浙教版七年级下2.3解二元一次方程组(2)同步练习含答案
- 格式:doc
- 大小:90.50 KB
- 文档页数:3
2021-2022学年下学期初中数学浙教新版七年级同步经典题精练之二元一次方程组一.选择题(共10小题)1.(2021秋•龙泉驿区期末)《九章算术》卷八方程第七题原文为:“今有牛五、羊二,直金十两.牛二、羊五直金八两.问牛、羊各直金几何?”题目大意是:现有5只牛、2只羊,共价值10两.2只牛、5只羊,共价值8两.那么每只牛、羊各价值多少?设每只牛、羊价值分别为x,y,则可列方程组为()A.B.C.D.2.(2021秋•中原区校级期末)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有x人,y 辆车,可列方程组为()A.B.C.D.3.(2021秋•高新区期末)在下列各组数中,是方程组的解的是()A.B.C.D.4.(2021秋•涡阳县期末)已知方程组的解满足x﹣y=3m+1,则m的值为()A.2B.﹣2C.1D.﹣15.(2021秋•建宁县期末)下面各组数值中,二元一次方程2x+y=10的解是()A .B .C .D .6.(2021秋•青岛期末)已知a,b 满足方程组,则﹣a﹣b的值为()A.﹣4B.4C.﹣2D.27.(2021秋•锦州期末)如图,七个相同的小长方形组成一个大长方形ABCD,若CD=21,则长方形ABCD的周长为()A.100B.102C.104D.1068.(2021秋•济阳区期末)已知是二元一次方程2x+y=3的一组解,则a的值是()A.1B.﹣1C.2D.﹣29.(2021秋•舞钢市期末)下列说法错误的是()A .是一个二元一次方程组B .是一个二元一次方程组C .是方程组的解D .二元一次方程x﹣7y=11有无数个解10.(2021秋•和平区期末)爸爸骑摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻9:0010:0011:30里程碑上的数是一个两位数,它的两个数字之和是6是一个两位数,它的十位与个位数字与9:00所看到的正好互换了是一个三位数,它比9:00时看到的两位数中间多了个0则10:00时看到里程碑上的数是()A.15B.24C.42D.51二.填空题(共6小题)11.(2021秋•大东区期末)某校八年某班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列二元一次方程组为.12.(2021秋•太原期末)解二元一次方程组时,小华用加减消元法消去未知数x,按照他的思路,用①﹣②得到的方程是.13.(2021秋•宣州区校级期末)若(2x﹣y)2与|x+2y﹣5|互为相反数,则(x﹣y)2021=.14.(2021秋•简阳市期末)若关于x,y的二元一次方程组的解也是二元一次方程x+0.6y=36的解,则k的值为.15.(2021秋•锦江区校级期末)如果实数x,y满足方程组,那么(2x﹣y)2022=.16.(2021秋•三水区期末)已知a,b满足方程组,则3a+b的值为.三.解答题(共4小题)17.(2021秋•威宁县校级期末)解二元一次方程组:(1);(2).18.(2021秋•太原期末)太原老鼠窟元宵的字号原名“恒义诚甜食店”,由于地处钟楼街“老鼠窟”巷口,故以“老鼠窟元宵店”著称.某日,该店一笔团购订单售出袋装元宵与礼盒装元宵共100份,共收入2280元.已知袋装元宵与礼盒装元宵的团购价分别为12元/份、30元/份,求这笔团购订单中袋装元宵与礼盒装元宵各售出多少份.19.(2021秋•天桥区期末)某学校举行“疫情防控”宣传活动,故购买A、B两种奖品以鼓励积极参与的学生.经市场调查发现,若购买A种6件、B种1件,共需100元;若购买A种5件、B种2件,共需88元.(1)A、B两种奖品每件各多少元?(2)学校决定现要购买A种奖品8件、B种奖品15件,那么总费用是多少元?20.(2021秋•琼海期末)随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.求A、B两种型号的汽车每辆进价分别为多少万元?2021-2022学年下学期初中数学浙教新版七年级同步经典题精练之二元一次方程组参考答案与试题解析一.选择题(共10小题)1.(2021秋•龙泉驿区期末)《九章算术》卷八方程第七题原文为:“今有牛五、羊二,直金十两.牛二、羊五直金八两.问牛、羊各直金几何?”题目大意是:现有5只牛、2只羊,共价值10两.2只牛、5只羊,共价值8两.那么每只牛、羊各价值多少?设每只牛、羊价值分别为x,y,则可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】利用总价=单价×数量,结合“5只牛、2只羊,共价值10两;2只牛、5只羊,共价值8两”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:∵5只牛、2只羊,共价值10两,∴5x+2y=10;∵2只牛、5只羊,共价值8两,∴2x+5y=8.∴可列方程组为.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.2.(2021秋•中原区校级期末)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有x人,y 辆车,可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】根据“每三人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:∵每三人共乘一车,最终剩余2辆车,∴3(y﹣2)=x;∵若每2人共乘一车,最终剩余9个人无车可乘,∴x=2y+9.∴可列方程组为.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.3.(2021秋•高新区期末)在下列各组数中,是方程组的解的是()A.B.C.D.【考点】二元一次方程组的解.【专题】一次方程(组)及应用;运算能力.【分析】用加减消元法解二元一次方程组即可求解.【解答】解:,②×2,得2x+4y=6③,③﹣①得,7y=14,解得y=2,将y=2代入②得,x=﹣1,∴方程组的解为,故选:D.【点评】本题考查二元一次方程组的解,熟练掌握代入消元法和加减消元法解二元一次方程组是解题的关键.4.(2021秋•涡阳县期末)已知方程组的解满足x﹣y=3m+1,则m的值为()A.2B.﹣2C.1D.﹣1【考点】二元一次方程的解;二元一次方程组的解.【专题】一次方程(组)及应用;运算能力.【分析】由方程组可得x﹣y=﹣2,再由题意可得3m+1=﹣2,求出m即可.【解答】解:,②﹣①,得36x﹣36y=﹣72,∴x﹣y=﹣2,∵x﹣y=3m+1,∴3m+1=﹣2,∴m=﹣1,故选:D.【点评】本题考查二元一次方程组的解,熟练掌握二元一次方程组的解法,根据所求,灵活对方程组中的方程进行加减运算是解题的关键.5.(2021秋•建宁县期末)下面各组数值中,二元一次方程2x+y=10的解是()A.B.C.D.【考点】二元一次方程的解.【专题】一次方程(组)及应用;运算能力.【分析】把各选项的值代入方程验算即可.【解答】解:A选项,2x+y=﹣4+6=2≠10,故该选项不符合题意;B选项,2x+y=12﹣2=10,故该选项符合题意;C选项,2x+y=8+3=11≠10,故该选项不符合题意;D选项,2x+y=﹣6+4=﹣2≠10,故该选项不符合题意;故选:B.【点评】本题考查了二元一次方程的解,把各选项的值代入方程验算是解题的关键.6.(2021秋•青岛期末)已知a,b满足方程组,则﹣a﹣b的值为()A.﹣4B.4C.﹣2D.2【考点】二元一次方程组的解;解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【分析】把两个方程相加先求出a+b的值,然后再进行计算即可.【解答】解:,①+②得:4a+4b=16,∴a+b=4,∴﹣a﹣b=﹣4,故选:A.【点评】本题考查了解二元一次方程组,把两个方程相加先求出a+b的值是解题的关键.7.(2021秋•锦州期末)如图,七个相同的小长方形组成一个大长方形ABCD,若CD=21,则长方形ABCD的周长为()A.100B.102C.104D.106【考点】一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【分析】由图可看出本题的等量关系:小长方形的长×2=小长方形的宽×5;小长方形的长+宽=21,据此可以列出方程组求解.【解答】解:设小长方形的长为x,宽为y.由图可知:解得.,所以长方形ABCD的长为5y=5×6=30,宽为21,∴长方形ABCD的周长为2×(30+21)=102,故选:B.【点评】本题考查了二元一次方程组的应用,正确的理解题意是解题的关键.8.(2021秋•济阳区期末)已知是二元一次方程2x+y=3的一组解,则a的值是()A.1B.﹣1C.2D.﹣2【考点】二元一次方程的解.【专题】一次方程(组)及应用;运算能力.【分析】把x与y代入方程计算即可求出a的值.【解答】解:把代入方程得:2a+1=3,移项合并得:2a=2,解得:a=1.故选:A.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.(2021秋•舞钢市期末)下列说法错误的是()A.是一个二元一次方程组B.是一个二元一次方程组C.是方程组的解D.二元一次方程x﹣7y=11有无数个解【考点】二元一次方程的解;二元一次方程组的解;解三元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】根据二元一次方程组的定义即可判断选项A和选项B,根据方程组的解的定义即可判断选项C;根据二元一次方程的解的定义即可判断选项D,【解答】解:A .是二元一次方程组,故本选项不符合题意;B .是三元一次方程组,故本选项符合题意;C .经检验是方程2x+y=﹣1的解,也是方程x﹣y=4的解,即是方程组的解,故本选项不符合题意;D .二元一次方程x﹣7y=11有无数个解,故本选项不符合题意;故选:B.【点评】本题考查了二元一次方程组的定义,二元一次方程的解的定义,二次一元方程组的解的定义等知识点,能熟记二次一次方程的定义和方程(或组)的解的定义是解此题的关键.10.(2021秋•和平区期末)爸爸骑摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻9:0010:0011:30里程碑上的数是一个两位数,它的两个数字之和是6是一个两位数,它的十位与个位数字与9:00所看到的正好互换了是一个三位数,它比9:00时看到的两位数中间多了个0则10:00时看到里程碑上的数是()A.15B.24C.42D.51【考点】二元一次方程组的应用.【专题】一次方程(组)及应用;运算能力;推理能力;应用意识.【分析】设小明9:00时看到的两位数十位数字为x,个位数字为y,根据小明连续三次看到的结果,列出二元一次方程组,解之得出x,y的值,再代入(10y+x)中即可.