2018版高考数学大一轮复习第四章三角函数解三角形4.1任意角蝗制及任意角的三角函数教师用书文新人教版
- 格式:doc
- 大小:428.50 KB
- 文档页数:14
【2019最新】精选高考数学大一轮复习第四章三角函数解三角形4-1任意角蝗制及任意角的三角函数教师用书1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k·360°+α,k∈Z}.(3)象限角:使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=π rad,1°= rad,1 rad=°.(3)扇形的弧长公式:l=|α|·r,扇形的面积公式:S=lr=|α|·r2. 3.任意角的三角函数任意角α的终边与单位圆交于点P(x,y)时,sin α=y,cos α=x,tan α=(x≠0).三个三角函数的初步性质如下表:4.三角函数线如下图,设角α的终边与单位圆交于点P,过P作PM⊥x轴,垂足为M,过A(1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T.为正弦线;有向线段OM为余弦线;有向线段【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.2.任意角的三角函数的定义(推广)设P(x,y)是角α终边上异于顶点的任一点,其到原点O的距离为r,则sin α=,cos α=,tan α=(x≠0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.( ×)(2)角α的三角函数值与其终边上点P的位置无关.( √)(3)不相等的角终边一定不相同.( ×)(4)终边相同的角的同一三角函数值相等.( √)(5)若α∈(0,),则tan α>α>sin α.( √)(6)若α为第一象限角,则sin α+cos α>1.( √)1.角-870°的终边所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限答案C解析由-870°=-1 080°+210°,知-870°角和210°角终边相同,在第三象限.2.(教材改编)已知角α的终边与单位圆的交点为M(,y),则sin α等于( )A. B.±32C. D.±22答案B解析由题意知|r|2=()2+y2=1,所以y=±.由三角函数定义知sin α=y=±.3.(2016·宁波二模)集合{α|kπ+≤α≤kπ+,k∈Z}中的角所表示的范围(阴影部分)是( )答案C解析当k=2n(n∈Z)时,2nπ+≤α≤2nπ+,此时α表示的范围与≤α≤表示的范围一样;当k=2n+1 (n∈Z)时,2nπ+π+≤α≤2nπ+π+,此时α表示的范围与π+≤α≤π+表示的范围一样,故选C.4.函数y=的定义域为________.答案(k∈Z)解析∵2cos x-1≥0,∴cos x≥.由三角函数线画出x满足条件的终边范围(如图阴影所示).∴x∈(k∈Z).题型一角及其表示例1 (1)若α=k·180°+45°(k∈Z),则α在( )A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限(2)已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为________________.答案(1)A (2)(2kπ+,2kπ+π)(k∈Z)解析(1)当k=2n(n∈Z)时,α=2n·180°+45°=n·360°+45°,α为第一象限角;当k=2n+1 (n∈Z)时,α=(2n+1)·180°+45°=n·360°+225°,α为第三象限角.所以α为第一或第三象限角.故选A.(2)在[0,2π)内,终边落在阴影部分角的集合为,∴所求角的集合为(k∈Z).思维升华(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k赋值来求得所需的角.(2)利用终边相同的角的集合S={β|β=2kπ+α,k∈Z}判断一个角β所在的象限时,只需把这个角写成[0,2π)范围内的一个角α与2π的整数倍的和,然后判断角α的象限.(1)终边在直线y=x上的角的集合是__________________.(2)(2016·台州模拟)若角θ的终边与角的终边相同,则在[0,2π]内终边与角的终边相同的角的个数为________.答案(1){α|α=+kπ,k∈Z}(2)3解析(1)在(0,π)内终边在直线y=x上的角为,∴终边在直线y=x上的角的集合为{α|α=+kπ,k∈Z}.(2)∵θ=+2kπ(k∈Z),∴=+(k∈Z),依题意0≤+≤2π,k∈Z,∴-≤k≤,∴k=0,1,2,即在[0,2π]内与角的终边相同的角为,,共三个.题型二弧度制例2 (1)(2016·舟山模拟)若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.答案 2解析设圆半径为r,则圆内接正方形的对角线长为2r,∴正方形边长为r,∴圆心角的弧度数是=.(2)已知扇形的圆心角是α,半径是r,弧长为l.①若α=100°,r=2,求扇形的面积;②若扇形的周长为20,求扇形面积的最大值,并求此时扇形圆心角的弧度数.解①S=lr=αr2=×π×4=π.②由题意知l+2r=20,即l=20-2r,S=l·r=(20-2r)·r=-(r-5)2+25,当r=5时,S的最大值为25.当r=5时,l=20-2×5=10,α==2(rad).即扇形面积的最大值为25,此时扇形圆心角的弧度数为2 rad.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.(1)将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是 ( )A. B.π6C.-D.-π6(2)圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为( )A. B.π3C.3 D. 3答案(1)C (2)D解析(1)将表的分针拨快应按顺时针方向旋转,为负角,故A、B不正确;又因为拨快10分钟,故应转过的角为圆周的.即为-×2π=-.