EF翻折三个顶点均落在点O处若∠1=131° 则∠2的度数为()A.49°B.50°C.51°D.52°【答案】A【解析】【分析】先根据折叠性质得:∠HOG=∠B∠DOE=∠A∠EOF=∠C根据三角形内角和为180°和周角360°求出结论.【详解】由折叠得:∠HOG=∠B∠DOE=∠A∠EOF=∠C∠∠A+∠B+∠C=180°∠∠HOG+∠DOE+∠EOF=180°∠∠1+∠2+∠HOG+∠DOE+∠EOF=360°∠∠1+∠2=180°∠∠1=131°∠∠2=180°﹣131°=49°故选:A.【点睛】本题考查折叠的性质、三角形内角和解题的关键是掌握折叠的性质、三角形内角和.17.如图a是长方形纸带∠DEF=25° 将纸带沿EF折叠成图b 再沿BF折叠成图c 则图c中的∠CFE的度数是____________°.【答案】105°【解析】【详解】由图a知∠EFC=155°.图b中∠EFC=155° 则∠GFC=∠EFC-∠EFG=155°-25°=130°.图c中∠GFC=130° 则∠CFE=130°-25°=105°.故答案为105°.点睛:在长方形的折叠问题中因为有平行线和角平分线所以存在一个基本的图形等腰三角形即图b中的等腰∠CEF其中CE=CF这个等腰三角形是解决本题的关键所在.18.如图1 ∠ABC中沿∠BAC的平分线AB1折叠剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠剪掉重叠部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠点B n与点C重合无论折叠多少次只要最后一次恰好重合我们就称∠BAC是∠ABC的好角.(1)如图2 在∠ABC中∠B>∠C 若经过两次折叠∠BAC是∠ABC的好角则∠B与∠C的等量关系是_______;(2)如果一个三角形的最小角是20° 则此三角形的最大角为______时该三角形的三个角均是此三角形的好角.【答案】 B 2C ∠∠= 140°、120°或80°【解析】【分析】(1)根据折叠性质可得∠A 1B 1B 2=∠C ∠AA 1B 1=∠B 由三角形外角性质可得∠AA 1B 1=2∠C 根据等量代换可得∠B=2∠C ;(2)先求出经过三次折叠 ∠BAC 是△ABC 的好角时 ∠B 与∠C 的等量关系为∠B=3∠C 进而可得经过n 次折叠 ∠BAC 是△ABC 的好角时∠B 与∠C 的等量关系为∠B=n∠C 因为最小角是20º 是△ABC 的好角 根据好角定义 设另两角分别为20mº 4mn° 由题意得20m+20mn+20=180° 所以m(n+1)=8 再根据m 、n 都是正整数可得m 与n+1是8的整数因子 从而可以求得结果.【详解】(1)根据折叠性质得∠B=∠AA 1B 1 ∠A 1B 1B 2=∠C∠∠AA 1B 1=∠A 1B 1B 2+∠C∠∠B=2∠C故答案为∠B=2∠C(2)如图:∠根据折叠的性质知 ∠B=∠AA 1B 1 ∠C=∠A 2B 2C ∠A 1B 1C=∠A 1A 2B 2∠根据三角形的外角定理知 ∠A 1A 2B 2=∠C+∠A 2B 2C=2∠C ;∠根据四边形的外角定理知 ∠BAC+∠B+∠AA 1B 1-∠A 1B 1C=∠BAC+2∠B -2∠C=180°根据三角形ABC 的内角和定理知 ∠BAC+∠B+∠C=180°∠∠B=3∠C ;∠当∠B=2∠C 时 ∠BAC 是△ABC 的好角;当∠B=3∠C 时 ∠BAC 是△ABC 的好角;故若经过n 次折叠∠BAC 是△ABC 的好角 则∠B 与∠C (不妨设∠B >∠C )之间的等量关系为∠B=n∠C ; ∠最小角为20°∠设另两个角为20m°和20mn°∠20°+20m°+20mn°=180° 即m(1+n)=8∠m 、n 为整数∠m=1 1+n=8;或m=2 1+n=4;或m=4 1+n=2.解得:m=1 n=7;m=2 n=3 m=4 n=1∠另两个角为20°、140°或40°、120°或80°、80°∠此三角形最大角为140°、120°或80°时 三个角均是此三角形的好角.故答案为140°、120°或80°【点睛】本题考查了翻折变换(折叠问题).充分利用三角形内角和定理、三角形外角定理以及折叠的性质是解题关键.19.直线MN 与直线PQ 垂直相交于O 点A 在射线OP 上运动 点B 在射线OM 上运动 连接AB .(1)如图1 已知AC BC 分别是BAP ∠和ABM ∠角的平分线①点A B 在运动的过程中 ACB ∠的大小是否发生变化?若发生变化 请说明理由;若不发生变化 试求出ACB ∠的大小.②如图2 将ABC ∆沿直线AB 折叠 若点C 落在直线PQ 上 记作点C ' 则ABO ∠=_______︒;如图3 将ABC ∆沿直线AB 折叠 若点C 落在直线MN 上 记作点C '' 则ABO ∠=________︒.(2)如图4 延长BA 至G 已知BAO ∠ OAG ∠的角平分线与BOQ ∠的角平分线交其延长线交于E F 在AEF ∆中 如果有一个角是另一个角的32倍 求ABO ∠的度数. 【答案】(1)∠ACB 的大小不会发生变化 ∠ACB =45°;(2)30 60;(3)60°或72°.【解析】【分析】(1)①由直线MN 与直线PQ 垂直相交于O 得到∠AOB=90° 根据三角形的外角的性质得到∠PAB+∠ABM=270° 根据角平分线的定义得到∠BAC=12∠PAB ∠ABC=12∠ABM 于是得到结论;②图2中 由于将∠ABC 沿直线AB 折叠 若点C 落在直线PQ 上 得到∠CAB=∠BAQ 由角平分线的定义得到∠PAC=∠CAB 根据三角形的内角和即可得到结论;图3中根据将∠ABC沿直线AB折叠若点C落在直线MN上得到∠ABC=∠ABN 由于BC平分∠ABM 得到∠ABC=∠MBC 于是得到结论;(2)由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=12∠BAO ∠EOQ=12∠BOQ 进而得出∠E的度数由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90° 在∠AEF中由一个角是另一个角的32倍分情况进行分类讨论即可解答.【详解】(1)①∠ACB的大小不变∠直线MN与直线PQ垂直相交于O∠∠AOB=90°∠∠OAB+∠OBA=90°∠∠PAB+∠ABM=270°∠AC、BC分别是∠BAP和∠ABM角的平分线∠∠BAC=12∠PAB ∠ABC=12∠ABM∠∠BAC+∠ABC=12(∠PAB+∠ABM)=135°∠∠ACB=45°;②∠图2中将∠ABC沿直线AB折叠若点C落在直线PQ上∠∠CAB=∠BAQ∠AC平分∠PAB∠∠PAC=∠CAB∠∠PAC=∠CAB=∠BAO=60°∠∠AOB=90°∠∠ABO=30°∠图3中将∠ABC沿直线AB折叠若点C落在直线MN上∠∠ABC=∠ABN∠BC平分∠ABM∠∠ABC=∠MBC∠∠MBC=∠ABC=∠ABN∠∠ABO=60°故答案为:30 60;(2)∠∠BAO与∠BOQ的角平分线相交于E∠∠EAO=12∠BAO ∠EOQ=12∠BOQ∠∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO∠AE、AF分别是∠BAO和∠OAG的角平分线∠∠EAF=90°.在∠AEF中∠有一个角是另一个角的32倍故有:①∠EAF=32∠E ∠E=60° ∠ABO=120°(不合题意舍去);②∠EAF=32∠F ∠E=30° ∠ABO=60°;③∠F=32∠E ∠E=36° ∠ABO=72°;④∠E=32∠F ∠E=54° ∠ABO=108°(不合题意舍去);.∠∠ABO为60°或72°.【点睛】本题主要考查的就是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来然后再根据内角和定理进行求解.同学们在解答这种问题的时候一定要注意外角与内角之间的联系不能只关注某一部分.在需要分类讨论的时候一定要注意分类讨论的思想.。
三角形折叠问题总结
三角形折叠问题是指将一个平面三角形折叠成一个四面体的问题,这个问题可以通过解析几何、向量运算、线性代数等多种数学方法进行求解。
下面是对该问题的总结:
1. 折叠前后的三角形具有相似性质。
2. 折叠后的四面体底面积等于原三角形的面积。
3. 折叠后的四面体体积可以通过向量叉积计算。
4. 折叠后的四面体的高可以通过点到平面距离公式计算。
5. 折叠后的四面体的底面中心、重心、外心、垂心的坐标可以通过向量运算计算。
6. 折叠后的四面体底面与侧面、侧面之间的夹角可以通过余弦定理和向量运算计算。
7. 通过三维软件制作三维模型,可以更加直观地看到折叠前后的变化。
8. 该问题的应用包括三角形的展开、折纸问题、人工智能中的空间感知等。
总之,三角形折叠问题是一个基础但重要的数学问题,通过掌
握相关的数学知识和方法,可以深入了解三维空间中的几何性质,对于相关领域的研究和应用有很大的帮助。