【解答】解:设小明9:00时看到的两位数十位数字为x,个位数字为y,即两位数为为10x+y;则10:00时看到的两位数为x+10y,9:00﹣10:00时行驶的里程数为:(10y+x)﹣(10x+y),11:30时看到的数为100x+y,11:30时﹣10:00时行驶的里程数为:(100x+y)﹣(10y+x);依题意,得:,解得:,∴10:00时小明看到的两位数是10y+x=51.故选:D.【点评】此题主要考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.二.填空题(共6小题)11.(2021秋•大东区期末)某校八年某班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列二元一次方程组为.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【分析】根据该班共有40名同学捐款且捐款总额为100元,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:∵该班共有40名同学为“希望工程”捐款,∴6+x+y+4=40;∵该班捐款总额为100元,∴1×6+2x+3y+4×7=100.∴根据题意,可列二元一次方程组为.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.12.(2021秋•太原期末)解二元一次方程组时,小华用加减消元法消去未知数x,按照他的思路,用①﹣②得到的方程是4y=﹣3.【考点】解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【分析】利用加减消元法进行计算即可.【解答】解:解二元一次方程组时,小华用加减消元法消去未知数x,按照他的思路,用①﹣②得到的方程是:4y=﹣3,故答案为:4y=﹣3.【点评】本题考查了解二元一次方程组,熟练掌握加减消元法是解题的关键.13.(2021秋•宣州区校级期末)若(2x﹣y)2与|x+2y﹣5|互为相反数,则(x﹣y)2021=﹣1.【考点】非负数的性质:绝对值;非负数的性质:偶次方;解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【分析】根据互为相反数的两个数相加和为0,列出关系式,然后再根据绝对值和偶次方的非负性,列出方程组即可解答.【解答】解:∵(2x﹣y)2与|x+2y﹣5|互为相反数,∴(2x﹣y)2+|x+2y﹣5|=0,∴2x﹣y=0,x+2y﹣5=0,∴,①×2得:4x﹣2y=0③,②+③得:5x﹣5=0,解得:x=1,把x=1代入①得:2﹣y=0,解得:y=2,∴原方程组的解为:,∴(x﹣y)2021=(1﹣2)2021=﹣1,故答案为:﹣1.【点评】本题考查了解二元一次方程组,绝对值和偶次方的非负性,熟练掌握互为相反数的两个数相加和为0,是解题的关键.14.(2021秋•简阳市期末)若关于x,y的二元一次方程组的解也是二元一次方程x+0.6y=36的解,则k的值为.【考点】二元一次方程的解;二元一次方程组的解.【专题】一次方程(组)及应用;运算能力.【分析】用加减消元法解二元一次方程组得x=k,y=2k,再将解代入方程x+0.6y=36,即可求k的值.【解答】解:,①×2,得4x+2y=8k③,③﹣②,得x=k,将x=k代入①得y=2k,∵二元一次方程组的解也是二元一次方程x+0.6y=36的解,∴k+1.2k=36,∴k=,故答案为:.【点评】本题考查二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.15.(2021秋•锦江区校级期末)如果实数x,y满足方程组,那么(2x﹣y)2022=1.【考点】二元一次方程组的解;解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【分析】方程组中的两个方程相加,即可得出答案.【解答】解:,①+②,得:2x﹣y=1,则(2x﹣y)2022=12022=1.故答案为:1.【点评】本题考查了解二元一次方程组和二元一次方程的解等知识点,能选择适当的方法求出解是解此题的关键.16.(2021秋•三水区期末)已知a,b满足方程组,则3a+b的值为20.【考点】二元一次方程组的解;解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【分析】利用加减消元法直接确定出3a+b的值.【解答】解:,①+②得:3a+b=12+8=20.故答案为:20.【点评】本题考查了解二元一次方程组和二元一次方程的解等知识点,能选择适当的方法求出解是解此题的关键.三.解答题(共4小题)17.(2021秋•威宁县校级期末)解二元一次方程组:(1);(2).【考点】解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【分析】(1)利用代入消元法进行计算即可;(2)先把方程①化简,然后再利用加减消元法进行计算即可.【解答】解:(1)把①代入②得:2(y+5)+3y﹣15=0,解得:y=1,把y=1代入①得:x=6,∴原方程组的解为:;(2)将方程①化简得:4x﹣3y=0③,②﹣③得:8y=32,解得:y=4,把y=4代入②得:4x+20=32,解得:x=3,∴原方程组的解为:.【点评】本题考查了解二元一次方程组,熟练掌握代入消元法和加减消元法是解题的关键.18.(2021秋•太原期末)太原老鼠窟元宵的字号原名“恒义诚甜食店”,由于地处钟楼街“老鼠窟”巷口,故以“老鼠窟元宵店”著称.某日,该店一笔团购订单售出袋装元宵与礼盒装元宵共100份,共收入2280元.已知袋装元宵与礼盒装元宵的团购价分别为12元/份、30元/份,求这笔团购订单中袋装元宵与礼盒装元宵各售出多少份.【考点】二元一次方程组的应用.【专题】一次方程(组)及应用;应用意识.【分析】设这笔团购订单中袋装元宵售出x份,礼盒装元宵售出y份,利用总价=单价×数量,结合“该店一笔团购订单售出袋装元宵与礼盒装元宵共100份,共收入2280元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设这笔团购订单中袋装元宵售出x份,礼盒装元宵售出y份,依题意得:,解得:.答:这笔团购订单中袋装元宵售出40份,礼盒装元宵售出60份.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.(2021秋•天桥区期末)某学校举行“疫情防控”宣传活动,故购买A、B两种奖品以鼓励积极参与的学生.经市场调查发现,若购买A种6件、B种1件,共需100元;若购买A种5件、B种2件,共需88元.(1)A、B两种奖品每件各多少元?(2)学校决定现要购买A种奖品8件、B种奖品15件,那么总费用是多少元?【考点】一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;运算能力;推理能力;应用意识.【分析】(1)设A种奖品每件x元,B种奖品每件y元,由题意:若购买A种6件、B 种1件,共需100元;若购买A种5件、B种2件,共需88元.列出方程组,解方程组即可;(2)由题意结合(1)的结果列式计算即可.【解答】解:(1)设A种奖品每件x元,B种奖品每件y元,依题意得:解得:,答:A种奖品每件16元,B种奖品每件4元;(2)由题意得:16×8+4×15=188(元),答:总费用是188元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(2021秋•琼海期末)随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.求A、B两种型号的汽车每辆进价分别为多少万元?【考点】一元一次方程的应用;二元一次方程组的应用.【专题】应用题;一次方程(组)及应用;运算能力.【分析】设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,根据“2辆A 型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设A种型号的汽车每辆进价为x万元,B种型号的汽车每辆进价为y万元由题意可得,.解得.答:A、B两种型号的汽车每辆进价分别为25万元、10万元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组.考点卡片1.非负数的性质:绝对值在实数范围内,任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.2.非负数的性质:偶次方偶次方具有非负性.任意一个数的偶次方都是非负数,当几个数或式的偶次方相加和为0时,则其中的每一项都必须等于0.3.一元一次方程的应用(一)一元一次方程解应用题的类型有:(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).(二)利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.3.列:根据等量关系列出方程.4.解:解方程,求得未知数的值.5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.4.二元一次方程的解(1)定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.(2)在二元一次方程中,任意给出一个未知数的值,总能求出另一个未知数的一个唯一确定的值,所以二元一次方程有无数解.(3)在求一个二元一次方程的整数解时,往往采用“给一个,求一个”的方法,即先给出其中一个未知数(一般是系数绝对值较大的)的值,再依次求出另一个的对应值.5.二元一次方程组的解(1)定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.(2)一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.6.解二元一次方程组(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x (或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用的形式表示.7.由实际问题抽象出二元一次方程组(1)由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.(2)一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相符.(3)找等量关系是列方程组的关键和难点,有如下规律和方法:①确定应用题的类型,按其一般规律方法找等量关系.②将问题中给出的条件按意思分割成两个方面,有“;”时一般“;”前后各一层,分别找出两个等量关系.③借助表格提供信息的,按横向或纵向去分别找等量关系.④图形问题,分析图形的长、宽,从中找等量关系.8.二元一次方程组的应用(一)列二元一次方程组解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.(二)设元的方法:直接设元与间接设元.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.9.解三元一次方程组(1)三元一次方程组的定义:方程组含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.(2)解三元一次方程组的一般步骤:①首先利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组.②然后解这个二元一次方程组,求出这两个未知数的值.③再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个关于第三个未知数的一元一次方程.④解这个一元一次方程,求出第三个未知数的值.⑤最后将求得的三个未知数的值用“{”合写在一起即可.。