(2)如图,等边三角形ABC是半径为r的圆O的内接三角形,则线段AB所对的圆心角∠AOB=,作OM⊥AB,垂足为M,在Rt△AOM中,AO=r,∠AOM=,∴AM=r,AB=r,∴l=r,由弧长公式得α===.题型三三角函数的概念命题点1 三角函数定义的应用例3 (1)(2016·杭州模拟)若角θ的终边经过点P(-,m)(m≠0)且sin θ=m ,则cos θ的值为________.(2)点P 从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q 点,则Q 点的坐标为 ( )A.B.⎝ ⎛⎭⎪⎫-32,-12 C.D.⎝ ⎛⎭⎪⎫-32,12 答案 (1)- (2)A解析 (1)由题意知r =,∴sin θ==m ,∵m≠0,∴m=±,∴r==2,∴cos θ==-.(2)由三角函数定义可知Q 点的坐标(x ,y)满足 x =cos =-,y =sin =.∴Q 点的坐标为(-,).命题点2 三角函数线例4 函数y =lg(2sin x -1)+的定义域为__________________. 答案 [2k π+,2k π+)(k∈Z)解析 要使原函数有意义,必须有即如图,在单位圆中作出相应的三角函数线,由图可知,原函数的定义域为[2k π+,2k π+) (k∈Z).思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.(1)已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0.则实数a的取值范围是( )A.(-2,3] B.(-2,3)C.[-2,3) D.[-2,3](2)满足cos α≤-的角α的集合为________.答案(1)A (2){α|2kπ+π≤α≤2kπ+π,k∈Z}解析(1)∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y轴的正半轴上.∴∴-2<a≤3.(2)作直线x=-交单位圆于C、D两点,连接OC、OD,则OC与OD围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为{α|2kπ+π≤α≤2kπ+π,k∈Z}.6.数形结合思想在三角函数中的应用典例(1)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于C(2,1)时,的坐标为________.(2)(2016·合肥调研)函数y=lg(3-4sin2x)的定义域为________.思想方法指导在坐标系中研究角就是一种数形结合思想,利用三角函数线可直观得到有关三角函数的不等式的解集.解析(1)如图所示,过圆心C作x轴的垂线,垂足为A,过P作x轴的垂线与过C作y轴的垂线交于点B.因为圆心移动的距离为2,所以劣弧=2,即圆心角∠PCA=2,PA则∠PCB=2-,所以PB=sin(2-)=-cos 2,CB=cos(2-)=sin 2,所以xP=2-CB=2-sin 2,yP=1+PB=1-cos 2,所以=(2-sin 2,1-cos 2).(2)∵3-4sin2x>0,∴sin2x<,∴-<sin x<.利用三角函数线画出x满足条件的终边范围(如图阴影部分所示),∴x∈(k∈Z).答案(1)(2-sin 2,1-cos 2)(2)(k∈Z)1.设集合M={x|x=·180°+45°,k∈Z},N={x|x=·180°+45°,k∈Z},那么( )A.M=N B.M⊆NC.N⊆M D.M∩N=∅答案B解析方法一由于M={x|x=·180°+45°,k∈Z}={…,-45°,45°,135°,225°,…},N={x|x=·180°+45°,k∈Z}={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M⊆N,故选B.方法二由于M中,x=·180°+45°=k·90°+45°=(2k+1)·45°,2k+1是奇数;而N中,x=·180°+45°=k·45°+45°=(k+1)·45°,k+1是整数,因此必有M⊆N,故选B.2.若α是第三象限角,则下列各式中不成立的是( )A.sin α+cos α<0 B.tan α-sin α<0C.cos α-tan α<0 D.tan αsin α<0答案B解析α是第三象限角,sin α<0,cos α<0,tan α>0,则可排除A、C、D,故选B.3.(2016·杭州一模)已知α是第二象限的角,其终边上的一点为P(x,),且cos α=x,则tan α等于( )A. B.153C.-D.-153答案D解析∵P(x,),∴y=.又cos α=x=,∴r=2,∴x2+()2=(2)2,解得x=±.由α是第二象限的角,得x=-,∴tan α===-.4.(2016·杭州第二中学模拟)若390°角的终边上有一点P(a,3),则a 的值是( )A.B .3 3C .-D .-3 3 答案 B解析 ∵tan 390°=,又tan 390°=tan(360°+30°)=tan 30°=,∴=,∴a=3.5.已知点P(sin α-cos α,2)在第二象限,则α的一个变化区间是( )A.B.⎝ ⎛⎭⎪⎫-π4,3π4C.D.⎝ ⎛⎭⎪⎫π2,π 答案 C解析 ∵P(sin α-cos α,2)在第二象限,∴sin α<cos α, ∴α的一个变化区间是.6.已知角α=2k π-(k∈Z),若角θ与角α的终边相同,则y =++的值为( )A .1B .-1C .3D .-3答案 B解析 由α=2k π-(k∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.7.在直角坐标系中,O 是原点,A(,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.答案 (-1,)解析 依题意知OA =OB =2,∠AOx=30°,∠BOx=120°,设点B 坐标为(x ,y),所以x =2cos 120°=-1,y =2sin 120°=,即B(-1,).8.已知扇形的圆心角为,面积为,则扇形的弧长等于________. 答案 π3解析 设扇形半径为r ,弧长为l ,则⎩⎪⎨⎪⎧ l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧ l =π3,r =2.9.