专题7:折叠问题中的角度运算1如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′=2如图将六边形ABCDEF沿着直线GH折叠,使点A、B落在六边形CDEFGH的内部,则∠1+∠2=3如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=4已知△ABC就是一张三角形的纸片.(1)如图①,沿DE折叠,使点A落在边AC上点A′的位置,∠DA′E与∠1的之间存在怎样的数量关系?为什么?(2)如图②所示,沿DE折叠,使点A落在四边形BCED的内部点A′的位置,∠A、∠1与∠2之间存在怎样的数量关系?为什么?(3)如图③,沿DE折叠,使点A落在四边形BCED的外部点A′的位置,∠A、∠1与∠2之间存在怎样的数量关系?为什么?5 65已知,如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的内部时,则∠A与∠1+∠2之间有一种数量关系:2∠A=∠1+∠2始终保持不变,为什么?、6如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)设∠AED的度数为x,∠ADE的度数为y,那么∠1、∠2的度数分别就是多少?(用含有x或y的代数式表示)(2)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.折一折,想一想,如图所示,在△ABC中,将纸片一角折叠,使点C落在△ABC内一点C′上,若∠1=40°,∠2 =30°(1)求∠C的度数;(2)试通过第(1)问,直接写出∠1、∠2、∠C三者之间的关系.如图(1),△ABC就是一个三角形的纸片,点D、E分别就是△ABC边上的两点;研究(1):若沿直线DE折叠,则∠BDA′与∠A的关系就是∠BDA′=2∠A;研究(2):若折成图2的形状,猜想∠BDA′,∠CEA′与∠A关系,并说明理由;研究(3):若折成图3的形状,猜想∠BDA′,∠CEA′与∠A的关系,并说明理由.图1、图2、7如图①,把△ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置,通过计算我们知道:2∠A=∠1+∠2.请您继续探索:(1)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,如图②,此时∠A与∠1、∠2之间存在什么样的关系?为什么?请说明理由.(2)如果把四边形ABCD沿EF折叠,使点A、D落在四边形BCFE的内部A′、D′的位置,如图③,您能求出∠A、∠D、∠1与∠2之间的关系不?(直接写出关系式即可)8三角形纸片ABC中,∠A=55°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内(如图),则∠1+∠2的度数为度.9如图,已知四边形ABCD,∠C=72°,∠D=81°.沿EF折叠四边形,使点A、B分别落在四边形内部的点A′、B′处,求∠1+∠2的大小.10、如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )11、将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E′、D′,已知∠AFC=76°,则∠CFD′等于12如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于13如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE;若∠B=50°,则∠BDF的度数为1 1如图,把一张长方形纸片ABCD,沿EF折叠后,ED′与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,则∠1等于14将一条两边沿互相平行的纸带按如图折叠.设∠1=x°,则∠α的度数为( )15将长方形ABCD沿折痕EF折叠,使CD落在GH的位置,若∠FGH=55°,则∠HEF=( )16如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=( )17如图,D、E分别为△ABC的边AB、AC上的点,DE∥BC,将△ABC沿线段DE折叠,使点A落在BC上的点F处,若∠B=55°,则∠BDF的度数为( )18如图所示,将一张长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置上,ED′的延长线与BC的交点为G.若∠EFG=80°,则∠BFC′的度数为( )19如图a就是长方形纸带,∠DEF=24°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数( )20如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为( )21如图,将长方形ABCD沿对角线BD折叠,使点C恰好落在如图C′的位置,若∠DBC=15°,则∠ABC′=( )22一张长方形纸条折成如图的形状,如果∠1=130°,∠2=( )23如图:将一张长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠EFG=55°,则∠1=( )24如图,已知长方形ABCD,我们按如下步骤操作可以得到一个特定角:(1)以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF交AD于F,则∠AEF的度数25如图,将纸片△ABC沿着DE折叠压平,且∠1+∠2=72°,则∠A=( )26如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1与∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,您发现的规律就是( )27如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为( )28一个宽度相等纸条,按如图所示的方式折叠一下,已知∠3=120°,则∠1的度数为( )29如图,把一张长方形纸条折叠后,若∠AOB′=70°,则∠OGC的度数为( )30如图,∠A=60°,∠B=70°,将纸片的一角折叠,使点C落在△ABC内,若∠2=80°,则∠1的度数为( )31如图(1)就是长方形纸带,∠DEF=α,将纸带沿EF折叠成图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数就是( )32如图,生活中,将一个宽度相等的纸条按右图所示折叠一下,如果∠1=140°,那么∠2的度数为( )33如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B =( )34如图,一张长方形纸条沿AB折叠,如果∠1=124°,那么∠2的度数就是( )35如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=( )36如图,一张三角形纸片△ABC,沿DE折叠使得顶点C落在边AB上,若DE∥AB,∠A=45°,则∠ADC的度数就是( ) 37如图所示,把一个三角形纸片ABC顶角向内折叠3次之后,3个顶点不重合,那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数与就是( )38如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为( )39如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之与为( )40如图,将五边形ABCDE沿AE对折到如图的位置,其中∠AEC=72°,则∠CED′=( )41如图,在△ABC中,∠A=35°,在平面内沿直线DE将△ABC折叠后,量得∠BDA′=110°,那么∠CEA′的度数为( ) 42如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于( )43如图,已知△ABC中,∠BAC=140°,现将△ABC进行折叠,使顶点B、C均与顶点A重合,求∠DAE的度数.。
中考数学折叠问题专项突破4--折叠中直角三角形存在性问题模块四 图形折叠中的直角三角形存在性问题【典例1】如图例3-1,在Rt △ABC 中,∠ACB =90°,∠B =30°,BC =3,点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为直角三角形时,BD 的长为图例3-1图例3-2图例3-3【解析】从题目所给的“当△AEF 为直角三角形时”条件出发,以直角顶点所在位置进行分类讨论. 通过观察及分析可知∠BED =∠DEF =60°,所以∠AEF =180-120°=60°. 即点E 不可能为直角顶点. 分两种情况考虑:①当∠EAF =90°时,如图例3-2所示.∵∠B =30°,BC =3,∴30AC tan BC =︒⨯=⨯2AB AC =,∵∠EAF =90°∴∠AFC =60°,∠CAF =30°在Rt △ACF 中,有:cos AF AC CAF =÷∠÷,24BF AF == 由折叠性质可得:∠B =∠DFE =30°,122BD DF BF === ②当∠AFE =90°时,如图例3-3所示.由折叠性质得:∠B =∠DFE =30°,122BD DF BF ===∴∠AFC =60°,∠F AC =30°∴tan 1CF FAC AC =∠⨯==,所以,BF =2,112BD DF BF ===,综上所述,BD 的长为2或1. 【小结】本题难度适中,要求学生具备分类讨论思想及数形结合解决问题的能力,另外还需要熟练运用勾股定理及相似三角形知识. 通过此题,可总结出:①遇到直角三角形存在性问题时,分类讨论的出发点在于直角顶点的位置;②解决直角三角形存在性问题的方法是数形结合,先作出符合题意的图形,再用勾股定理或相似三角形、三角函数性质解题.【典例2】如图例4-1,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.