浙教版数学七年级下册2.3《解二元一次方程组》(第2课时)教学设计一. 教材分析《解二元一次方程组》是浙教版数学七年级下册第2.3节的内容,主要介绍了解二元一次方程组的基本方法和技巧。
本节课的内容是学生在学习了二元一次方程的基础上进行的,是进一步学习更复杂方程组的基础。
教材通过具体的例子引导学生掌握解二元一次方程组的方法,并能够灵活运用。
二. 学情分析七年级的学生已经掌握了二元一次方程的基本知识,对于解方程有一定的了解。
但是,解二元一次方程组相对于单个方程来说更加复杂,需要学生能够将两个方程结合起来进行求解。
因此,学生在学习本节课的内容时可能会感到有一定的困难,需要通过大量的练习来掌握解题方法。
三. 教学目标1.让学生掌握解二元一次方程组的基本方法。
2.培养学生解决实际问题的能力。
3.提高学生合作交流的能力。
四. 教学重难点1.重难点:解二元一次方程组的方法和技巧。
2.难点:如何将实际问题转化为二元一次方程组,并灵活运用解题方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决问题来学习解二元一次方程组的方法。
2.使用多媒体辅助教学,通过动画和例子来形象地展示解题过程。
3.分组讨论,让学生在合作中学习,提高学生的合作交流能力。
4.大量的练习,让学生在实践中掌握解题方法。
六. 教学准备1.准备相关的教学多媒体材料,如动画、例子等。
2.准备练习题,包括基础题和提高题。
3.准备黑板和粉笔,用于板书解题过程。
七. 教学过程1.导入(5分钟)通过一个实际问题引入二元一次方程组的概念,激发学生的学习兴趣。
2.呈现(15分钟)使用多媒体展示二元一次方程组的解法,引导学生理解解题思路。
3.操练(15分钟)让学生分组讨论,每组解决一个二元一次方程组的问题,并展示解题过程。
4.巩固(10分钟)让学生独立解决一些基础的二元一次方程组问题,巩固所学知识。
5.拓展(10分钟)引导学生思考如何将实际问题转化为二元一次方程组,并灵活运用解题方法。
2.3 解二元一次方程组第2课时 加减消元法基础过关全练知识点 加减消元法1.(2022浙江杭州余杭期中)观察下列二元一次方程组,最适合采用加减消元法求解的是 ( )A.{3x −2y =11y =16−2x B.{2x +3y =−15x −3y =15C.{x =−32y2x +y =2D.{2x −5=y 3x −2y =42.(2020浙江嘉兴中考)用加减消元法解二元一次方程组{x +3y =4①,2x −y =1②时,下列方法中无法消元的是 ( )A.①×2-②B.②×3+①C.①-②×3D.①×(-2)+②3.【一题多解】(2021天津中考)方程组{x +y =2,3x +y =4的解是( ) A.{x =0y =2 B.{x =1y =1 C.{x =2y =−2 D.{x =3y =−3 4.二元一次方程组{x +2y =2,x −4y =−16的解是 .5.(2022湖北随州中考)已知二元一次方程组{x +2y =4,2x +y =5,则x-y 的值为 .6.(2022浙江台州中考)解方程组:{x +2y =4,x +3y =5.7.【教材变式·P43T2变式】解方程组:(1){4a +b =15,3b −4a =13; (2){6(x +y)−4(2x −y)=16,2(x−y)3−x+y 4=−1.能力提升全练8.(2022浙江丽水青田二中月考,6,)用加减消元法解方程组{x +3y =5,2x −y =4时,要使方程组中同一个未知数的系数相等或互为相反数,必须适当变形.以下四种变形中正确的是 ( )(1){2x +6y =5,2x −y =4;(2){2x +6y =10,2x −y =4;(3){x +3y =5,6x −3y =4;(4){x +3y =5,6x −3y =12.A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)9.(2022浙江嘉兴期中,9,)解关于x,y 的方程组{(a +2)x +(3b +2)y =3①,(5b −1)x −(4a −b)y =7②,可以用①×3-②,消去未知数x,也可以用①+②×4消去未知数y,则a,b 的值分别为( )A.1,-2B.-1,-2C.1,2D.-1,2 10.(2022浙江宁波鄞州期中,8,)若|x+2y-3|+|x-y+3|=0,则x y 的值是( )A.-1B.1C.12 D.211.【一题多变】已知关于a,b 的方程组{a −2b =6,3a −b =m 中,a,b 互为相反数,则m 的值是 .[变式] (2022浙江衢州龙游月考,15,)定义运算“*”,规定x*y=ax 2+by,其中a,b 为常数,且3*2=6,4*1=7,则5*3= . 12.【新独家原创】已知关于m,n 的二元一次方程组{2 024m +2 023n =19,506m +505n =7,则n 2= . 13.【新独家原创】已知关于x,y 的二元一次方程组{3(x +2 023)−2(y −⊕)=1,3(x +2 023)+2(y −⊕)=5,则x= . 14.(2019山东枣庄中考,21,)对于实数a 、b,定义关于“⊗”的一种运算:a ⊗b=2a+b,例如3⊗4=2×3+4=10. (1)求4⊗(-3)的值;(2)若x ⊗(-y)=2,(2y)⊗x=-1,求x+y 的值.15.已知关于x 、y 的二元一次方程组{3x −5y =2a,2x +7y =a −18.(1)若x,y 的值互为相反数,求a 的值; (2)若2x+y+35=0,解这个方程组.素养探究全练16.【运算能力】(2022浙江金华兰溪二中月考)阅读下列解方程组的方法,然后回答问题.解方程组:{19x +18y =17,①17x +16y =15.②解:①-②,得2x+2y=2,∴x+y=1.③ ③×16,得16x+16y=16.④②-④,得x=-1,将x=-1代入③,得-1+y=1,解得y=2. ∴原方程组的解是{x =−1,y =2.(1)请你仿照上面的解法解方程组{2 021x +2 020y =2 019,①2 019x +2 018y =2 017;②(2)请大胆猜想关于x,y 的方程组{(a +2)x +(a +1)y =a,(b +2)x +(b +1)y =b (a≠b)的解,并验证你的猜想.答案全解全析基础过关全练1.B 选项B 的两个方程中y 的系数互为相反数,故最适合用加减消元法求解,故选B.2.C ①×2-②,得7y=7,能消元;②×3+①,得7x=7,能消元;①-②×3,得-5x+6y=1,不能消元;①×(-2)+②,得-7y=-7,能消元.故选C.3.B 解法一:{x +y =2①,3x +y =4②,②-①,得2x=2,解得x=1,把x=1代入①,得1+y=2,解得y=1,所以原方程组的解为{x =1,y =1.故选B.解法二:{x +y =2①,3x +y =4②,把4个选项分别代入方程①,知A 、B 均符合,排除C 、D,再把A 、B 代入方程②,知B 符合,故选B. 4.答案 {x =−4y =3解析 {x +2y =2①,x −4y =−16②,①-②,得6y=18,解得y=3,把y=3代入①,得x+6=2,解得x=-4,则原方程组的解是{x =−4,y =3.5.答案 1解析 {x +2y =4①,2x +y =5②,由②-①可得x-y=1.6.解析 {x +2y =4,①x +3y =5,②②-①得y=1,把y=1代入①得x+2=4,解得x=2, 则原方程组的解为{x =2,y =1.7.解析 (1){4a +b =15,①3b −4a =13,②①+②得4b=28,解得b=7, 把b=7代入①得4a+7=15, 解得a=2.所以方程组的解是{a =2,b =7.(2)方程组整理得{−x +5y =8,①5x −11y =−12,②①×5+②得14y=28,解得y=2, 把y=2代入①得-x+10=8,解得x=2. 所以方程组的解是{x =2,y =2.能力提升全练8.D {x +3y =5①,2x −y =4②,①×2,得2x+6y=10,∴{2x +6y =10,2x −y =4,故(2)正确;②×3,得6x-3y=12, ∴{x +3y =5,6x −3y =12,故(4)正确,故选D. 9.C 由①×3-②,消去未知数x,可知3(a+2)-(5b-1)=0;由①+②×4消去未知数y,可知3b+2-4(4a-b)=0.∴{3(a +2)−(5b −1)=0,3b +2−4(4a −b)=0,化简得{3a −5b =−7,16a −7b =2,解得{a =1,b =2,故选C.10.B ∵|x+2y-3|+|x-y+3|=0,∴x+2y-3=0且x-y+3=0,即{x +2y =3,①x −y =−3,②①-②,得3y=6,解得y=2,把y=2代入②,得x-2=-3,解得x=-1, ∴这个方程组的解为{x =−1,y =2.∴x y =(-1)2=1,故选B. 11.答案 8解析 因为a,b 互为相反数, 所以a+b=0,即b=-a,将b=-a 代入方程组得{3a =6,4a =m,解得{a =2,m =8.[变式] 答案 13解析 ∵x*y=ax 2+by,∴5*3=25a+3b, ∵3*2=6,4*1=7,∴{9a +2b =6,①16a +b =7,②①+②得25a+3b=13,∴5*3=25a+3b=13. 12.答案 9解析 {2 024m +2 023n =19,①506m +505n =7,②①-②×4得3n=-9,解得n=-3,∴n 2=(-3)2=9. 13.答案 -2 022解析 {3(x +2 023)−2(y −⊕)=1,①3(x +2 023)+2(y −⊕)=5,②①+②,得6(x+2 023)=6,解得x=-2 022.14.解析 (1)根据题意得4 (-3)=2×4+(-3)=8-3=5. (2)根据题意得{2x −y =2①,4y +x =−1②,①+②,得3x+3y=1,∴x+y=13.15.解析 (1){3x −5y =2a①,2x +7y =a −18②,②×2得4x+14y=2a-36③,③-①得x+19y=-36④,∵x,y 的值互为相反数,∴x=-y,将x=-y 代入④,得-y+19y=-36,解得y=-2,∴x=2,将{x =2,y =−2代入①,得3×2-5×(-2)=2a,解得a=8.(2){3x −5y =2a①,2x +7y =a −18②,②×2-①得x+19y=-36③,将2x+y+35=0与③联立得{x +19y =−36,2x +y +35=0,解得{x =−17,y =−1.素养探究全练16.解析 (1)①-②,得2x+2y=2, ∴x+y=1③, ①-③×2 020,得x=-1.把x=-1代入③,得-1+y=1,解得y=2. ∴原方程组的解为{x =−1,y =2.(2)猜想:方程组{(a +2)x +(a +1)y =a,(b +2)x +(b +1)y =b (a≠b)的解为{x =−1,y =2.验证:当x=-1,y=2时,(a+2)x+(a+1)y=-(a+2)+2(a+1)=a, (b+2)x+(b+1)y=-(b+2)+2(b+1)=b,∴{x =−1,y =2是方程组的解.。