设θ是第三象限角,且=-cos ,则是第________象限角. 答案 二解析 由θ是第三象限角,知为第二或第四象限角,∵=-cos ,∴cos ≤0,综上知为第二象限角.10.在(0,2π)内,使sin x>cos x 成立的x 的取值范围为________. 答案 (,)解析 如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin =cos =,sin =cos =-.根据三角函数线的变化规律标出满足题中条件的角x∈(,).11.一个扇形OAB 的面积是1 cm2,它的周长是4 cm ,求圆心角的弧度数和弦长AB.解 设扇形的半径为r cm ,弧长为l cm ,则解得⎩⎪⎨⎪⎧ r =1,l =2.∴圆心角α==2(rad).如图,过O 作OH⊥AB 于H ,则∠AOH=1 rad.∴AH=1·sin 1=sin 1(cm),∴AB=2sin 1(cm).∴圆心角的弧度数为2 rad ,弦长AB 为2sin 1 cm.12.已知角α终边上一点P ,P 到x 轴的距离与到y 轴的距离之比为3∶4,且sin α<0,求cos α+2tan α的值.解 设P(x ,y),则根据题意,可得=.又∵sin α<0,∴α的终边只可能在第三、第四象限.①若点P 位于第三象限,可设P(-4k ,-3k)(k>0),则r ==5k ,从而cos α==-,tan α==,∴cos α+2tan α=.②若点P 位于第四象限,可设P(4k ,-3k)(k>0),则r ==5k ,从而cos α==,tan α==-,∴cos α+2tan α=-.综上所述,若点P位于第三象限,则cos α+2tan α=;若点P位于第四象限,则cos α+2tan α=-.13.已知sin α<0,tan α>0.(1)求角α的集合;(2)求终边所在的象限;(3)试判断tan sin cos 的符号.解(1)由sin α<0,知α在第三、四象限或y轴的负半轴上;由tan α>0,知α在第一、三象限,故角α在第三象限,其集合为{α|2kπ+π<α<2kπ+,k∈Z}.(2)由2kπ+π<α<2kπ+,k∈Z,得kπ+<<kπ+,k∈Z,故终边在第二、四象限.(3)当在第二象限时,tan <0,sin >0,cos <0,所以tan sin cos 取正号;当在第四象限时,tan <0,sin <0,cos >0,所以tan sin cos 也取正号.因此,tan sin cos 取正号.。
浙江专用高考数学一轮复习第四章三角函数解三角形第一节任意角和蝗制及任意角的三角函数教案含解析第一节任意角和弧度制及任意角的三角函数1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:角α的弧度数公式|α|=lr(l表示弧长)角度与弧度的换算①1°=π180rad;②1 rad=⎝⎛⎭⎪⎫180π°弧长公式l=|α|r扇形面积公式S=12lr=12|α|r23.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦,记作sinαx叫做α的余弦,记作cos αyx叫做α的正切,记作tan α各象限符号一+++二+--三--+四-+-三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线[小题体验]1.若θ是第二象限角,且满足sinθ2<0,则θ2的终边在第________象限.答案:三2.若角α的终边过点P⎝⎛⎭⎪⎫sin5π6,cos5π6,则tan α=________.答案:- 33.α为第一象限角,则sin α+cos α________1.(填“>”“<”“=”)答案:>1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.4.三角函数的定义中,当P(x,y)是单位圆上的点时有sin α=y,cos α=x,tan α=yx,但若不是单位圆时,如圆的半径为r,则sin α=yr,cos α=xr,tan α=yx.[小题纠偏]1.-1 000°是第________象限角,α=3是第________象限角,72°=________rad.答案:一二2π52.如图所示,在直角坐标系xOy中,射线OP交单位圆O于点P,若∠AOP=θ,则点P 的坐标是____________.答案:(cos θ,sin θ)考点一 角的集合表示及象限角的判定基础送分型考点——自主练透[题组练透]1. 下列命题中,真命题是( ) A .第一象限角是锐角 B .直角不是任何象限角 C .第二象限角比第一象限角大D .三角形的内角一定是第一或第二象限角解析:选B 390°是第一象限角,但不是锐角,A 错;135°是第二象限角,390°>135°,C 错;直角不是任何象限角,D 错,B 对.2.若α=k π-π4(k ∈Z),则α在( )A .第一象限或第三象限B .第一象限或第二象限C .第二象限或第四象限D .第三象限或第四象限解析:选C 当k =2m +1(m ∈Z)时,α=2m π+3π4,所以α在第二象限;当k =2m (m∈Z)时,α=2m π-π4,所以α在第四象限.故选C.3.设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k2·180°+45°,k ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k 4·180°+45°,k ∈Z ,那么M ________N .(填“=”“⊆”“⊇”)解析:法一:由于M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k2·180°+45°,k ∈Z={…,-45°,45°,135°,225°,…},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z={…,-45°,0°,45°,90°,135°,180°,225°,…}, 显然有M ⊆N .法二:由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .答案:⊆4.