图例4-1 图例4-2 图例4-3【解析】此题以“当△CEB′为直角三角形时”为突破口,分析可能是直角顶点的点,得出存在两种情况,即点B′及点E分别为直角顶点.分两种情况考虑:①当∠CEB′=90°时,如图例4-2所示.由折叠性质得:AB=AB′,四边形ABE B′是矩形.所以四边形ABE B′是正方形.此时,BE=AB=3.②当∠CB′E=90°时,如图例4-3所示.由折叠性质知,∠AB′C=90°,所以∠AB′C+∠CB′E=180°.∴点A、B′、C共线在Rt△ABC中,由勾股定理得AC=5由折叠得:AB= AB′=3所以B′C=2设BE=x,则B′E=x,EC=4-x在Rt△ABC中,由勾股定理得:EC2=B′E2+B′C2即:(4-x)2=x2+22 解得:x=1.5.综上所述,BE的值为3或1.5.【小结】本题解题关键在准确对问题进行分类讨论且作出相应图形,要求学生掌握三点共线的理由,折叠的性质及勾股定理的应用.【典例3】如图例5-1,在Rt ABC ∆中,90A ∠=︒,AB AC =,1BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MB C ∆为直角三角形,则BM 的长为 .图例5-1图例5-2图例5-3【解析】通过观察及分析可知,C 点不可能为直角顶点,分两种情况讨论. ①当∠CM B ′=90°时,如图例5-2所示.由折叠知:∠BMN =∠B ′MB =45°,又因为∠B =45°,所以∠BNM =90°,∠MNB ′=90° 即∠BNM +∠MN B ′=180°,所以B 、N 、B ′三点共线,此时B ′与点A 重合.所以,12BM BC == ①当∠CB ′M =90°时,如图例5-3所示.由折叠知∠B =∠B ′=45°,因为∠C =45°,可得∠B ′MC =45°,所以△B ′MC 是等腰直角三角形设BM = B ′M =x ,B ′C =x ,则MC =因为BC ,所以x x +1 解得:x =1,即BM =1.综上所述,BM 或1. 【小结】根据题意判断C 点不可能为直角顶点,分两种情况讨论,利用等腰直角三角形三边关系求解.【典例4】如图例6-1,在∠MAN =90°,点C 在边AM 上,AC =4,点B 为边AN 上一动点,连接BC ,△A’BC 与△ABC 关于BC 所在直线对称. D 、E 分别为AC 、BC 的中点,连接DE 并延长交A’B 所在直线于点F ,连接A’E . 当△A’EF 为直角三角形时,AB 的长为.图例6-1图例6-2图例6-3【解析】分两种情况讨论.①当∠A’FE=90°时,如图例6-2所示.∵D、E分别为AC、BC的中点,∴DE是三角形ABC的中位线,即DE∥BA∴∠A’BA=90°,∴四边形AB A’C为矩形由折叠得AC=A’C,∴四边形AB A’C为正方形,即AB=AC=4.②当∠A’EF=90°时,如图例6-3所示.∵∠A’EF=∠CDE=90°,∴A’E∥CD,∴∠DCE=∠CEA’由折叠知:∠DCE=∠A’CE,∴∠CEA’=∠A’CE,∴A’C=A’E=4又∵E是BC中点,即A’E是Rt△A’BC的中线,∴BC=2A’E=8在Rt△A’BC中,由勾股定理得,A’B=由折叠性质得:AB= A’B=.综上所述,AB的长为4或.【小结】利用中位线性质(三角形的中位线平行于第三边)及正方形判定,用勾股定理求解.1、矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在R t△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如图2.此时ABEB′为正方形.【解析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,在R t△ABC中,AB=3,BC=4,∴AC,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在R t△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得x=32,∴BE=32;②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形,∴BE=AB=3.综上BE长为32或3【小结】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.2、如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则ADDF的值为A .1113B .1315C .1517D .1719【分析】根据折叠的性质可得出DC =DE 、CP =EP ,由∠EOF =∠BOP 、∠B =∠E 、OP =OF 可得出△OEF ≌△OBP (AA S ),根据全等三角形的性质可得出OE =OB 、EF =BP ,设EF =x ,则BP =x 、DF =4﹣x 、BF =PC =3﹣x ,进而可得出AF =1+x .在R t △DAF 中,利用勾股定理可求出x 的值,即可得出答案. 【解析】根据折叠,可知:△DCP ≌△DEP ,∴DC =DE =4,CP =EP .在△OEF 和△OBP 中,∵90EOF BOP B E OP OF ∠∠∠∠=⎧⎪==︒⎨⎪=⎩,∴△OEF ≌△OBP (AA S ),∴OE =OB ,EF =BP .设EF =x ,则BP =x ,DF =DE ﹣EF =4﹣x .又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC ﹣BP =3﹣x ,∴AF =AB ﹣BF =1+x .在R t △DAF 中,AF 2+AD 2=DF 2,即(1+x )2+32=(4﹣x )2,解得:x =0.6,∴DF =4﹣x =3.4,∴1517AD DF =.故选C . 【小结】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF =1+x ,求出AF 的长度是解题的关键.3、如图,已知正方形ABCD的边长为3,E是BC上一点,BE Q是CD上一动点,将△CEQ沿直线EQ折叠后,点C落在点P处,连接P A.点Q从点C出发,沿线段CD向点D运动,当P A的长度最小时,CQ的长为()A.3B.3C.32D.3【解析】如图所示:在R t△ABE中,AE=.∵BC=3,BE=,∴EC=3-.由翻折的性质可知:PE=CE=3-.∵AP+PE≥AE,∴AP≥AE-PE.∴当点A、P、E一条直线上时,AP有最小值.∴AP=AE-PE=2-(3-)=3-3.故选A.4、如图,矩形ABCD 中,3AB =,4BC =,点E 是BC 边上一点,连接AE ,把矩形沿AE 折叠,使点B 落在点B '处.当CEB '∆为直角三角形时,BE 的长为____________.【分析】当△CEB ′为直角三角形时,有两种情况: ①当点B ′落在矩形内部时,如答图1所示.连结AC ,先利用勾股定理计算出AC =10,根据折叠的性质得∠AB ′E =∠B =90°,而当△CEB ′为直角三角形时,只能得到∠EB ′C =90°,所以点A 、B ′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,则EB =EB ′,AB =AB ′=6,可计算出CB ′=4,设BE =x ,则EB ′=x ,CE =8-x ,然后在R t △CEB ′中运用勾股定理可计算出x .②当点B ′落在AD 边上时,如答图2所示.此时四边形ABEB ′为正方形. 【解析】由题意知,需分两种情况讨论:①当90CB E ︒'∠=时,如图1,由折叠得,90AB E B ︒'∠=∠=,AB AB '=, ∴180AB C ︒'∠=,∴,,A B C '三点共线.在矩形ABCD 中,3AB =,4BC =, ∴5AC =.∵AB AB 3'==,∴2B C AC AB ''=-=. 设BE x =,则4CE BC BE x =-=-,B E x '=,在Rt B CE '∆中,222B E B C CE ''+=,即2222(4)x x +=-,解得32x =. ②当90B EC ︒'∠=时,如图2,由折叠可知ABE AB E '∆∆≌, ∴BE B E '=,90B AB E ︒'∠=∠=,∴四边形ABEB '是正方形,∴3BE AB ==.综上,当CEB '∆为直角三角形时,BE 的长为32或3. 【小结】考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.5、如图,在矩形ABCD中,AB=6,AD=,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A′,当点E,A′,C三点在一条直线上时,DF的长为_____.【分析】利用勾股定理求出CE,再证明CF=CE即可解决问题.(注意有两种情形)【解析】如图,由翻折可知,∠FEA=∠FEA′,∵CD∥AB,∴∠CFE=∠AEF,∴∠CFE=∠CEF,∴CE=CF,在R t△BCE中,EC==∴CF=CE=,∵AB=CD=6,∴DF=CD﹣CF=6﹣当点F在DC的延长线上时,易知EF⊥EF′,CF=CF′=,∴DF=CD+CF′=【小结】本题考查翻折变换、矩形的性质、勾股定理等知识,本题的突破点是证明△CFE的等腰三角形,属于中考常考题型.6、如图,在菱形ABCD 中,∠DAB =45°,AB =4,点P 为线段AB 上一动点,过点P 作PE ⊥AB 交直线AD 于点E ,将∠A 沿PE 折叠,点A 落在F 处,连接DF ,CF ,当△CDF 为直角三角形时,线段AP 的长为__________.【分析】分两种情形讨论:①如图1,当DF ⊥AB 时,△CDF 是直角三角形;②如图2,当CF ⊥AB 时,△DCF 是直角三角形,分别求出即可.【解析】分两种情况讨论:①如图1,当DF ⊥AB 时,△CDF 是直角三角形.∵在菱形ABCD 中,AB =4,∴CD =AD =AB =4.在R t △ADF 中,∵AD =4,∠DAB =45,DF =AF,∴AP 12=AF = ②如图2,当CF ⊥AB 时,△DCF 是直角三角形.在R t △CBF 中,∵∠CFB =90°,∠CBF =∠A =45°,BC =4,∴BF =CF,∴AFAP 12=AF=2AP2【小结】本题考查了菱形的性质,等腰直角三角形的性质,折叠的性质,熟练掌握折叠的性质是解题的关键,正确画出图象,注意分类讨论的思想,属于中考常考题型.。