浙教版七年级下册数学第二章二元一次方程组含答案一、单选题(共15题,共计45分)1、在学校组织的游艺晚会上,掷飞标游艺区游戏区规则如下,如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分(掷中一次记一个点)现统计小华、小明和小芳掷中与得分情况,如图所示,依此方法计算小芳的得分为()A.76B.74C.72D.702、如表,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.则每一行的和是()3 4 x﹣2 y a2y﹣x c bC.5D.43、已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x°,∠2=y°,则x、y满足的方程组为()A. B. C. D.4、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A. B. C.﹣ D.﹣5、甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A. B. C.D.6、如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35B.45C.55D.657、方程组的解是( )A. B. C. D.8、若方程组中x与y的值相等,则k等于()A.1或-1B.1C.5D.-59、我国古代数学名著《孙子算经》中记载了一道数学趣题:一百马,一百瓦,大马一个拖三个,小马三个拖一个.大意是:100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B. C. D.10、下列方程中是二元一次方程的是()A. B. C. D.11、某校春季运动会比赛中,七年级六班和七班的实力相当,关于比赛结果,甲同学说:六班与七班的得分比为4:3,乙同学说:六班比七班的得分2倍少40分,若设六班得x分,七班得y分,则根据题意可列方程组()A. B. C. D.12、有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币多少枚()A.22B.16C.14D.1213、一只笼子装有鸡和兔共有10个头,34只脚,每只鸡有两只脚,每只兔有四只脚.设鸡有x只,兔有y只,则可列二元一次方程组()A. B. C. D.14、有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是.其中正确的说法是()A.①④B.①③④C.②③D.①②15、扬州某中学七年级一班40名同学第二次为四川灾区捐款,共捐款2000元,捐款情况如下表:捐款(元) 20 40 50 100人数 10 8表格中捐款40元和50元的人数不小心被墨水污染已看不清楚、若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组()A. B. C.D.二、填空题(共10题,共计30分)16、如果,则=________.17、已知已知是方程组的解,则(m﹣n)2=________.18、已知关于x,y的方程组的解满足x+y>0,则a的取值范围是________19、二元一次方程组的解为________。
A .3x -6=xB .3x =2yC .x -=0D .2x -3y =xyy 2.二元一次方程x -2y =1有无数个解,下列四组值中不是该方程的解的是( )A.B. C. D.{x =0,y =-12){x =1,y =1){x =1,y =0){x =-1,y =-1)3.下列说法中正确的是( )A .二元一次方程只有一个解B .二元一次方程组有无数个解C .二元一次方程组的解必是它所含的二元一次方程的解D .三元一次方程组一定由三个三元一次方程组成{x =1,)A .40,200B .80,160C .160,80D .200,4010.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面13的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为17则可列方程组为( )A.B.{x +y =3.2,(1+17)x =(1+13)y ){x +y =3.2,(1-17)x =(1-13)y )C.D.{x +y =3.2,13x =17y ){x +y =3.2,(1-13)x =(1-17)y )请将选择题答案填入下表:图2-Z -116.当a =_____________________时,方程组有正整数解.{2x +ay =16,x -2y =0)三、解答题(本题有8小题,共66分)17.(6分)解下列二元一次方程组:(1) (2){x =3y -5,3y =8-2x ;){x -2=2(y -1),2(x -1)+(y -1)=5.)18.(6分)已知2a m +1b -2n 与-3a 2-n b 4是同类项,求m ,n 的值.19.(6分)已知方程组的解也满足方程x +y =1,求m 的值.{2x +y =3,3x -2y =m )20.(8分)某旅行社组织甲、乙两个旅游团分别到西安、北京旅游.已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人,则甲、乙两个旅游团各有多少人?图2-Z-2(1)请问采摘的黄瓜和茄子各多少千克;(2)这些采摘的黄瓜和茄子可赚多少元?23.(10分)为了拉动内需,全国各地汽车购置税补贴活动正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月销售的手动型和自动型汽车分别为多少台?每套服装的价格60元50元40元已知两所学校分别单独购买服装,一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两所学校分别有多少名学生准备参加演出?(3)如果甲校有10名学生抽调去参加书法绘画比赛而不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.14. 15.675 cm 316.-3或-2或0或4或1217.解:(1){x =3y -5,①3y =8-2x ,②)把①代入②,得3y =8-2(3y -5),解得y =2.把y =2代入①,可得x =3×2-5,即x =1.∴原方程组的解为{x =1,y =2.)(2)方程组化简得:{x -2y =0,①2x +y =8,②)②-①×2,得5y =8,解得y =.85∴ 解得∴m =8.{2x +y =3,3x -2y =m ,x +y =1,){x =2,y =-1,m =8,)20.解:设甲旅游团有x 人,乙旅游团有y 人.根据题意,得解得{x +y =55,x =2y -5,){x =35,y =20.)答:甲、乙两个旅游团分别有35人、20人.21.解:(1)设采摘黄瓜x 千克,茄子y 千克.根据题意,得解得{x +y =40,x +1.2y =42,){x =30,y =10.)答:采摘的黄瓜和茄子分别有30千克、10千克.(2)30×(1.5-1)+10×(2-1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.22.解:(1)第二天的账目有误,理由如下:设甲、乙两种商品的单价分别为x 元,y 元,根据题意可得:第一天:39x +21y =321①;第二天:26x +14y =204②;第三天:39x +25y =345③.由①÷3,得13x +7y =107,由②÷2,得13x +7y =102,∵第一天的账目正确,∴第二天的账目有误.(2)由(1)得第二天的账目有误,∴{39x +21y =321,①39x +25y =345,③)③-①,得y =6.把y =6代入①,得x =5,所以方程组的解为{x =5,y =6.)答:甲、乙两种商品的单价分别为5元,6元.23.解:(1)方法1:设政策出台前一个月销售的手动型汽车为x 辆,则自动型汽车为(960-x)辆.由题意,得(1+30%)x +(1+25%)(960-x)=1228.解得x =560,所以960-x =960-560=400.答:政策出台前一个月销售的手动型汽车为560辆,自动型汽车为400辆.方法2:设政策出台前一个月销售的手动型汽车为x 辆,自动型汽车为y 辆.由题意,得{x +y =960,(1+30%)x +(1+25%)y =1228,)解得{x =560,y =400.)答:政策出台前一个月销售的手动型汽车为560辆,自动型汽车为400辆.(2)手动型汽车的补贴额为560×(1+30%)×8×5%=291.2(万元),自动型汽车的补贴额为400×(1+25%)×9×5%=225(万元).291.2+225=516.2(万元).答:政策出台后的第一个月,政府对这1228台汽车用户共补贴了516.2万元.24.解:(1)由题意,得5000-92×40=5000-3680=1320(元).答:两校联合起来购买服装比各自购买服装可节省1320元.(2)设甲、乙两所学校分别有x 名、y 名学生准备参加演出.由题意,得解得{x +y =92,50x +60y =5000,){x =52,y =40.)答:甲、乙两所学校分别有52名、40名学生准备参加演出.(3)因为甲校有10人不能参加演出,所以甲校有52-10=42(人)参加演出.若两校联合购买服装,则需要50×(42+40)=4100(元),此时比各自购买服装节约(42+40)×60-4100=820(元).但如果两校联合购买91套服装,只需40×91=3640(元),此时又比联合购买每套50元的服装节约4100-3640=460(元),因此,最省钱的购买服装方案是两校联合购买91套服装(即比实际人数多购买9套).。