终边在直线y =3x 上的角的集合为__________________. 解析:在坐标系中画出直线y =3x ,可以发现它与x 轴正半轴的夹角是π3,终边在直线y =3x 上的角的集合为⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=k π+π3,k ∈Z .答案:⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=k π+π3,k ∈Z5.(2018·嘉兴七校联考)设角α是第三象限角,且满足⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则α2是第________象限角.解析:因为角α是第三象限角,所以2k π+π<α<2k π+3π2(k ∈Z),所以k π+π2<α2<k π+3π4(k ∈Z),所以α2是第二或第四象限角.又因为⎪⎪⎪⎪⎪⎪sin α2=-sin α2,所以sin α2<0,所以α2是第四象限角.答案:四[谨记通法]1.终边在某直线上角的求法4步骤(1)数形结合,在平面直角坐标系中画出该直线; (2)按逆时针方向写出[0,2π)内的角;(3)再由终边相同角的表示方法写出满足条件角的集合; (4)求并集化简集合.2.确定kα,αk(k ∈N *)的终边位置3步骤 (1)用终边相同角的形式表示出角α的范围; (2)再写出kα或αk的范围;(3)然后根据k 的可能取值讨论确定kα或αk的终边所在位置. 考点二 扇形的弧长及面积公式基础送分型考点——自主练透[题组练透]1.若一扇形的圆心角为72°,半径为20 cm ,则扇形的面积为( )A .40π cm 2B .80π cm 2C .40 cm 2D .80 cm 2解析:选B ∵72°=2π5,∴S 扇形=12|α|r 2=12×2π5×202=80π(cm 2).2.若扇形的圆心角是α=120°,弦长AB =12 cm ,则弧长l 等于( ) A.433π cm B. 833π cm C. 4 3 cmD .8 3 cm解析:选B 设扇形的半径为r cm ,如图. 由sin 60°=6r,得r =4 3 cm ,∴l =|α|·r =2π3×43=833πcm.3.(2019·瑞安模拟)设扇形的周长为8,面积为4,则扇形的圆心角的弧度数为________.解析:联立⎩⎪⎨⎪⎧2r +l =8,12lr =4.解得⎩⎪⎨⎪⎧r =2,l =4,所以扇形的圆心角的弧度数为|α|=l r =42=2.答案:24.若扇形的圆心角α=60°,半径R =10 cm ,求扇形的弧长l 及扇形的弧所在的弧形的面积.解:∵α=60°=π3,R =10 cm ,∴l =Rα=10×π3=10π3cm.设弧形的面积为S ,则S =12R 2α-12R 2sin π3=12×102×π3-12×102×32=⎝ ⎛⎭⎪⎫50π3-253cm 2.[谨记通法]弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量. 考点三 三角函数的定义题点多变型考点——多角探明 [锁定考向]任意角的三角函数(正弦、余弦、正切)的定义属于理解内容.在高考中多以选择题、填空题的形式出现.常见的命题角度有: (1)三角函数定义的应用;(2)三角函数值的符号判定.[题点全练]角度一:三角函数定义的应用1.已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.解析:∵角α的终边经过点P (-x ,-6),且cos α=-513,∴cos α=-xx 2+36=-513,即x =52或x =-52(舍去),∴P ⎝ ⎛⎭⎪⎫-52,-6,∴sin α=-1213,∴tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23. 答案:-232.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=________.解析:设P (t,2t )(t ≠0)为角θ终边上任意一点,则cos θ=t5|t |.当t >0时,cos θ=55; 当t <0时,cos θ=-55. 因此cos 2θ=2cos 2θ-1=25-1=-35.答案:-35角度二:三角函数值的符号判定3.(2019·湖州六校联考)已知sin 2θ<0,且|cos θ|=-cos θ,则点P (tan θ,sin θ)在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B 由|cos θ|=-cos θ可知cos θ<0,由sin 2θ=2sin θcos θ<0可知sin θ>0,所以tan θ<0.所以点P (tan θ,sin θ)在第二象限.4.已知点P (sin θcos θ,2cos θ)位于第三象限,则角θ是第________象限角. 解析:因为点P (sin θcos θ,2cos θ)位于第三象限,所以sin θ·cos θ<0,2cosθ<0,即⎩⎪⎨⎪⎧sin θ>0,cos θ<0,所以θ为第二象限角.答案:二[通法在握]定义法求三角函数的3种情况(1)已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.[演练冲关]1.已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15B.3715C.3720D.1315解析:选D ∵角α的终边经过点(3,-4), ∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315. 2.如图,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α的值为( )A.45 B .-45C.35D .-35解析:选D 因为点A 的纵坐标y A =45,且点A 在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.一抓基础,多练小题做到眼疾手快1.