三角形的折叠问题总结三角形是一种常见的几何图形,它有三条边和三个顶点。
今天我们就来学习三角形的知识,解决一些相关问题。
三角形的折叠问题1:三个角的度数分别是90°、 135°、 145°的直角三角形是全等的吗?三个角的度数分别是135°、 145°、 180°的直角三角形是全等的。
三个角的度数分别是90°、 135°、 180°的直角三角形是全等的。
三角形的折叠问题2:证明:( 1)假设三角形ABC中, BC=BC=AB, AD=AD,则AD=BC=AC;( 2)若AB、 AD、BC三线合一且交于一点O,求三角形OE的面积;( 3)若AB=AC=AD,求三角形BE的面积。
三角形的折叠问题3:如图,在△ABC中,点D 的位置如图所示,那么这个△ABC是等腰梯形还是直角梯形呢?答:这个△ABC是等腰梯形。
证明:①将△ACD旋转到正视图,在A、 B 两点取得一条中线作垂线,此时图形变为长方形。
在AB边上任取一点C,使△ADC的高CD=1,在CD上任取一点E,使△ABC的底AC=AD,在AC上任取一点F,使△ABC的底AB=CD。
由此可得: AE=AF,∠DAB=∠ADB。
②将线段AF折叠到AE上,作法同前。
2:证明:( 1)假设三角形ABC中, AD=BC, AE=BC,则AD=BC。
( 2)将三角形ABC沿着AD向右平移3格,再将△BCD沿着BC向右平移5格,即得到△ABC,则四边形ABCD是菱形,但是,该四边形不是正方形。
因为在四边形ABCD中, AB、 AC、 BC、 BD均互相平行,且BD=2AB,可得△BCD是直角梯形。
三角形的折叠问题4:在△ABC 中,已知∠A=∠B=∠C=45°,∠A+∠B=30°,∠C+∠A=135°,∠A+∠C=180°。
①将三角形ABC旋转到正视图,设A、 B两点的坐标为( x, y),过A作AE ⊥BC交BC于P,连接BC;再过B作BE ⊥AB交AC于E,交BD于N,则四边形AEBE是平行四边形,且AE=AB,BE=BC, A、 B两点的坐标为( a, b),( c, d), AB=AC=AD,∴∠ABC=90°,∵∠ABC=90°,∴△ABC是直角三角形,∵∠A+∠B=30°,∠C+∠A=135°,∠A+∠C=180°,∴∠A+∠C=90°;( 2)将三角形ABC沿着AD向右平移3格,再将△BCD沿着BC 向右平移5格,即得到△ABC,则四边形ABCD是菱形,但是,该四边形不是正方形。
盘点三角形折叠中的一次折叠问题50.牛P.7擞,7(2ol1年第5期?初中版)?复习参考?盘点三角形折叠中的一次折叠问题312300浙江华维外语学校徐骏近年来三角形折叠类问题频频出现,成为中考命题的高频热点.这类问题涉及知识面广,往往与相似,函数,方程等知识融为一体,主要考查学生的逻辑思维能力和空间想象能力.解决这类问题的关键是要抓住折叠前后图形的对称关系,灵活运用轴对称的性质.本文以近几年中考题为例,归纳其类型与解法,供参考.1求角度例1(2010年东阳)如图1,D是AB边上的中点,将AABC沿过D的直线折叠,使点A落在BC上,处,若LB:50.,则LBDF:度.F图1C解析由折叠可知FD=AD,又AD:BD,所以FD=BD,则LBFD=LB=50.,故BDF:180.一曰一日FD=80..例2(2010年泉州)如图2所示,在折纸活动中,小明制作了一张AABC纸片,点D,E分别在边AB,AC上,将AABC沿着DE折叠压平,A与A重合,若厶4=7O.,则l+2:A.140oB.130~C110oD.70~图2图3解析连接AA(如图3),由折叠可知AE=AE,则LF_AA:F_AA,又1=LEAA+EAA.所以1=2/_EAA.同理/_2=2LDAA,则1+2=2(¨+DAA)=2BAC=140..故选2求三角函数值例3(2008年泰安)直角三角形纸片的两直角边长分别为6,8,现将AABC如图4那样折叠,使点与点曰重合,折痕为DE,则tanCBE的值是囝4A.等B.迎3c.247D.÷解析由折叠可知肥:旭设c.:,贝ⅡBE=8一.在RtABCE中,BE2=曰c+CE,即(8一)2=6+2,三解得=7,则tanc船==4=7.故选C.例4(2009年泰安)如图5,在RtAABC中,/_ACB:;,\90.,厶<B,AABC的中,,,,M线CM将ACMA折叠,使点A落在点D处,若CD恰好与MB垂直,则tanA的值为——.解析由折叠可知LACM=DCM.C图5D因为CM是RtAABC中斜边AB上的中线,所以AM=CM=BM,则A:LACM=/_DCM=÷x90.:30..J所以tanA:tan30.:拿.j3求点到直线的距离例5(2oo9年上海)在Rt△加C中,/_BAC=90.,AB=3,M为边BC上的点,连接AM(如图6).如果将复习参考?中.毒幺??(2Oil年第5期?初中版)△4BM沿直线AM翻折后,点8恰好落在边AC的中点处,那么点M到AC的距离是.解析由折叠可知A431=BAM=45.,/_AA,:,A,A:Ac=BA=3.故AC=6.过点M作MD_LAC(如图7图7),则AADM为等腰直角三角形.设MD=,贝ⅡAD:,CD:6一.由MD∥AB,可得ACDM,~△CAB,则:,即=詈,解得:2,即点M到AC的距离是2.4求周长例6(2008年徐州)如图8,RtAABC中,/_B:90.,AB=3cm,AC=5cm,将AABC折叠,使点C与A重合,得折痕DE,则△A船的周长等于cnLBEC解析在RtAABC中,BC:图8~/c2一:4.由折叠可知c=AE.所以AABE的周长=AB+BE+AE=AB+(BE4-CE):AB+BC=7cm.例7(2oo9年衢州)在AABC中,AB:12,AC:10,BC:9,AD是BC边上的高.将AABC按如图9所示的方式折叠,使点A与点D重合,折痕为,则ADEF的周长为/|.BDCBDtA)C图9A.9.5B.10.5C.11D.15.5解析由折叠可知DE=AE,DF=AF.由DE:AE,得£EAD="M.嘻/EAD七EBo:=90o上E【}A/_EDB=90o,所以EBD=EDB,则BE=DE:,:6.同理CF=DF=AF:5,从而可得EF足L\ABC的中位线,则肼:BC=4.5.所以ADEF的周长=DE+肼+D'=6+._:.5+5=15.5.10分沿处部=5=.-——11落为4,故选D.,,例8(2009年河北)如图./\A△BAcCAADEE别是,上的点,将一L△r直线DE折叠,点A落在点A,,且点A在AABC外部.则阴影图10分图形的周长为cm.'解析由折叠可知AD=AD,AE=AE.则阴影部分图形的周长=BD+AD+C十AE+CE (BD+AD)+c+(A+cE)=AB+曰C+AC=3cm.求线段的长角形与AABC相似,那么BF的长度是解析由AB=AC,得=C由折叠可知F=BF.设F:,贝ⅡF=,FC:4一.若以点B,F,C为顶点的三角形与AABC相似,则FBC=B或/FBC:A.当/__FBC=,即Z.FBC=C时,FB:FC,贝U:4一,解得=2.当/FB'C:时,BF//'AB,可得△FC'~AABC,则=,即{一:,解得:.所以,BF的-K度是2或等.例10(2010年扬州)如图l2,在RtAABC中,C=90.,AC=8,BC=6,按图中所示方法将ABCD沿BD折叠,使点C落在边AB上的点C处,则折痕BD的长为二二,,52十?7歆??(2011年第5期?初中版)?复习参考?解析由折叠可知BC=BC=6.CD=CD.在RtAABC中,AB=~/A—C2+—BC2:10.AC,:AB—BC,=4.DC图12设CD=,贝0CD:,AD:8一.在RtAACD中,AD=AC+CD.艮口(8一)=4+,解得=3,辰pCD=3.在RtaBCD中,BD==3.例11(2010年绵阳)如图l3,一副三角板拼在一起,0为AD的中点,AB:a.将AABO沿BO对折于AABO,M为BC上一动点,则A'M的最小值为——.D8J'\'E45"U//C图l3图14D解析过A作A上BC于(如图14),此时垂线段AJIlf的长度即为A吖的最小值.议OABD于点E,连授AC,易让0,A,C二点哭线. 在RtAABD中,AB=口,A=60.,~tJAD=2a,BD=,OE=曰;.由折叠可知OA=OA=÷AD=a.在RtABCD中,BD:,LBDC=45.,则CE=÷肋=cu-45.,tV~A'c=OE+CE—OA=.每…a.在RtAA,CM中,A,c:亟口,LA,CM:45.,所=,c一n,即,的最小值为.6求点的坐标例12(2009年天津)已知一个直角三角形纸片OAB,其中/_AOB=90.,0A=2,OB=4.