2浙教版七年级数学下册《第2章二元一次方程组》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.方程2x﹣3y=7,用含y的代数式表示x为()A.y=(7﹣2x)B.y=(2x﹣7)C.x=(7﹣3y)D.x=(7+3y)2.方程2x+3y=17的正整数解的对数是()A.1对B.2对C.3对D.4对3.已知是二元一次方程组的解,则m﹣n的值是()A.﹣2B.﹣3C.1D.﹣44.关于x、y的二元一次方程组,用代入法消去y后所得到的方程,正确的是()A.3x﹣x﹣5=83B.3x+x﹣5=8C.3x+x+5=8D.3x﹣x+5=8 5.若关于x,y的方程组的解x,y满足x﹣y=1,则k的值为()A.1B.2C.3D.46.若(x﹣y)2+|5x﹣7y﹣2|=0,则x+y的值为()A.﹣2B.0C.﹣1D.17.《九章算术》中记载.“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱;每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x人,物品的价格为y钱,根据题意,可列方程组为()A.B.C.D.8.从茂名电白到湛江赤坎全长约为105km,一辆小汽车、一辆货车同时从茂名电白、湛江赤坎两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是()A.B.C.D.二.填空题(共8小题,满分40分)9.已知关于x,y的方程组,则x﹣y=.10.若是二元一次方程2x+y=4的一个解,则m的值为.11.已知,则x+y+z的值.12.若方程组,则3(x+y)﹣3x+5y的值是.13.已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为.14.已知关于x、y的二元一次方程组的解是,则关于x,y的方程组的解是.15.若关于x,y的方程组和同解,则a=.16.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个.其中A盒中有2个耳机,3个优盘,1个音箱;B盒中耳机与音箱的数量之和等于优盘的数量,耳机与音箱的数量之比为3:2;C盒中有1个耳机,3个优盘,2个音箱.经核算,A盒的价值为145元,B盒的价值为245元,则C盒的价值为元.三.解答题(共6小题,满分40分)17.(1)解方程组:;(2)解方程组:.18.甲、乙两位同学一起解方程组由于甲看错了方程①中的a,得到的解为,乙看错了方程②中的b,得到的解为,试根据上述条件,求解下列问题:(1)求a、b的值;(2)计算.19.对于任意的有理数a、b、c、d,我们规定,如.若x、y同时满足.求x,y的值.20.阅读下列解方程组的方法,然后回答问题.解方程组:.解:①﹣②,得2x+2y=2,即x+y=1.③③×16,得16x+16y=16.④②﹣④,得x=﹣1,从而可得y=2.∴原方程组的解是.(1)请你仿照上面的解法解方程组:;(2)请大胆猜测关于x,y的方程组(a≠b)的解是什么?并利用方程组的解加以验证.21.疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?22.为发展校园足球运动,我市四校决定联合购买一批足球运动装备.经市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球多60元,5套队服与8个足球的费用相等,经洽谈,甲商场优惠方案是每购买10套队服,送1个足球;乙商场优惠方案是购买队服超过80套,则购买足球打8折.(1)求每套队服和每个足球的价格各是多少?(2)若这四所学校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用.(3)在(2)的条件下,若a=70,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?请说明理由.参考答案一.选择题(共8小题,满分40分)1.解:∵2x﹣3y=7,∴2x=7+3y.∴x=.∴用含y的代数式表示x为x=.故选:D.2.解:方程2x+3y=17,解得:y=,当x=1时,y=5;x=4时,y=3;x=7时,y=1,则正整数解的个数是3个,故选:C.3.解:把方程组的解代入方程组得,解得,∴m﹣n=﹣4+1=﹣3,故选:B.4.解:,把①代入②,得3x﹣(x﹣5)=8,3x﹣x+5=8,故选:D.5.解:,②×2得:8x﹣2y=10k③,①+③得:9x=12k,解得:x=k,把x=k代入①得:k+2y=2k,解得:y=k,∴原方程组的解为:,把代入x﹣y=1中可得:k﹣k=1,解得:k=1,故选:A.6.解:由题意得方程组,,解得,,∴x+y=﹣1﹣1=﹣2,故选:A.7.解:依题意,得.故选:A.8.解:由题意可得,,即,故选:D.二.填空题(共8小题,满分40分)9.解:,①×5+②得,16x=28,x=,把x=,代入①得y=﹣,∴x﹣y=﹣(﹣)=2,故答案为:2.10.解:把代入二元一次方程2x+y=4,得2+m=4,解得m=2.故答案为:2.11.解:,①+②+③得:3x+3y+3z=6063,则x+y+z=2021.故答案为:2021.12.解:由3x﹣5y=﹣3可得﹣3x+5y=3,∴3(x+y)﹣3x+5y=3×7+3=21+3=24.故答案为:24.13.解:由题意得:x+y=0,∴y=﹣x,把y=﹣x代入原方程组可得:,①+②可得:3a+9=0,解得a=﹣3,故答案为:﹣3.14.解:方程组可变形为:,∵关于x、y的二元一次方程组的解是,∴,解得:,故答案为:.15.解:原方程组可化为:,①+②得7x=14,x=2,把x=2代入②2×2﹣y=3,解得y=1,把x=2,y=1代入ax﹣3y=9,2a﹣3×1=9,解得a=6,故答案为:6.16.解:设1个耳机的价值为x元,1个优盘的价值为y元,1个音箱的价值为z元,B盒中耳机的数量为3n(n为正整数)个,则音箱的数量为2n个,优盘的数量为5n个,依题意得:.若n=2,则B盒的价值至少是A盒价值的3倍,∴n=2不合适,∴n只能为1,∴方程②为3x+5y+2z=245③.3×③﹣4×②得:x+3y+2z=155,即C盒的价值为155元.故答案为:155.三.解答题(共6小题,满分40分)17.解:(1),由②,得x=﹣1+2y③,把③代入①,得2(﹣1+2y)+y=3,解得:y=1,把y=1代入③,得x=﹣1+2×1=1,所以原方程组的解是;(2),②×3,得6x+45y=9③,①×2,得6x﹣4y=﹣40④,③﹣④,得﹣49y=﹣49,解得:y=1,把y=1代入①,得3x﹣2+20=0,解得:x=﹣6,所以原方程组的解是.18.解:(1)将代入方程②得﹣12=﹣b﹣2,解得b=10,将代入方程①得5a+20=15,解得a=﹣1;(2)当a=﹣1,b=10时,原式===3﹣2﹣0.4=0.6.19.解:∵,∴3y﹣2x=﹣2①,2x﹣(﹣y)=8②.∴①+②,得4y=6.∴y=.把y=代入②,得x=.∴x=,y=.20.解:(1)①﹣②,得2x+2y=2,即x+y=1③,①﹣③×2 020,得x=﹣1.把x=﹣1代入③,得﹣1+y=1,解得y=2.所以原方程组的解为;(2)猜想:方程组(a≠b)的解为:;检验:把x=﹣1,y=2代入(a+2)x+(a+1)y=a,得左边=a,左边=右边;把x=﹣1,y=2代入(b+2)x+(b+1)y=b,得左边=b,左边=右边.∴是方程组的解.21.解:(1)设甲种口罩购进了x盒,乙种口罩购进了y盒,依题意得:,解得:,答:甲种口罩购进了700盒,乙种口罩购进了200盒.(2)20×700+25×200=14000+5000=19000(个),2×900×10=18000(个),∵19000>18000,∴购买的口罩数量能满足市教育局的要求.22.解:(1)设每个足球的价格是x元,每套队服的价格为y元,由题意得:,解得:,答:每套队服的价格各是160元,每个足球的价格是100元.(2)到甲商场购买装备所花的费用为:100×160+100(a﹣10)=(100a+15000)(元),到乙商场购买装备所花的费用为:100×160+100×0.8a=(80a+16000)(元);(3)到乙商场购买比较合算,理由如下:当a=70时,到甲商场购买装备所花的费用是:100a+15000=100×70+15000=22000(元),到乙商场购买装备所花的费用是:80a+16000=80×70+16000=21600(元),∵22000>21600,∴到乙商场购买比较合算.。
2021-2022学年浙教版七年级数学下册《2-3解二元一次方程组》同步达标测试(附答案)一.选择题(共6小题,满分30分)1.用代入消元法解关于x、y的方程组时,代入正确的是()A.2(4y﹣3)﹣3y=﹣1B.4y﹣3﹣3y=﹣1C.4y﹣3﹣3y=1D.2(4y﹣3)﹣3y=12.已知方程组中,a,b互为相反数,则m的值是()A.4B.﹣4C.0D.83.已知方程组,那么x与y的关系是()A.4x+2y=5B.2x﹣2y=5C.x+y=1D.5x+7y=54.若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是()A.1B.﹣1C.2D.﹣25.若关于x、y的二元一次方程组的解满足x+y=9,则k的值是()A.1B.2C.3D.46.代数式x2+ax+b,当x=2时,其值是3,当x=﹣3时,其值是4,则代数式a﹣b的值是()A.﹣1B.﹣3C.8D.3二.填空题(共8小题,满分40分)7.若(2x﹣y)2与|x+2y﹣5|互为相反数,则(x﹣y)2021=.8.二元一次方程组的解为.9.如果|x﹣2y+1|=|x+y﹣5|=0,那么x=.10.李明、王超两位同学同时解方程组李明解对了,得:,王超抄错了m,得:,则原方程组中a的值为.11.已知2a x+y b3与﹣a2b x﹣y是同类项,则(x+y)(x﹣y)=.12.已知,那么x+y的值为,x﹣y的值为.13.已知关于x,y的方程组的解是,则关于x1,y1的方程组的解是.14.关于x、y的方程组,那么=.三.解答题(共6小题,满分50分)15.解二元一次方程组:(1);(2).16.解二元一次方程组:(1);(2).17.已知方程组与方程组的解相等,试求a、b的值.18.对有理数x、y规定运算⊕:x⊕y=ax﹣by.已知1⊕7=9,3⊕8=14,求2a⊕5b的值.19.对于任意的有理数a、b、c、d,我们规定,如.若x、y同时满足.求x,y的值.20.善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y=5,③把方程①代入③,得2×3+y=5.∴y=﹣1.把y=﹣1代入①,得x=4.∴原方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换法”解方程组:(2)已知x,y满足方程组,求x2+4y2的值.参考答案一.选择题(共6小题,满分30分)1.解:,把①代入②得:2(4y﹣3)﹣3y=﹣1.故选:A.2.解:因为a,b互为相反数,所以a+b=0,即b=﹣a,代入方程组得:,解得:m=8,故选:D.3.解:,①+②×2得:5x+5y=5,整理得:x+y=1.故选:C.4.解:联立,解得:,代入kx+y=7得:4k﹣1=7,∴k=2,故选:C.5.解:(法一)①﹣②,得3y=k+7,∴y=;①+2×②,得3x=13k﹣8,∴x=∵x+y=9,∴=9即14k=28,∴k=2故选:B.(法二)①×2+②,得3x+3y=14k﹣1,∴x+y=∵x+y=9,∴14k﹣1=27,所以k=2.故选:B.6.解:根据题意得:,解得:,则a﹣b=+=3.故选:D.二.填空题(共8小题,满分40分)7.解:∵(2x﹣y)2与|x+2y﹣5|互为相反数,∴(2x﹣y)2+|x+2y﹣5|=0,∴2x﹣y=0,x+2y﹣5=0,∴,①×2得:4x﹣2y=0③,②+③得:5x﹣5=0,解得:x=1,把x=1代入①得:2﹣y=0,解得:y=2,∴原方程组的解为:,∴(x﹣y)2021=(1﹣2)2021=﹣1,故答案为:﹣1.8.