已知点P (tan α,sin α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D 因为点P 在第三象限,所以⎩⎪⎨⎪⎧tan α<0,sin α<0,所以α的终边在第四象限,故选D.2.(2018·舟山五校联考)若tan α<0,则( ) A .sin α<0 B .cos α>0 C .sin αcos α<0D .2cos 2α-1<0解析:选C 因为tan α<0,所以α是第二或第四象限角,所以sin α,cos α的符号不确定,故排除A 、B ;当α是第二象限角时,sin α,cos α符号相反,所以sin αcosα<0;当α是第四象限角时,sin α,cos α符号相反,所以sin αcos α<0,故选C.3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0<α<π)的弧度数为( )A .π3B .π2C . 3D .2解析:选C 设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =αr , 所以α= 3.4.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3).答案:(-1,3)5.(2019·丽水模拟)已知角α的终边经过点(2,-2),则sin α=________,sinαcos α=________.解析:因为角α的终边经过点(2,-2),所以sin α=-22,cos α=22,sin αcos α=-12.答案:-22 -12二保高考,全练题型做到高考达标1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A .π3B .π6C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角.故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16,即为-16×2π=-π3.2.(2019·台州模拟)已知点P (sin(-30°),cos(-30°))在角θ的终边上,且θ∈[-2π,0),则角θ的大小为( )A .-π3B .2π3C .-2π3D .-4π3解析:选D 因为P (sin(-30°),cos(-30°)),所以P ⎝ ⎛⎭⎪⎫-12,32,所以θ是第二象限角,又θ∈[-2π,0),所以θ=-4π3.3.已知角α终边上一点P 的坐标是(2sin 2,-2cos 2),则sin α等于( ) A .sin 2 B .-sin 2 C .cos 2D .-cos 2 解析:选D 因为r =2sin 22+-2cos 22=2,由任意三角函数的定义,得sin α=yr=-cos 2.4.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.5.点A (sin 2 018°,cos 2 018°)在直角坐标平面上位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C 由2 018°=360°×5+(180°+38°)可知, 2 018°角的终边在第三象限,所以sin 2 018°<0,cos 2 018°<0, 即点A 位于第三象限.6.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是________.解析:∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3.答案:(-2,3]7.已知α是第二象限的角,则180°-α是第________象限的角.解析:由α是第二象限的角可得90°+k ·360°<α<180°+k ·360°(k ∈Z),则180°-(180°+k ·360°)<180°-α<180°-(90°+k ·360°)(k ∈Z),即-k ·360°<180°-α<90°-k ·360°(k ∈Z),所以180°-α是第一象限的角.答案:一8.(2017·北京高考)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=________.解析:当角α的终边在第一象限时,取角α终边上一点P 1(22,1),其关于y 轴的对称点(-22,1)在角β的终边上,此时sin β=13;当角α的终边在第二象限时,取角α终边上一点P 2(-22,1),其关于y 轴的对称点(22,1)在角β的终边上,此时sin β=13. 综上可得sin β=13. 答案:139.已知角θ的终边上有一点(a ,a ),a ∈R 且a ≠0,则sin θ的值是________. 解析:由已知得r =a 2+a 2=2|a |,sin θ=a r =a 2|a |=⎩⎪⎨⎪⎧ 22,a >0,-22,a <0.所以sin θ的值是22或-22.答案:22或-2210.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α,(1)由题意可得⎩⎪⎨⎪⎧ 2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧ r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6, ∴α=l r =23或α=lr =6.(2)法一:∵2r +l =8,∴S 扇=12lr =14l ·2r ≤14⎝ ⎛⎭⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎫822=4,当且仅当2r =l ,即α=lr =2时,扇形面积取得最大值4.∴圆心角α=2,弦长AB =2sin 1×2=4sin 1.法二:∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=lr =2时,扇形面积取得最大值4.∴弦长AB =2sin 1×2=4sin 1. 11.角α终边上的点P 与A (a,2a )关于x 轴对称(a >0),角β终边上的点Q 与A 关于直线y =x 对称,求sin αcos α+sin βcos β+tan αtan β的值.解:由题意得,点P 的坐标为(a ,-2a ),点Q 的坐标为(2a ,a ).