如图l5,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(1)若折叠后使点曰与点A重合,求点C的坐标;-B\,DA图15(2)若折叠后点落在边OA上的点为,设OB=,OC=y,试写出关于的函数解析式,并确定y的取值范围;(3)若折叠后点日落在边OA上的点为,且使B"D//OB,求此时点C的坐标.解析(1)设OC=,如图16,由折叠可知AC:BC=4一.在RtAAOC中,AC=OC+OA,t~p(4一)=.+2.,解得=÷二所以,点C的坐标为(0,J,'\BCDAj图16(2)如图l7,由折叠可知BC=BC=4一y.在RtABOC中,BC2=OC+OB",即(4一,,):y+,所以y=一+2(O--<≤2)?因为当0≤--<2时,Y随的增大而减小,所以Y的取值范围为÷--<y--<2..y'BC'DA】图17',,,,CDB"A图l8复习参考?中'7歆??(2ol1年第5期?初中版)53 (3)如图18,由折叠西]知咄D=CBD.因为BD∥OB,所以OCB=/CB"D=CBD,~1]tan/_OCB"=tan/_CBD,即OB"=OA=1,故OC=20B".设"=,由(2)知OC=一1+2,从而可得一1+2=2,解得-=一8+4,:一8-4(不合题意,舍去),此时OC=8一16,所以点C的坐标为(0,8一16).7求面积例13(2010年广西)如示)图19含S的式子表解析由折叠可知Sa踟:|s△脚,DF=DB=3+一1=2+√3,F=/B:60.,又/FNM=/_AND,所以FMN=/ADN=90..在RtAADN中,AD=l,A=60.,则DN=.在RtANMF中,』vF=DF—DN=2,F=60., 则:1,:,S△:,所以重叠部分的面积为sDFE—S咐P=s啪一sMF=S一43.例l4(2009年恩施)如图2O,在ZXABC中,A:9O.,日C=10,/XABC的面积为25,D是AB上的动点(不与,B重合),过D点作DE∥BC交AC于点E,以DE为折线将AADE翻折(使AADE的平面内).令DE=.C图20落在四边形DBCE所在(1)用含的代数式表示△ADE的面积S;(2)在动点D的运动过程中,记△ADE与梯形DBCE重叠部分的面积记为Y,试写出y关于的函数解析式,并求为何值时,Y的值最大,最大值是多少?解析(1)由DE∥Bc,得△ADE"AABC,则=(黔即=(所以S:DE=5△^胞:IL(O<<10).(2)随点D的运动,当A点落在直线BC上时,连接AA,交DE于点(如图21),则DE垂直平分A4.ZaADg"ZXABC,得器==,即孟=÷,=5.故以下分两种情况讨论:①当0<≤5时,,,=s雎=12.所以当=5时,y最大:÷×5=孕.,②当5<<10时,设AD,AA,AE分另Ⅱ交BC于M,F,N(如图22).易得肌=C图2l埘::挲:争,2则AA=2AH=,A:一5.~zxa'删AABC,得=/aV!即=(字)删.s删,故),=S~A,DEs:12一(x-5)=一}+10x-25=一3(一)+莩.所以当=时,满足5<<10,',矗大=2_.5 综上所述,当=时,y的值最大,最大值是莩.。
培优专题01 与三角形模型有关的角度计算◎模型一A字模型【条件】△ADE与△ABC.【结论】∠AED+∠ADE=∠B+C.【证明】根据三角形内角和可得,∠AED+∠ADE=180°-∠A,∠B+C=180°-∠A,∠∠AED+∠ADE=∠B+C,得证.1.(2022·湖北咸宁·七年级期中)如图,已知l1∥l2,∠A=45°,∠2=100°,则∠1的度数为()A.50°B.55°C.45°D.60°【答案】B【分析】根据平角的定义得出∠ACB=80°,根据三角形内角和得到∠ABC=55°,再根据平行线的性质即可得解.【详解】解:∠∠2=100°,∠∠ACB =180°−100°=80°, ∠∠A =45°,∠∠ABC =180°−45°−80°=55°, ∠l 1∥l 2,∠∠1=∠ABC =55°, 故选:B .【点睛】此题考查了平行线的性质,熟记“两直线平行,内错角相等”是解题的关键.2.(2022·全国·八年级课时练习)如图,ABC 中,65A ∠=︒,直线DE 交AB 于点D ,交AC 于点E ,则BDE CED ∠+∠=( ).A .180︒B .215︒C .235︒D .245︒【答案】D【分析】根据三角形内角和定理求出ADE AED ∠+∠,根据平角的概念计算即可. 【详解】解:65A ∠=︒,18065115ADE AED ∴∠+∠=︒-︒=︒, 360115245BDE CED ∴∠+∠=︒-︒=︒,故选:D .【点睛】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180︒是解题的关键. 3.(2022·全国·八年级课时练习)如图是某建筑工地上的人字架,若1120∠=︒,那么32∠-∠的度数为_________.【答案】60︒【分析】根据平角的定义求出4,再利用三角形的外角的性质即可解决问题.【详解】解:如图14180∠+∠=︒,1120∠=︒, 460∴∠=︒,324,32460∴∠-∠=∠=︒,故答案为:60︒.【点睛】本题考查三角形外角的性质、平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考基础题.4.(2020·湖南·常德市第二中学九年级期中)如图,在ABC ∆中,90C ∠=︒,6BC =,D ,E 分别在AB 、AC 上,将ADE ∆沿DE 折叠,使点A 落在点A '处,若A '为CE 的中点,则折痕DE 的长为__.DE BC ,故∆BC .【详解】解:ABC ∆沿90DEA =∠'=︒,AED ∆∽,的中点,AE =∴=.ED2故答案为:2.【点睛】本题考查相似三角形的判定和性质,掌握“A ”字形三角形相似的判定和性质为解题关键. 5.(2022·全国·八年级课时练习)如图所示,DAE ∠的两边上各有一点,B C ,连接BC ,求证180DBC ECB A +∠=︒∠+∠.【答案】见解析【分析】根据三角形的外角等于与它不相邻的两个内角的和证明即可. 【详解】解:DBC ∠和ECB ∠是ABC 的外角, ,DBC A ACB ECB A ABC ∴∠=∠+∠∠=∠+∠.又180A ABC ACB ∠+∠+∠=︒,180DBC ECB A ACB ABC A A ∴∠+∠=∠+∠+∠+∠︒=+∠.【点睛】本题主要考查三角形外角的性质,熟知三角形的外角等于与它不相邻的两个内角的和是解题的关键.◎模型二 8字模型【条件】AD 、BC 相交于点O.【结论】∠A +∠B =∠C +∠D.(上面两角之和等于下面两角之和)【证明】在∠ABO 中,由内角和定理:∠A +∠B +∠BOA =180°,在∠CDO 中,∠C +∠D +∠COD =180°, ∠∠A +∠B +∠BOA =180°=∠C +∠D +∠COD ,由对顶角相等:∠BOA =∠COD ∠∠A +∠B =∠C +∠D ,得证.6.(2022·全国·八年级课时练习)如图,AB 和CD 相交于点O ,∠A =∠C,则下列结论中不能完全确定正确的是()A.∠B=∠D B.∠1=∠A+∠D C.∠2>∠D D.∠C=∠D【答案】D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∠∠A+∠AOD+∠D=180°,∠C+∠COB+∠B=180°,∠A=∠C,∠AOD=∠BOC,∠∠B=∠D,∠∠1=∠2=∠A+∠D,∠∠2>∠D,故选项A,B,C正确,故选D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键.7.(2022·全国·八年级课时练习)如图,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=()A.240°B.280°C.360°D.540°【答案】A【分析】根据三角形内角和定理得到∠B与∠C的和,然后在五星中求得∠1与另外四个角的和,加在一起即可.【详解】解:由三角形外角的性质得:∠3=∠A+∠E,∠2=∠F+∠D,∠∠1+∠2+∠3=180°,∠1=60°,∠∠2+∠3=120°,即:∠A+∠E+∠F+∠D=120°,∠∠B+∠C=120°,∠∠A+∠B+∠C+∠D+∠E+∠F=240°.故选A.【点睛】本题考查了三角形的外角和三角形的内角和的相关知识,解决本题的关键是将题目中的六个角分成两部分来分别求出来,然后再加在一起.8.(2022·全国·八年级课时练习)如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=__.【答案】900°【分析】根据多边形的内角和,可得答案.【详解】解:连EF,GI,如图,∠6边形ABCDEFK的内角和=(6-2)×180°=720°,∠∠A+∠B+∠C+∠D+∠E+∠F=720°-(∠1+∠2),即∠A+∠B+∠C+∠D+∠E+∠F+(∠1+∠2)=720°,∠∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,∠∠A+∠B+∠C+∠D+∠E+∠F∠H+(∠3+∠4)=900°,∠∠A+∠B+∠C+∠D+∠E+∠F(∠3+∠4)+∠5+∠6+∠H=720°+180°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=900°,故答案为:900°.【点睛】本题考查了n边形的内角和定理:n边形的内角和为(n-2)×180°(n≥3的整数).9.(2022·全国·八年级课时练习)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数为__.