解:,①+②得:2y=10,解得:y=5,把y=5代入①得:x﹣20=0,解得:x=20,则方程组的解为.故答案为:.9.解:由题意得:,②﹣①得:3y﹣6=0,∴y=2,把y=2代入②得:x+2﹣5=0,∴x=3,∴原方程组的解为:,故答案为:3.10.解:把和代入ax+by=2得:,①+②得:b=4,把b=4代入①得:2a+12=2,解得:a=﹣5.故答案为:﹣5.11.解:∵2a x+y b3与﹣a2b x﹣y是同类项,∴则(x+y)(x﹣y)=2×3=6.故答案为6.12.解:,①+②得:3(x+y)=11,解得:x+y=;①﹣②得:x﹣y=﹣1,故答案为:;﹣113.解:根据题意得:,解得:,则关于x1,y1的方程组的解是.故答案为:14.解:设a=,b=,方程组化为,①×3﹣②×2得:5a=65,解得:a=13,将a=13代入①得:b=3,则﹣=a﹣b=13﹣3=10.故答案为:10三.解答题(共6小题,满分50分)15.解:(1),把②代入①,得y﹣9+3y=7,解得y=4,把y=4代入②,得x=﹣5,故方程组的解为;(2),①+②,得3x=8,解得x=,把x=代入②,得y=,故方程组的解为.16.解:(1)把①代入②得:2(y+5)+3y﹣15=0,解得:y=1,把y=1代入①得:x=6,∴原方程组的解为:;(2)将方程①化简得:4x﹣3y=0③,②﹣③得:8y=32,解得:y=4,把y=4代入②得:4x+20=32,解得:x=3,∴原方程组的解为:.17.解:由已知可得,解得,把代入剩下的两个方程组成的方程组,得,解得.故a、b的值为.18.解:由题意可知:,解这个方程组得:,所以2a⊕5b=a•2a﹣b•5b=2a2﹣5b2=8﹣5=3.19.解:∵,∴3y﹣2x=﹣2①,2x﹣(﹣y)=8②.∴①+②,得4y=6.∴y=.把y=代入②,得x=.∴x=,y=.20.解:(1)由②得:3(3x﹣2y)+2y=19③,把①代入③得:15+2y=19,解得:y=2,把y=2代入①得:x=3,则方程组的解为;(2)由①得:3(x2+4y2)﹣2xy=47③,由②得:2(x2+4y2)+xy=36④,③+④×2得:7(x2+4y2)=119,解得:x2+4y2=17.。
浙江七年级数学下册第二章《二元一次方程组》常考题(考试时间:90分钟 试卷满分:100分)一、选择题(本题有10个小题,每小题3分,共30分)1.(本题3分)(2021·浙江·浦江县教育研究和教师培训中心七年级期末)已知二元一次方程473x y -=.用x 的代数式表示y ,正确的是( ) A .374y- B .374y+ C .437x - D .437x + 【答案】C 【解析】 【分析】将x 看作已知数,y 看作未知数,求出y 即可. 【详解】 ∵4x -7y =3, ∵7y =4x -3, ∵437x y -=. 故选:C . 【点睛】本题考查解二元一次方程,解题的关键是将x 看作已知数,y 看作未知数,解方程即可.2.(本题3分)(2021·浙江·七年级专题练习)若一个方程组的一个解为21x y =⎧⎨=⎩,则这个方程组不可能是( )A .31x y x y +=⎧⎨-=⎩B .2231y xx y =⎧⎨-=⎩C .2420x y x y +=⎧⎨-=⎩D .45133424x y x y +=⎧⎨-+=⎩【答案】C 【解析】 【分析】把解代入各个方程组,根据二元一次方程解的定义判断即可 【详解】解:A 、x =2,y =1适合方程组31x y x y +=⎧⎨-=⎩中的每一个方程,故本选项不符合题意;B 、x =2,y =1适合方程组2231y xx y =⎧⎨-=⎩中的每一个方程,故本选项不符合题意;C 、x =2,y =1不是方程20x y -=的解,故该选项符合题意.D 、x =2,y =1适合方程组45133424x y x y +=⎧⎨-+=⎩中的每一个方程,故本选项不符合题意;故选C . 【点睛】本题考查了方程组的解.解决本题可根据方程组解的定义代入验证,也可以通过解方程组确定.3.(本题3分)(2021·浙江诸暨·七年级期末)若方程组327213x y x y -=⎧⎨+=⎩的解也是方程218kx y +=的解,则k 的值为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】先求出方程组的解,然后代入方程218kx y +=,即可解答. 【详解】解:327213①②-=⎧⎨+=⎩x y x y ∵+∵,得:420x = ,解得:5x = ,把5x =代入∵,得:5213y +=,解得: 4y = ,所以方程组的解为54x y =⎧⎨=⎩ , 把x ,y 代入方程218kx y +=,得:52418k +⨯= ,解得:2k = .故选:B 【点睛】本题主要考查了解二元一次方程组和二元一次方程的解,解题的关键是熟练掌握解二元一次方程组的步骤,以及方程的解就是把这个数代入方程使方程成立的值. 4.(本题3分)(2021·浙江萧山·七年级期中)某地响应国家号召,实施退耕还林政策.退耕还林之前,该地的林地面积和耕地面积共有180km 2.退耕还林之后,该地的耕地面积是林地面积的30%.设退耕还林之后该地的耕地面积为x km2,林地面积为y km2,则可列方程组()A.18030%x yy x+=⎧⎨=⎩B.18030%x yx y+=⎧⎨=⎩C.18030%x yx y+=⎧⎨-=⎩D.18030%x yy x+=⎧⎨-=⎩【答案】B【解析】【分析】设耕地面积x平方千米,林地面积为y平方千米,根据该地的林地面积和耕地面积共有180km2,退耕还林之后,该地的耕地面积是林地面积的30%列出方程即可.【详解】解:设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18030%x yx y+=⎧⎨=⎩.故选B.【点睛】本题主要考查了根据实际问题列二元一次方程组,解题的关键在于能够准确根据题意找到等量关系.5.(本题3分)(2021·浙江杭州·七年级期末)方程组2,3x yx y⎧+=⎪⎨+=⎪⎩的解为2,.xy=⎧⎪⎨=⎪⎩则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,4【答案】B【解析】【分析】把x=2代入方程组第二个方程求出y的值,再将x与y的值代入第一个方程左边求出所求即可.【详解】解:把x=2代入x+y=3得:y=1,把x=2,y=1代入得:2x+y=4+1=5,则被遮盖的两个数分别为5,1,此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6.(本题3分)(2021·浙江·杭州市公益中学七年级开学考试)已知(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,则x ,y 的值为( ) A .x =﹣1,y =1 B .x =1,y =﹣1 C .x =﹣1,y =﹣1 D .x =1,y =1【答案】D 【解析】 【分析】根据非负数的性质,建立二元一次方程组,加减法解二元一次方程组即可求得x ,y 的值为 【详解】(2x ﹣3y +1)2与|4x ﹣3y ﹣1|互为相反数,∴(2x ﹣3y +1)2+|4x ﹣3y ﹣1|=023104310x y x y -+=⎧∴⎨--=⎩ 解得11x y =⎧⎨=⎩ 故选D 【点睛】本题考查了相反数的应用,非负数的性质,解二元一次方程组,建立二元一次方程组是解题的关键.7.(本题3分)(2020·浙江·群星外国语学校七年级阶段练习)设1a ,2a ,…,2016a 是从1,0,-1这三个数中取值的一列数,若12202069a a a ++⋯+=,()()()2221220201114007a a a ++++⋅⋅⋅++=,则1a ,2a ,…,2020a 中有( )个0.A .163 B .164 C .170 D .171【答案】D 【解析】 【分析】由(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007得a 12+a 22+…+a 20202=1849,设数列中1有x 个、0有y 个,-1有z 个,根据题意得出1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1853,解:(a 1+1)2+(a 2+1)2+…+(a 2020+1)2=4007, a 12+2a 1+1+a 22+2a 2+1+…+a 20202+2a 2020+1=4007, (a 12+a 22+…+a 20202)+2(a 1+a 2+…+a 2020)+2020=4007, ∵a 1+a 2+…+a 2020=69, ∵a 12+a 22+…+a 20202=1849,设a 1,a 2,…,a 2020中1有x 个、0有y 个,-1有z 个,根据题意可得:1•x +0•y +(-1)•z =69,12•x +02•y +(-1)2•z =1849,即691849x z x z -=⎧⎨+=⎩,解得:959890x z =⎧⎨=⎩, 则y =2020-959-890=171,即0有171个, 故选:D . 【点睛】本题主要考查三元一次方程组的应用和完全平方公式,根据题意列出关于x 、y 、z 的方程组是解题的关键.8.(本题3分)(2021·浙江·杭州市采荷中学七年级期中)若关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩,则关于a ,b 的二元一次方程组()()538539m a b nb m a b nb ⎧--=⎪⎨-+=⎪⎩的解是( )A .23a b =⎧⎨=⎩B .32a b =⎧⎨=⎩C .42a b =⎧⎨=⎩D .53a b =⎧⎨=⎩【答案】A 【解析】 【分析】先求出m ,n 的值,再代入新的二元一次方程组即可得出答案. 【详解】解:关于x ,y 的二元一次方程组89mx ny mx ny -=⎧⎨+=⎩的解是79x y =⎧⎨=⎩, 2717m ∴⨯=,1714m ∴=, 291n ∴⨯=,118n ∴=, 关于a ,b 的二元一次方程组是(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩, 61nb ∴=,∴113b =,3b ∴=,172(5)1714a b ∴⨯⨯-=, 57a b ∴-=,2a ∴=,∴关于a ,b 的二元一次方程组(5)38(5)39m a b nb m a b nb --=⎧⎨-+=⎩的解为:23a b =⎧⎨=⎩.故选:A . 【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m ,n 的值,再代入新的二元一次方程组即可得出答案.9.(本题3分)(2021·浙江浙江·七年级期末)已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中正确的有( )个 ∵当5a =时,方程组的解是1020x y =⎧⎨=⎩;∵当x ,y 的值互为相反数时,20a = ∵不存在一个实数a 使得x y =; ∵若23722a y -=,则2a =.A .1 B .2C .3D .4【答案】B 【解析】 【分析】∵把a =5代入方程组求出解,即可作出判断;∵由题意得x +y =0,变形后代入方程组求出a 的值,即可作出判断; ∵若x =y ,代入方程组,变形得关于a 的方程,即可作出判断;∵根据题中等式得2a ﹣3y =7,代入方程组求出a 的值,即可作出判断. 