所以sin α=-2a a 2+-2a 2=-25,cos α=aa 2+-2a 2=15,tan α=-2aa =-2,sin β=a2a 2+a 2=15,cos β=2a 2a 2+a 2=25,tan β=a 2a =12,故sin αcos α+sin βcos β+tan αtan β=-25×15+15×25+(-2)×12=-1.三上台阶,自主选做志在冲刺名校(2019·衢州模拟)已知角α的终边经过点P (x ,-2)(x ≠0),且cos α=36x .(1)求x 的值;(2)求sin α+1tan α的值.解:(1)因为角α的终边经过点P (x ,-2),且cos α=36x ,所以有xx 2+2=36x .因为x ≠0,所以x 2+2=12,解得x =±10.(2)若x =10,则P (10,-2),所以sin α=-212=-66,tan α=-210=-55,所以sin α+1tan α=-66- 5. 若x =-10,则P (-10,-2), 所以sin α=-212=-66,tan α=210=55, 所以sin α+1tan α=-66+ 5.。
2018版高考数学大一轮复习 第四章 三角函数、解三角形 4.1 任意角、弧度制及任意角的三角函数教师用书 文 新人教版1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }.(3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝ ⎛⎭⎪⎫180π°.(3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx(x ≠0).4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .为正弦线;有向线段OM 为余弦线;有向线段【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦. 2.任意角的三角函数的定义(推广)设P (x ,y )是角α终边上异于顶点的任一点,其到原点O 的距离为r ,则sin α=y r,cos α=x r ,tan α=y x(x ≠0). 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P 的位置无关.( √ ) (3)不相等的角终边一定不相同.( × ) (4)终边相同的角的同一三角函数值相等.( √) (5)若α∈(0,π2),则tan α>α>sin α.( √ )(6)若α为第一象限角,则sin α+cos α>1.( √ )1.角-870°的终边所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限答案 C解析 由-870°=-1 080°+210°,知-870°角和210°角终边相同,在第三象限. 2.(教材改编)已知角α的终边与单位圆的交点为M (12,y ),则sin α等于( )A.32 B .±32 C.22D .±22答案 B解析 由题意知|r |2=(12)2+y 2=1,所以y =±32. 由三角函数定义知sin α=y =±32. 3.(2016·潍坊二模)集合{α|k π+π4≤α≤k π+π2,k ∈Z }中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1 (n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.4.已知在半径为120 mm 的圆上,有一段弧长是144 mm ,则该弧所对的圆心角的弧度数为________rad. 答案 1.2解析 由题意知α=l r =144120=1.2 rad.5.函数y =2cos x -1的定义域为________. 答案 ⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ) 解析 ∵2cos x -1≥0, ∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影所示).∴x ∈⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ).题型一 角及其表示例1 (1)若α=k ·180°+45°(k ∈Z ),则α在( ) A .第一或第三象限 B .第一或第二象限 C .第二或第四象限D .第三或第四象限(2)已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为________________.答案 (1)A (2)(2k π+π4,2k π+56π)(k ∈Z )解析 (1)当k =2n (n ∈Z )时,α=2n ·180°+45°=n ·360°+45°,α为第一象限角; 当k =2n +1 (n ∈Z )时,α=(2n +1)·180°+45°=n ·360°+225°,α为第三象限角. 所以α为第一或第三象限角.故选A.(2)在[0,2π)内,终边落在阴影部分角的集合为⎝⎛⎭⎪⎫π4,56π,∴所求角的集合为⎝⎛⎭⎪⎫2k π+π4,2k π+56π(k ∈Z ). 思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角.(2)利用终边相同的角的集合S ={β|β=2k π+α,k ∈Z }判断一个角β所在的象限时,只需把这个角写成[0,2π)范围内的一个角α与2π的整数倍的和,然后判断角α的象限.(1)终边在直线y =3x 上的角的集合是__________________.(2)(2017·广州调研)若角θ的终边与6π7角的终边相同,则在[0,2π]内终边与θ3角的终边相同的角的个数为________.答案 (1){α|α=π3+k π,k ∈Z } (2)3解析 (1)在(0,π)内终边在直线y =3x 上的角为π3,∴终边在直线y =3x 上的角的集合为{α|α=π3+k π,k ∈Z }.(2)∵θ=6π7+2k π(k ∈Z ),∴θ3=2π7+2k π3(k ∈Z ), 依题意0≤2π7+2k π3≤2π,k ∈Z ,∴-37≤k ≤187,∴k =0,1,2,即在[0,2π]内与θ3角的终边相同的角为2π7,20π21,34π21共三个.