【答案】1080°【分析】连KF,GI,根据n边形的内角和定理得到7边形ABCDEFK的内角和=(7-2)×180°=900°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,由三角形内角和定理可得到∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,即可得到∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数.【详解】解:连KF,GI,如图,∠7边形ABCDEFK的内角和=(7-2)×180°=900°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠K=900°-(∠1+∠2),即∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,∠∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)=900°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K=1080°.故∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数为1080°.故答案为:1080°.【点睛】本题考查了n边形的内角和定理:n边形的内角和为(n-2)×180°(n≥3的整数).10.(2022·全国·八年级课时练习)如图,OAB和OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M(1)如图1,当α=90°时,∠AMD 的度数为 °; (2)如图2,当α=60°时,求∠AMD 的度数;(3)如图3,当OCD 绕O 点任意旋转时,∠AMD 与α是否存在着确定的数量关系?如果存在,请你用α表示∠AMD ,并用图3进行证明;若不确定,说明理由. 【答案】(1)90;(2)120︒;(3)180α︒-【分析】(1)如图1,设OA 交BD 于K ,只要证明△≌△BOD AOC ,推出OBD OAC ∠=∠,由BKO AKM ∠=∠,可得90AMK BOK ∠=∠=︒;(2)如图2,设OA 交BD 于K ,只要证明△≌△BOD AOC ,推出OBD OAC ∠=∠,由BKO AKM ∠=∠,可得60AMK BOK ∠=∠=︒;(3)如图3,设OA 交BD 于K ,只要证明△≌△BOD AOC ,推出OBD OAC ∠=∠,由BKM AKO ∠=∠,可得BMK AOK α∠=∠=,可得180AMD α∠=︒-; 【详解】解:(1)如图1中,设OA 交BD 于K∠OA OB OC OD ==,,90AOB COD ∠=∠=︒ ∠BOD AOC ∠=∠ ∠△≌△()BOD AOC SAS ∠OBD OAC ∠=∠ ∠BKO AKM ∠=∠ ∠90AMK BOK ∠=∠=︒ ∠90AMD ∠=︒ 故答案为90︒(2)如图2,设OA 交BD 于K ,∠OA OB OC OD ==,,60AOB COD ∠=∠=︒ ∠BOD AOC ∠=∠ ∠△≌△()BOD AOC SAS ∠OBD OAC ∠=∠ ∠BKO AKM ∠=∠ ∠60AMK BOK ∠=∠=︒ ∠180120AMD AMK ∠=︒-∠=︒ 故答案为120︒(3)如图3,设OA 交BD 于K ,∠OA OB OC OD ==,,AOB COD α∠=∠= ∠BOD AOC ∠=∠ ∠△≌△()BOD AOC SAS ∠OBD OAC ∠=∠ ∠AKO BKM ∠=∠ ∠BMK AOK α∠=∠=∠180180AMD BMK α∠=︒-∠=︒- 故答案为180α︒-【点睛】本题考查了几何变换综合题,全等三角形的判定,三角形内角和性质,解题的关键是灵活运用所学知识解决问题,学会利用“8字型”证明角相等.◎模型三 飞镖模型【条件】四边形ABDC 如上左图所示.【结论】∠D =∠A +∠B +∠C.(凹四边形凹外角等于三个内角和) 【证明】如上右图,连接AD 并延长到E ,则:∠BDC =∠BDE +∠CDE =(∠B +∠1)+(∠2+∠C )=∠B +∠BAC +∠C.本质为两个三角形外角和定理证明. 11.(2022·全国·八年级课时练习)在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果52,25A B ︒︒∠=∠=,30,35,72C D E ︒︒︒∠=∠=∠=,那么F ∠的度数是( ).A .72︒B .70︒C .65︒D .60︒【答案】A【分析】延长BE 交CF 的延长线于O ,连接AO ,根据三角形内角和定理求出,BOC ∠再利用邻补角的性质求出DEO ∠,再根据四边形的内角和求出DFO ∠,根据邻补角的性质即可求出DFC ∠的度数. 【详解】延长BE 交CF 的延长线于O ,连接AO ,如图,∠180,OAB B AOB ∠+∠+∠=︒∠180,AOB B OAB ∠=︒-∠-∠ 同理得180,AOC OAC C ∠=︒-∠-∠ ∠360,AOB AOC BOC ∠+∠+∠=︒ ∠360BOC AOB AOC ∠=︒-∠-∠360(180)(180)B OAB OAC C =︒-︒-∠-∠-︒-∠-∠ 107,B C BAC =∠+∠+∠=︒ ∠72,BED ∠=︒∠180108,DEO BED ∠=︒-∠=︒ ∠360DFO D DEO EOF ∠=︒-∠-∠-∠36035108107110,=︒-︒-︒-︒=︒∠180********DFC DFO ∠=︒-∠=︒-︒=︒, 故选:A .【点睛】本题考查三角形内角和定理,多边形内角和,三角形的外角的性质,邻补角的性质,解题关键是会添加辅助线,将已知条件联系起来进行求解.三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;邻补角性质:邻补角互补;多边形内角和:180(2)n ︒-.12.(2022·全国·八年级课时练习)如图,已知BE ,CF 分别为△ABC 的两条高,BE 和CF 相交于点H ,若△BAC=50°,则△BHC 为( )A .115°B .120°C .125°D .130°【答案】D【详解】∠BE 为∠ABC 的高,∠BAC=50°, ∠∠ABE=90°-50°=40°, ∠CF 为∠ABC 的高, ∠∠BFC=90°,∠∠BHC=∠ABE+∠BFC=40°+90°=130°.故选D.13.(2022·全国·八年级课时练习)如图,若115∠+∠+∠+∠+∠+∠=EOC∠=︒,则A B C D E F____________.【答案】230°【分析】根据三角形外角的性质,得到∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠EOC=∠1+∠F=115°,∠1=∠A+∠B,即可得到结论.【详解】解:如图∠∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠∠E+∠D+∠C=115°,∠∠EOC=∠1+∠F=115°,∠1=∠A+∠B,∠∠A+∠B+∠F=115°,∠∠A+∠B+∠C+∠D+∠E+∠F=230°,故答案为:230°.【点睛】本题主要考查三角形内角和定理和三角形外角的性质,解决本题的关键是要熟练掌握三角形外角性质.14.(2022·山东德州·七年级期末)如图,则∠A+∠B+∠C+∠D+∠E的度数是__.【答案】180°【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.【详解】解:如图可知:∠∠4是三角形的外角,∠∠4=∠A+∠2,同理∠2也是三角形的外角,∠∠2=∠D+∠C,在∠BEG中,∠∠B+∠E+∠4=180°,∠∠B+∠E+∠A+∠D+∠C=180°.故答案为:180°.【点睛】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.15.(2022·全国·八年级课时练习)模型规律:如图1,延长CO交AB于点D,则∠=∠+∠=∠+∠+∠.因为凹四边形ABOC形似箭头,其四角具有“BOC A B C 1BOC B A C B∠=∠+∠+∠”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:∠如图2,60,20,30A B C∠=︒∠=︒∠=︒,则BOC∠=__________︒;∠如图3,A B C D E F∠+∠+∠+∠+∠+∠=__________︒;(2)拓展应用:∠如图4,ABO∠、ACO∠的2等分线(即角平分线)1BO、1CO交于点1O,已知120BOC∠=︒,50BAC∠=︒,则1BO C∠=__________︒;∠如图5,BO、CO分别为ABO∠、ACO∠的10等分线1,2,3,,(,)89i=⋯.它们的交点从上到下依次为1O、2O、3O、…、9O.已知120BOC∠=︒,50BAC∠=︒,则7BO C∠=__________︒;∠如图6,ABO∠、BAC∠的角平分线BD、AD交于点D,已知120,44BOC C∠=︒∠=︒,则ADB=∠__________︒;∠如图7,BAC∠、BOC∠的角平分线AD、OD交于点D,则B、C∠、D∠之同的数量关系为__________.【详解】解:(1)∠∠BOC=∠A+∠B+∠C=60°+20°+30°=110°;◎模型四双垂直模型【条件】∠B=∠D=∠ACE=90°.【结论】∠BAC=∠DCE,∠ACB=∠CED.【证明】∠∠B=∠D=∠ACE=90°;∠∠BAC+∠ACB=90°;又∠ECD+∠ACB=90°;∠∠BAC=∠DCE同理,∠ACB+∠DCE=90°,且∠CED+∠DCE=90°;∠∠ACB=∠CED,得证.16.