【详解】解:∵把a =5代入方程组得:3510(1)20(2)x y x y -=⎧⎨-=⎩, 由(2)得x =2y ,将x =2y 代入(1)得:y =10, 将y =10代入x =2y 得:x =20,解得:2010x y =⎧⎨=⎩,故∵错误; ∵当x ,y 的值互为相反数时,x +y =0, 即:y =﹣x代入方程组得:35225x x ax x a +=⎧⎨+=-⎩, 整理,得82(3)35(4)x a x a =⎧⎨=-⎩, 由(3)得:14x a =,将14x a =代入(4),得:354a a =-,解得:a =20,故∵正确;∵若x =y ,则有225x ax a -=⎧⎨-=-⎩,可得:a =a ﹣5,矛盾,∵不存在一个实数a 使得x =y ,故∵正确;∵352(5)25(6)x y a x y a -=⎧⎨-=-⎩, (5)-(6)×3,得:15y a =-, 将15y a =-代入(6),得:25x a =-,∵原方程组的解为2515x ay a=-⎧⎨=-⎩,∵23722a y -=, ∵2a ﹣3y =7, 把y =15﹣a 代入得: 2a ﹣45+3a =7,解得:a =525,故∵错误; ∵正确的选项有∵∵两个. 故选:B . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.10.(本题3分)(2021·浙江·杭州市公益中学七年级期中)用如图∵中的长方形和正方形纸板作侧面和底面,做成如图∵的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n 的值可能是( )A .200B .201C .202D .203【答案】A 【解析】 【分析】分别设做了竖式无盖纸盒x 个,横式无盖纸盒y 个,列二元一次方程组43{2x y n x y m+=+=,把两个方程的两边分别相加得5()m n x y +=+,易知m n +的值一定是5的倍数,本题即解答. 【详解】解:设做成竖式无盖纸盒x 个,横式无盖纸盒y 个,根据题意列方程组得: 43{2x y n x y m+=+=, 则两式相加得 5()m n x y +=+,∵x 、y 都是正整数 ∵m n +一定是5的倍数;∵200、201、202、203四个数中,只有200是5的倍数, ∵m n +的值可能是200. 故选A. 【点睛】本题主要考查二元一次方程组的实际应用;巧妙处理所列方程组,使两方程相加得出5()m n x y +=+,是解答本题的关键.二、填空题(本题有7个小题,每小题3分,共21分)11.(本题3分)(2021·浙江浙江·七年级期末)若x ay b =⎧⎨=⎩是方程21x y -=的解,则362a b -+=________.【答案】5 【解析】 【分析】把x 与y 的值代入方程求出a 与b 的关系,代入原式计算即可得到结果. 【详解】解:把x ay b =⎧⎨=⎩代入方程x -2y =1,可得:a -2b =1,所以3a -6b +2=3(a -2b )+2=5. 故答案为:5. 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程中两边相等的未知数的值. 12.(本题3分)(2021·浙江慈溪·七年级期末)已知235x y -=,若用含x 的代数式表示y ,则y =______.【答案】253x - 【解析】 【分析】把方程化为:325,y x =-再两边都除以3, 即可得到答案. 【详解】解: 235x y -=, 325,y x ∴=-25.3x y -∴=故答案为:25.3x - 【点睛】本题考查的是二元一次方程的变形,掌握利用含一个未知数的代数式表示另外一个未知数是解题的关键.13.(本题3分)(2020·浙江泰顺·七年级开学考试)每年五月的第二个礼拜日是母亲节,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从信息中可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组为__________.【答案】2552390x y x y +=⎧⎨+=⎩ 【解析】 【分析】设鲜花x 元/束,礼盒y 元/盒,根据“一束花+二盒花=55元,二束花+三盒花=90元”,列出二元一次方程组,即可. 【详解】设鲜花x 元/束,礼盒y 元/盒,由题意得:2552390x y x y +=⎧⎨+=⎩.故答案是:2552390x y x y +=⎧⎨+=⎩.【点睛】本题主要考查二元一次方程组的实际应用,找出等量关系,列出方程组,是解题的关键. 14.(本题3分)(2021·浙江浙江·七年级期中)已知关于x y 、的方程组342321x y mx y m +=⎧⎨+=-⎩的解满2x y +=,则m =________. 【答案】-1 【解析】 【分析】两式相减得,即可利用m 表示出x +y 的值,从而得到一个关于m 的方程,解方程从而求得m 的值. 【详解】解:两式相减得:x +y =1-m , ∵x +y =2.即1-m =2,解得:m =-1. 故答案是:-1.【点睛】本题考查了二元一次方程组的解,理解两个方程的系数之间的特点是关键.15.(本题3分)(2021·浙江浙江·七年级期末)把某个式子看成一个整体,用一个量代替它,从而使问题得到简化,这叫整体代换成换元思想,请根据上面的思想解决下面问题:若关于,m n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩,则关于,x y 的方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解是_______. 【答案】82x y =⎧⎨=⎩ 【解析】【分析】仿照已知方程组的解法求出所求方程组的解即可.【详解】解:∵关于m ,n 的方程组111222a m b n c a m b n c +=⎧⎨+=⎩的解是106m n =⎧⎨=⎩, ∵方程组111222()()()()a x y b x y c a x y b x y c ++-=⎧⎨++-=⎩的解为106x y x y +=⎧⎨-=⎩, 解得:82x y =⎧⎨=⎩, 故答案为:82x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.16.(本题3分)(2021·浙江临海·七年级期中)在矩形ABCD 中,放入六个形状、大小相同的长方形,尺寸如图所示,则阴影部分的面积是___cm 2.【答案】44【解析】【分析】设这六个形状、大小相同的长方形的长为x cm,宽为y cm,然后根据图形可得26314y x y x y +=+⎧⎨+=⎩,然后求出x 、y 的值,进而问题可求解. 【详解】解:设这六个形状、大小相同的长方形的长为x cm,宽为y cm,由图形得:26314y x y x y +=+⎧⎨+=⎩,解得:82x y =⎧⎨=⎩, ∵AB =10cm,∵阴影部分的面积为14×10-8×2×6=44cm 2;故答案为44.【点睛】本题主要考查二元一次方程组与几何的应用,熟练掌握二元一次方程组的解法由图形得到基本关系量是解题的关键.17.(本题3分)(2021·浙江浙江·七年级期中)已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.【答案】11x y =-⎧⎨=⎩ 【解析】【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0,因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩,解得:11x y =-⎧⎨=⎩.故答案为:11x y =-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.三、解答题(请写出必要的解题过程,本题共6个小题,共49分)18.(本题6分)(2019·浙江东阳·七年级期末)解下列方程(组)(1)3263x y x y +=⎧⎨-=⎩(2)1122x xx x +=+--【答案】(1)12535x y ⎧=⎪⎪⎨⎪=-⎪⎩ ;(2)3x =-,经检验,3x =-是原方程的根.【解析】【分析】(1)根据加减消元法即可求解;(2)先将分母进行变形,再去分母即可求解.【详解】(1)3263x y x y +=⎧⎨-=⎩①②令∵+2∵得5x=12,解得x=125把x=125代入∵得y=35∵原方程组的解为12535x y ⎧=⎪⎪⎨⎪=-⎪⎩(2)1122x x x x+=+-- 1122x x x x +=-+-- x+1=-x+x-2解得x=-3,把x=-3代入原方程,符合题意,故x=-3是原方程的解.【点睛】此题主要考查方程的求解,解题的关键是熟知加减消元法及分式方程的求解.19.(本题8分)(2019·浙江·绍兴市柯桥区杨汛桥镇中学七年级期中)已知方程组44(1)214(2)ax y x by -=⎧⎨+=⎩,,由于甲看错了方程∵中的a 得到方程组的解为26x y ,,=-⎧⎨=⎩ 乙看错了方程∵中的b 得到方程组的解为44.x y =-⎧⎨=-⎩, 若按正确的a 、b 计算,求原方程组的解. 【答案】42x y =⎧⎨=⎩【解析】【分析】将甲得到的方程组的解代入第二个方程求出b 的值,将乙得到方程组的解代入第一个方程求出a 的值,确定出正确的方程组,求出方程组的解得到正确的x 与y 的值.【详解】解:将x=-2,y=6代入方程组中的第二个方程得:-4+6b=14,解得:b=3,将x=-4,y=-4代入方程组中的第一个方程得:-4a+16=4,解得:a=3,则方程组为()()344123142x y x y ⎧-=⎪⎨+=⎪⎩,,, (2)×3-(1)×2得:17y=34,解得:y=2,把y=2代入(1)得:x=4,即方程组的正确解为42 xy=⎧⎨=⎩.【点睛】此题考查的是对二元一次方程组的解的计算,通过代入正确的a,b的值即可得出答案.20.(本题8分)(2021·浙江浙江·七年级期末)为了保护环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A B、两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万升汽油,求购买这批混合动力公交车需要多少万元?【答案】(1)a=120,b=100;(2)1120万元【解析】【分析】(1)根据“购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.”即可列出关于a、b的二元一次方程组,解之即可得出结论;(2)设A型车购买x台,则B型车购买(10-x)台,根据总节油量=2.4×A型车购买的数量+2×B型车购买的数量即可得出关于x的一元一次方程,解之即可得出x值,再根据总费用=120×A型车购买的数量+100×B型车购买的数量即可算出购买这批混合动力公交车的总费用.【详解】解:(1)根据题意得:20 3260a bb a-=⎧⎨-=⎩,解得:120100ab=⎧⎨=⎩.