题型二 弧度制例2 (1)(2016·成都模拟)若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________. 答案2解析 设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2rr= 2.(2)已知扇形的圆心角是α,半径是r ,弧长为l . ①若α=100°,r =2,求扇形的面积;②若扇形的周长为20,求扇形面积的最大值,并求此时扇形圆心角的弧度数. 解 ①S =12lr =12αr 2=12×59π×4=109π.②由题意知l +2r =20,即l =20-2r ,S =12l ·r =12(20-2r )·r =-(r -5)2+25,当r =5时,S 的最大值为25.当r =5时,l =20-2×5=10,α=l r=2(rad).即扇形面积的最大值为25,此时扇形圆心角的弧度数为2 rad. 思维升华 应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决. (3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.(1)将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是 ( )A.π3B.π6 C .-π3D .-π6(2)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为( ) A.π6 B.π3 C .3D. 3答案 (1)C (2)D解析 (1)将表的分针拨快应按顺时针方向旋转,为负角,故A 、B 不正确;又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.(2)如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt△AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r , ∴l =3r , 由弧长公式得α=l r=3rr= 3.题型三 三角函数的概念 命题点1 三角函数定义的应用例3 (1)(2016·广州模拟)若角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,则cos θ的值为________.(2)点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为 ( )A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12 C.⎝ ⎛⎭⎪⎫-12,-32D.⎝⎛⎭⎪⎫-32,12 答案 (1)-64(2)A 解析 (1)由题意知r =3+m 2, ∴sin θ=m3+m2=24m , ∵m ≠0,∴m =±5,∴r =3+m 2=22, ∴cos θ=-322=-64.(2)由三角函数定义可知Q 点的坐标(x ,y )满足x =cos2π3=-12,y =sin 2π3=32. ∴Q 点的坐标为(-12,32).命题点2 三角函数线例4 函数y =lg(2sin x -1)+1-2cos x 的定义域为__________________. 答案 [2k π+π3,2k π+5π6)(k ∈Z )解析 要使原函数有意义,必须有⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎪⎨⎪⎧sin x >12,cos x ≤12,如图,在单位圆中作出相应的三角函数线,由图可知,原函数的定义域为[2k π+π3,2k π+5π6) (k ∈Z ).思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围.(1)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0.则实数a的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3)D .[-2,3](2)满足cos α≤-12的角α的集合为________.答案 (1)A (2){α|2k π+23π≤α≤2k π+43π,k ∈Z }解析 (1)∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0, ∴-2<a ≤3.(2)作直线x =-12交单位圆于C 、D 两点,连接OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为{α|2k π+23π≤α≤2k π+43π,k ∈Z }.6.数形结合思想在三角函数中的应用典例 (1)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于C (2,1)时,OP →的坐标为________.(2)(2017·合肥调研)函数y =lg(3-4sin 2x )的定义域为________.思想方法指导 在坐标系中研究角就是一种数形结合思想,利用三角函数线可直观得到有关三角函数的不等式的解集. 解析 (1)如图所示,过圆心C 作x 轴的垂线,垂足为A ,过P 作x 轴的垂线与过C 作y 轴的垂线交于点B .因为圆心移动的距离为2,所以劣弧PA =2,即圆心角∠PCA =2, 则∠PCB =2-π2,所以PB =sin(2-π2)=-cos 2,CB =cos(2-π2)=sin 2,所以x P =2-CB =2-sin 2,yP =1+PB =1-cos 2, 所以OP →=(2-sin 2,1-cos 2). (2)∵3-4sin 2x >0, ∴sin 2x <34,∴-32<sin x <32. 利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z ). 答案 (1)(2-sin 2,1-cos 2) (2)⎝⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z )1.