(2021·青海海东·八年级期中)如图,已知∠ABC∠∠CDE,∠B=90°,点C为线段BD上一点,则∠ACE的度数为()A.94°B.92°C.90°D.88°【答案】C【分析】由全等三角形的性质得出∠ACB=∠CED,则可得出答案.【详解】解:∠∠ABC∠∠CDE,∠∠ACB=∠CED,∠B=∠D=90°,∠∠CED+∠ECD=90°,∠∠ACB+∠ECD=90°,∠∠ACB+∠ECD+∠ACE=180°,∠∠ACE=90°.故选:C.【点睛】本题考查了全等三角形的性质;熟练掌握三角形全等的性质定理是解题的关键.17.(2020·河南·郑州市第八中学模拟预测)如图所示,一副三角尺摆放置在矩形纸片的内部,三角形的三个顶点恰好在矩形的边上,若16FGC ∠=︒,则AEF ∠等于( )A .106︒B .114︒C .126︒D .134︒【答案】D【分析】根据矩形的性质可得∠C=90°,AD∠BC ,利用直角三角形的两个锐角互余求出∠GFC ,从而求出∠EFB ,然后根据平行线的性质可得∠AEF +∠EFB=180°,从而求出结论. 【详解】解:∠四边形ABCD 为矩形 ∠∠C=90°,AD∠BC ∠16FGC ∠=︒∠∠GFC=90°-∠FGC=74° 由三角尺可知:∠EFG=60° ∠∠EFB=180°-∠GFC -∠EFG=46° ∠AD∠BC∠∠AEF +∠EFB=180° ∠∠AEF=180°-∠EFB=134° 故选D .【点睛】此题考查的是矩形的性质、直角三角形的性质和平行线的性质,掌握矩形的性质、直角三角形的两个锐角互余和平行线的性质是解决此题的关键.18.(2022·山东青岛·七年级期末)如图,小虎用10块高度都是4cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ∠=︒),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离为______.【答案】40 cm【分析】根据题意可得AC=BC,∠ACB=90°,AD∠DE,BE∠DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE =∠DAC ,再证明∠ADC ∠∠CEB 即可,利用全等三角形的性质进行解答.【详解】解:由题意得:AC =BC ,∠ACB =90°,AD ∠DE ,BE ∠DE , ∠∠ADC =∠CEB =90°,∠∠ACD +∠BCE =90°,∠ACD +∠DAC =90°, ∠∠BCE =∠DAC , 在∠ADC 和∠CEB 中,ADC CEB DAC BCE AC BC ∠∠⎧⎪∠∠⎨⎪⎩=== , ∠∠ADC ∠∠CEB (AAS );由题意得:AD =EC =12cm ,DC =BE =28cm , ∠DE =DC +CE =40(cm ), 答:两堵木墙之间的距离为40cm , 故答案为:40 cm .【点睛】此题主要考查了全等三角形的应用,涉及到垂直的定义、直角三角形的性质和连个三角形全等的判定与性质等知识点,解题的关键是正确找出证明三角形全等的条件.19.(2021·江苏盐城·七年级期中)将含有30角的直角三角板(30A ∠=︒)和直尺按如图方式摆放,已知136∠=︒,则2∠=______︒.【答案】24【分析】过点B 作BC //MN ,由平行线传递性,可得BC //KL ,再由平行线的性质可得1=LBC ∠∠ ,2=ABC ∠∠ ,最后由在直角三角形中两锐角互余的关系,求出2=24∠︒ .【详解】解:过点B 作BC //MN ,如图所示:MN //KH∴ BC //KL1LBC ∴∠=∠又1=36∠︒=36LBC ∴∠︒又 BC //MN2=ABC ∴∠∠又=30A ∠︒=60ABL ∴∠︒又=ABL LBC ABC ∠∠+∠603624ABC ∴∠=︒-︒=︒224∴∠=︒故答案为:24【点睛】本题考查了平行线的判定与性质(两直线平行,内错角相等),平行线传递性(如果两条直线都与第三条直线平行,那么这两条直线也互相平行),直角三角形中两锐角互余,角的和差计算等综合知识点.难点是作已知直线的平行线.20.(2022·全国·八年级专题练习)如图1,已知ABC ∆中,90ACB ∠=︒,AC BC =,BE 、AD 分别与过点C 的直线垂直,且垂足分别为E ,D .(1)猜想线段AD 、DE 、BE 三者之间的数量关系,并给予证明.(2)如图2,当过点C 的直线绕点C 旋转到ABC ∆的内部,其他条件不变,如图2所示,∠线段AD 、DE 、BE 三者之间的数量关系是否发生改变?若改变,请直接写出三者之间的数量关系,若不改变,请说明理由;∠若 2.8AD =, 1.5DE =时,求BE 的长. 【答案】(1)DE AD BE =+,证明见解析 (2)∠发生改变,DE AD BE =-;∠1.3【分析】(1)证明ACD CBE ∆≅∆,可得AD CE =,CD =BE , 即可求解;(2)∠证明ACD CBE ∆≅∆,可得AD CE =,CD =BE , 即可求解;∠由∠可得DE AD BE =-,从而得到BE AD DE =-,即可求解.(1)解:DE AD BE =+, 理由如下: ∠BE 、AD 分别与过点C 的直线垂直, ∠90BEC ADC ∠∠=︒=, ∠90ACD CAD ∠∠+︒=, ∠90ACB ∠=︒, ∠90ACD BCE ∠+∠=︒, ∠CAD BCE ∠=∠,在ACD ∆和CBE ∆中,ADC BECCAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴∆≅∆,AD CE ∴=,CD =BE ,∠ DE =EC +CD ,DE AD BE ∴=+;(2)解:∠发生改变.∠BE 、AD 分别与过点C 的直线垂直,∠90BEC ADC ∠∠=︒=,∠90ACD CAD ∠∠+︒=, ∠90ACB ∠=︒, ∠90ACD BCE ∠+∠=︒, ∠CAD BCE ∠=∠,在ACD ∆和CBE ∆中,ADC BEC CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴∆≅∆,AD CE ∴=,CD =BE ,∠ DE =CE -CD , ∠DE AD BE=-; ∠由∠知:DE AD BE =-, ∠ 2.8 1.5 1.3BE AD DE =-=-=, ∠BE 的长为1.3.【点睛】本题主要考查了全等三角形的判定和性质、等角的余角相等,熟练掌握全等三角形的判定和性质是解题的关键.◎模型五 风筝模型【条件】四边形ABPC ,分别延长AB 、AC 于点D 、E ,如上左图所示. 【结论】∠PBD+∠PCE =∠A +∠P .【证明】如上右图,连接AP ,则:∠PBD =∠PAB +∠APB ,∠PCE =∠PAC +∠APC ,∴∠PBD+∠PCE=∠PAB +∠APB+∠PAC +∠APC=∠BAC +∠BPC ,得证.21.(2022·内蒙古赤峰·八年级期末)如图,将ABC 的一角折叠,若12130∠+∠=︒,则B C ∠+∠=()A.50°B.65°C.115°D.130°【答案】C【分析】根据折叠性质证得∠3=∠4,∠5=∠6,再根据平角定义求得∠4+∠5=115°,然后根据三角形的内角和定理求解即可.【详解】解:如图,由折叠性质得:∠3=∠4,∠5=∠6,∠∠1+∠3+∠4=180°,∠5+∠6+∠2=180°,∠∠1+∠2+2∠4+2∠5=360°,∠∠1+∠2=130°,∠2∠4+2∠5=360°-130°=230°,∠∠4+∠5=115°,∠∠4+∠5+∠A=180°,∠A+∠B+∠C=180°,∠∠B+∠C=∠4+∠5=115°,故选:C.【点睛】本题考查三角形折叠中的角度问题,熟练掌握折叠性质是解答的关键.22.(2022·海南海口·七年级期末)如图,把∠ABC纸片沿MN折叠,使点C落在∠ABC内部点C′处,若∠C=36°,则∠1+∠2等于()A .54°B .62°C .72°D .76°【答案】C【分析】根据折叠可知∠C =∠'C ,四边形内角和为360°,即可求出'CMC ∠+'CNC ∠,用平角的定义即可求出∠1+∠2【详解】∠∠CMN 折叠得到'C MN ∠∠C =∠'C∠∠1=180°-'CMC ∠,∠2=180°-'CNC ∠∠∠1+∠2=180°-'CMC ∠+180°-'CNC ∠=360°-('CMC ∠+'CNC ∠) ∠'CMC ∠+'CNC ∠=360°-∠C -'C ∠=360°-36°-36°=288° ∠∠1+∠2=360°-288°=72° 故选:C【点睛】本题主要考查了折叠问题,掌握三角形的内角和定理,四边形的内角和以及平角的定义是解题的关键.23.(2022·山东烟台·七年级期中)如图,在三角形纸片ABC 中65A ∠=︒,75B ∠=︒,将纸片的一角折叠,使点C 落在∠ABC 内,若150∠=︒,则∠2的度数为_________.【答案】30°##30度【分析】根据题意,已知∠A =65°,∠B =75°,可结合三角形内角和定理和四边形内角和求解. 【详解】解:如图,设折痕为DE ;∠65A ∠=︒,75B ∠=︒,∠180180657540C A B ∠=︒-∠+∠=︒-︒+︒=︒()(), ∠180140CDE CED C ∠+∠=︒-∠=︒, 又∠150∠=︒,∠2360(1)36030030A B CED CDE ∠=︒-∠+∠+∠+∠+∠=︒-︒=︒, 故答案为:30°.【点睛】本题主要是考查了三角形、四边形内角和,即三角形的内角和为180°,四边形的内角和为360°;熟练掌握三角形的内角和定理是解题的关键.24.