下列与9π4的终边相同的角的表达式中正确的是 ( )A .2k π+45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C解析 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.若α是第三象限角,则下列各式中不成立的是( ) A .sin α+cos α<0 B .tan α-sin α<0 C .cos α-tan α<0 D .tan αsin α<0 答案 B解析 α是第三象限角,sin α<0,cos α<0,tan α>0,则可排除A 、C 、D ,故选B. 3.(2016·广州一模)已知α是第二象限的角,其终边上的一点为P (x ,5),且cos α=24x ,则tan α等于( )A.155 B.153 C .-155D .-153答案 D解析 ∵P (x ,5),∴y = 5. 又cos α=24x =xr,∴r =22, ∴x 2+(5)2=(22)2,解得x =± 3. 由α是第二象限的角,得x =-3,∴tan α=y x =5-3=-153.4.(2017·九江质检)若390°角的终边上有一点P (a,3),则a 的值是( ) A. 3 B .3 3 C .- 3D .-3 3答案 B解析 tan 390°=3a ,又tan 390°=tan(360°+30°)=tan 30°=33, ∴3a =33,∴a =3 3. 5.已知点P (sin α-cos α,2)在第二象限,则α的一个变化区间是( )A.⎝ ⎛⎭⎪⎫-π2,π2B.⎝ ⎛⎭⎪⎫-π4,3π4 C.⎝ ⎛⎭⎪⎫-3π4,π4 D.⎝ ⎛⎭⎪⎫π2,π 答案 C 解析 ∵P (sin α-cos α,2)在第二象限,∴sin α<cos α,∴α的一个变化区间是⎝ ⎛⎭⎪⎫-3π4,π4. 6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( ) A .1B .-1C .3D .-3答案 B解析 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.7.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.答案 (-1,3)解析 依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3).8.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________. 答案 π3解析 设扇形半径为r ,弧长为l ,则⎩⎪⎨⎪⎧ l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧ l =π3,r =2.9.设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是第________象限角. 答案 二解析 由θ是第三象限角,知θ2为第二或第四象限角, ∵⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2, ∴cos θ2≤0, 综上知θ2为第二象限角. 10.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为________.答案 (π4,5π4) 解析 如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin π4=cos π4=22,sin 5π4=cos 5π4=-22.根据三角函数线的变化规律标出满足题中条件的角x ∈(π4,5π4). 11.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB . 解 设扇形的半径为r cm ,弧长为l cm ,则⎩⎪⎨⎪⎧ 12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧ r =1,l =2.∴圆心角α=l r=2(rad).如图,过O 作OH ⊥AB 于H ,则∠AOH =1 rad.∴AH =1·sin 1=sin 1(cm),∴AB =2sin 1(cm).∴圆心角的弧度数为2 rad ,弦长AB 为2sin 1 cm.12.已知角α终边上一点P ,P 到x 轴的距离与到y 轴的距离之比为3∶4,且sin α<0,求cos α+2tan α的值.解 设P (x ,y ),则根据题意,可得|y ||x |=34. 又∵sin α<0,∴α的终边只可能在第三、第四象限.①若点P 位于第三象限,可设P (-4k ,-3k )(k >0),则r =x 2+y 2=5k , 从而cos α=x r =-45,tan α=y x =34, ∴cos α+2tan α=710. ②若点P 位于第四象限,可设P (4k ,-3k )(k >0),则r =x 2+y 2=5k , 从而cos α=x r =45,tan α=y x =-34, ∴cos α+2tan α=-710. 综上所述,若点P 位于第三象限,则cos α+2tan α=710; 若点P 位于第四象限,则cos α+2tan α=-710. *13.已知sin α<0,tan α>0.(1)求角α的集合;(2)求α2终边所在的象限; (3)试判断tan α2sin α2cos α2的符号.解 (1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限,故角α在第三象限,其集合为{α|2k π+π<α<2k π+3π2,k ∈Z }. (2)由2k π+π<α<2k π+3π2,k ∈Z , 得k π+π2<α2<k π+3π4,k ∈Z , 故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0, sin α2>0,cos α2<0, 所以tan α2sin α2cos α2取正号; 当α2在第四象限时,tan α2<0, sin α2<0,cos α2>0, 所以tan α2sin α2cos α2也取正号. 因此,tan α2sin α2cos α2取正号.。