(2022·湖北恩施·一模)图,把等边ABC 沿直线DE 折叠,点A 落在'A 处,若150∠=︒,则2∠=______.【答案】40︒【分析】先求出AED ∠的度数,再根据折叠得到AED A ED '∠=∠,即可求出2∠的度数. 【详解】∠等边ABC 沿直线DE 折叠 ∠60A ∠=︒,AED A ED '∠=∠ ∠150∠=︒∠180170AED A ∠=︒-∠-∠=︒ ∠70AED A ED '∠=∠=︒∠420180AED A ED ∠=︒-'∠-∠=︒ 故答案为:40︒【点睛】此题考查翻折问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.25.(2022·江苏·扬州市竹西中学七年级期末)如图∠,把∠ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置,通过计算我们知道:2∠A=∠1+∠2.请你继续探索:(1)如果把∠ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,如图∠,此时∠A与∠1、∠2之间存在什么样的关系?为什么?请说明理由.(2)如果把四边形ABCD沿EF折叠,使点A、D落在四边形BCFE的内部A′、D′的位置,如图∠,你能求出∠A、∠D、∠1与∠2之间的关系吗?(直接写出关系式即可)(1)解:如图所示,连接AA',◎模型六 两内角角平分线模型【条件】△ABC 中,BI 、CI 分别是∠ABC 和∠ACB 的角平分线,且相交于点I. 【结论】A I ∠+︒=∠2190 【证明】∵BI 是∠ABC 平分线,∴ABC ∠=∠212∵CI 是∠ACB 平分线,∴ACB ∠=∠213 由A →B →I →C →A 的飞镖模型可知: ∠I =∠A +∠2+∠3=∠A +ABC ∠21+ACB ∠21=∠A +)180(21A ∠-︒=A ∠+︒2190. 26.(2022·山东东营·七年级期末)如图,在△ABC 中,BF 平分△ABC ,CF 平分△ACB ,△BFC =125°,则△A 的度数为( )A .60°B .80°C .70°D .45°【答案】C【分析】先根据三角形内角和定理得出CBF BCF ∠+∠的度数,再由角平分线的性质得出ABC ACB ∠+∠的度数,根据三角形内角和定理即可得出结论. 【详解】解:∠125BFC ∠=︒, ∠18012555BCF CBF ∠+∠=︒︒=︒﹣. ∠BF 平分ABC ∠,CF 平分ACB ∠,∠()2110ABC ACB BCF CBF ∠+∠=∠+∠=︒, ∠180A ABC ACB ∠+∠+∠=︒,∠18011070﹣.A∠=︒︒=︒故选:C .【点睛】本题考查的是三角形内角和定理,以及三角形角平分线的定义,熟知三角形内角和是180°是解答此题的关键.27.(2022·福建·泉州五中七年级期末)如图,在四边形ABCD 中,∠A +∠D =α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P =( )A .90°﹣12α B .12αC .90°+12α D .360°﹣α28.(2022·河南鹤壁·七年级期末)已知ABC 中,A α∠=.在图1中B 、C ∠的平分线交于点1O ,则可计算得11902BO C α∠=︒+;在图2中,设B 、C ∠的两条三等分角线分别对应交于2O 、3O ,则3BO C ∠=_______________.【详解】解:Aα∠=,180ACB=︒-B∠、C∠的两条三等分角线分别对应交于332 ( 3CBO BCO ABC ∴∠+=∠3(BO C CBO∴∠=-∠+故答案为:【点睛】本题考查三角形内角和定理,解题的关键是熟练运用三等分角线求解.29.(2022·江苏常州·七年级期中)如图,在∠MBC中,∠ABC、∠ACB的角平分线OB、OC交于点O,若∠O=m°,则∠A的度数是______________________________°(用含m的代数式表示).【答案】(2m-180)【分析】先由角平分线的定义得到∠ABC=2∠OBC,∠ACB=2∠OCB,再利用三角形内角和定理求解即可.【详解】解:∠OB,OC分别是∠ABC和∠ACB的角平分线,∠∠ABC=2∠OBC,∠ACB=2∠OCB,∠∠O+∠OBC+∠OCB=180°,∠∠OBC+∠OCB=180°-∠O=180°-m°,∠∠ABC+∠ACB=2∠OBC+2∠OCB=360°-2m°,∠∠A=180°-∠ABC-∠ACB=2m°-180°,故答案为:(2m-180).【点睛】本题主要考查了三角形内角和定理,角平分线的定义,熟知相关知识是解题的关键.30.(2021·重庆·垫江第八中学校七年级阶段练习)在∠ABC中,BD,CE是它的两条角平分线,且BD,CE相交于点M,MN∠BC于点N.将∠MBN记为∠1,∠MCN记为∠2,∠CMN记为∠3.(1)如图1,若∠A=110°,∠BEC=130°,则∠2= °,∠3-∠1= °;(2)如图2,猜想∠3-∠1与∠A的数量关系,并证明你的结论;(3)若∠BEC=α,∠BDC=β,用含α和β的代数式表示∠3-∠1的度数.(直接写出结果即可)∠BD平分∠ABD,【点睛】本题主要考查了三角形内角和定理,三角形外角的像这种,角平分线的定义,垂直的定义,熟知三角形内角和为180度是解题的关键.◎模型七 两外角角平分线模型【条件】△ABC 中,BI 、CI 分别是△ABC 的外角的角平分线,且相交于点O. 【结论】A O ∠-︒=∠2190. 【证明】∵BO 是∠EBC 平分线,∴EBC ∠=∠212,∵CO 是∠FCB 平分线,∴FCB ∠=∠215 由△BCO 中内角和定理可知:∠O =180°-∠2 -∠5 =180°-EBC ∠21 -FCB ∠21 =180°-)180(21ABC ∠-︒ -)180(21ACB ∠-︒=)(21ACB ABC ∠+∠=)180(21A ∠-︒=A O ∠-︒=∠2190. 31.(2022·江苏·江阴市祝塘第二中学七年级阶段练习)如图,在△ABC 中,设∠A =x °,∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A 2021BC 与∠A 2021CD 的平分线相交于点A 2022,得∠A 2022,则∠A 2022是( )度.A .202012x B .202112x C .202212x D .202312x∠∠A=∠ACD−∠ABC,∠A1=∠A1CD−∠A1BC,∠BA1和CA1分别是∠ABC和∠ACD的角平分线,32.(2022·浙江·八年级专题练习)如图,ABC 中,56A ∠=︒,BD 平分ABC ∠,CD 平分ABC 的外角ACE ∠,BD 、CD 交于点D ,则D ∠的度数( )A .28︒B .56︒C .30D .26︒BD 平分平分ABC 的外角DBC ∴∠=12DCE ACE =∠根据外角性质:DBC D +∠28D DCE α∴∠=∠-=︒.故选:A .33.(2022·陕西·西安博爱国际学校八年级期末)如图,在∠ABC中,∠ABC=75°,∠A=40°,∠ACD是∠ABC的外角,若∠ABC与∠ACD的平分线交于点P,则∠BPC的大小为_____.∠34.(2022·陕西·西安市曲江第一中学八年级期末)如图,在ABC中,ABC的内角CAB∠和外角CBD 的角平分线交于点P,已知42∠=︒,则CAPB∠的度数为____________.【答案】84︒##84度为ABC外角CBD=∠C+∠以求出答案.【详解】解:如下图,。
专题:三角形折叠问题中的角度运算
活动一:
如图,Rt △ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB=( )
活动二:
已知△ABC 是一张三角形的纸片.
(1)如图①,沿DE 折叠,使点A 落在边AC 上点A ′的位置,∠DA ′E 与∠1的之间存在怎样的数量关系?为什么?
(2)如图②所示,沿DE 折叠,使点A 落在四边形BCED 的内部点A ′的位置,∠A 、∠1与∠2之间存在怎样的数量关系?为什么?
(3)如图③,沿DE 折叠,使点A 落在四边形BCED 的外部点A ′的位置,∠A 、∠1与∠2之间存在怎样的数量关系?为什么?
(4)如图4,沿DE 折叠,使点A 落在四边形BCED 的外部,∠A 、∠1与∠2之间存在怎样的数量关系?为什么?
图4
活动三:
1、三角形纸片ABC中,∠A=55°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内(如图),则∠1+∠2的度数为()度.
2、如上图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()
3、如图所示,把一个三角形纸片ABC顶角向内折叠3次之后,3个顶点不重合,那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数是()
4、如上图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为()
5、如图,已知△ABC中,∠BAC=140°,现将△ABC进行折叠,使顶点
B、C均与顶点A重合,求∠DAE的度数.
6、将一条两边沿互相平行的纸带按如图折叠.设∠1=20°,则∠α的度数为()
7、如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=()
8、如图,把△ABC沿线段DE折叠,使点A落在点F处,
BC∥DE;若∠B=50°,则∠BDF的度数为()。