(2)设A型车购买x台,则B型车购买(10-x)台,根据题意得:2.4x +2(10-x )=22.4,解得:x =6,∵10-x =4,∵120×6+100×4=1120(万元).答:购买这批混合动力公交车需要1120万元.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)根据A 、B 型车价格间的关系列出关于a 、b 的二元一次方程组;(2)根据总节油量=2.4×A型车购买的数量+2×B 型车购买的数量列出关于x 的一元一次方程.21.(本题8分)(2021·浙江·杭州市公益中学七年级期中)已知关于x ,y 的方程组212398x y a x y a -=+⎧⎨+=-⎩,其中a 是实数. (1)若x y =,求a 的值;(2)若方程组的解也是方程53x y -=的一个解,求()20194a -的值;(3)求k 为何值时,代数式229x kxy y -+的值与a 的取值无关,始终是一个定值,求出这个定值.【答案】(1)12-;(2)-1;(3)k =6;定值为25. 【解析】【分析】(1)把a 看做已知数,利用加减消元法求出解即可;(2)把方程组的解代入方程计算求出a 的值,代入原式计算即可求出值;(3)将代数式x 2-kxy +9y 2的配方=(x -3y )2+6xy -kxy =25+(6-k )xy ,即可求解.【详解】解:(1)方程组212398x y a x y a -=+⎧⎨+=-⎩①②, ∵3⨯+∵得:5155x a =-,解得:31x a =-,把31x a =-代入∵得:2y a =-,则方程组的解为312x a y a =-⎧⎨=-⎩, 令312a a -=-,解得12a =-; (2)把方程组312x a y a =-⎧⎨=-⎩代入方程得:315103a a --+=, 解得:3a =,则20192019(4)(1)1a -=-=-;(3) 312x a y a =-⎧⎨=-⎩()3165,x y ∴-=---=229x kxy y -+2(3)6x y xy kxy =-+-25(6)k xy =+-,且代数式229x kxy y -+的值与a 的取值无关,∴当6k =时,代数式229x kxy y -+的值与a 的取值无关,定值为25.【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程,熟练掌握运算法则是解本题的关键.22.(本题9分)(2019·浙江长兴·七年级期末)阅读材料:小丁同学在解方程组435235x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩时,他发现:如果直接用代入消元法或加减消元法求解运算量比较大,也容易出错.如果把方程组中的(x+y)看作一个整体,把(x-y)看作一个整体,通过换元,可以解决问题.以下是他的解题过程:设m=x+y,n=x-y,这时原方程组化为435235m n m n ⎧+=⎪⎪⎨⎪-=-⎪⎩ 解得315m n =⎧⎨=⎩,即315x y x y +=⎧⎨-=⎩,解得96x y =⎧⎨=-⎩ 请你参考小丁同学的做法,解方程组:23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩ 【答案】914x y =⎧⎨=⎩【解析】【分析】设m=2x+3y,n=2x-3y,根据所给整体代换思路,按照所给方法求出方程的解即可.【详解】设m=2x+3y,n=2x-3y, 原方程可组化为743832m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:6024m n =⎧⎨=-⎩. ∵23602324x y x y +=⎧⎨-=-⎩, 解得:914x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,认真理解整体代换思路是解题关键.23.(本题10分)(2021·浙江浙江·七年级期末)用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a 张,正方形铁片b 张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则a b +的值可能是( )A .2019B .2020C .2021D .2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒【答案】(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B;(3)19个【解析】【分析】(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片2014张、正方形铁片1176张,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设竖式纸盒c个,横式纸盒d个,由题意列出方程组可求解.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,由铁板的总数量及所需长方形铁片的数量为正方形铁皮的2倍,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,取其整数部分再将剩余铁板按一张铁板裁出1个长方形铁片和2个正方形铁片处理,即可得出结论.【详解】解:(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:43201421176 x yx y+=⎧⎨+=⎩,解得:100538 xy=⎧⎨=⎩,答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设竖式纸盒c个,横式纸盒d个,根据题意得:432c d a c d b+=⎧⎨+=⎩,∵5c+5d=5(c+d)=a+b,∵a+b是5的倍数,可能是2020,故选B;(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:35 324 m nm n+=⎧⎨=⨯⎩,解得:525116911mn⎧=⎪⎪⎨⎪=⎪⎩,∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∵共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∵可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程(组).。
2.3 解二元一次方程组第1课时 代入消元法基础过关全练知识点 代入消元法1.(2022湖南株洲中考)对于二元一次方程组{y =x −1,①x +2y =7,②将①式代入②式,消去y 可以得到( ) A.x+2x-1=7 B.x+2x-2=7C.x+x-1=7D.x+2x+2=72.四名学生利用代入法解二元一次方程组{3x −4y =5,①x −2y =3②时,提出四种不同的解法,其中解法不正确的是( ) A.由①得x=5+4y 3③,将③代入② B.由①得y=3x−54③,将③代入② C.由②得y=-x−32③,将③代入①D.由②得x=3+2y ③,将③代入①3.(2022江苏无锡中考)二元一次方程组{3x +2y =12,2x −y =1的解为 .4.【新独家原创】 已知关于a,b 的二元一次方程组{a +m =3,b −3=m,则-a-b 的值为 .5.(2021浙江丽水中考)解方程组:{x =2y,x −y =6.6.【易错题】下面是老师在铭铭的数学作业本上截取的部分内容:解方程组{2x −y =3,①x +y =−12.②解:方程①变形,得y=2x-3③, 第一步把方程③代入方程①,得2x-(2x-3)=3, 第二步整理,得3=3, 第三步因为x 可以取任意实数,所以原方程组有无数个解.问题:这种解方程组的方法叫 ;铭铭的解法正确吗?如果不正确,错在哪一步?并求出正确的解.能力提升全练7.已知单项式-3x m-1y 3与52x n y m+n 是同类项,那么m,n 的值分别是 ( )A.2,1B.1,2C.0,-1D.-1,28.小明说{x =−1,y =2为方程ax+by=10的解,小惠说{x =2,y =−1为方程ax+by=10的解,两人谁也不能说服对方.若他们的说法都正确,则a,b 的值分别为 ( )A.12,10B.9,10C.10,11D.10,109.(2022浙江杭州西湖期中,9,)在解关于x,y 的方程组{ax −2by =8①,2x =by +2②时,小明将方程①中的“-”看成了“+”,得到的解为{x =2,y =1,则原方程组的解为 ( ) A.{a =2b =2 B.{x =2y =2 C.{x =−2y =−3 D.{x =2y =−110.如果|x-2y+1|+|x+y-5|=0,那么x= .11.(2022浙江杭州期中改编,15,)若 1 314x+17y=2y+x-5=2x-3,则2(x-2y)= .12.(2022浙江杭州萧山期中,14,)对于有理数x,y,定义一种新运算:x ⊕y=ax+by-5,其中a,b 为常数.已知1⊕2=9,(-3)⊕3=-2,则2a+b= .13.(2022浙江杭州余杭月考,15,)已知关于x,y 的二元一次方程(3x-2y+9)+m(2x+y-1)=0,无论m 取何值,方程总有一个固定不变的解,这个解是 .14.【一题多解】当关于x,y 的二元一次方程组{2x −y −4m =0,14x −3y −20=0中y 的值是x 值的3倍时,求x,y 的值.15.已知关于x,y 的二元一次方程组{ax +5y =4,5x +y =3与{x −2y =5,5x +by =1的解相同,求a,b 的值.素养探究全练16.【运算能力】材料:解方程组{x −y −1=0①,4(x −y)−y =5②时,可由①得x-y=1③,然后将③代入②得4×1-y=5,解得y=-1,将y=-1代入③,得x-(-1)=1,解得x=0,∴方程组的解为{x =0,y =−1,这种方法被称为“整体代入法”.请用这样的方法解方程组{2x −y −2=0,6x−3y+45+2y =12.17.【运算能力】三个同学对问题“若关于x,y 的二元一次方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是{x =3,y =4,求关于x,y 的二元一次方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解”提出各自的想法.甲说:“这个题目条件不够,不能求解.”乙说:“它们的系数有一定的规律,可以试试.”丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元的方法来解决?”参考他们的讨论,解决上述问题.答案全解全析基础过关全练1.B 将①式代入②式,得x+2(x-1)=7,∴x+2x-2=7,故选B.2.C C 中,应该由②得y=x−32,故选项C 解法错误,符合题意,故选C.3.答案 {x =2y =3 解析 {3x +2y =12,①2x −y =1②,由②得y=2x-1③,将③代入①得3x+2(2x-1)=12,解得x=2,将x=2代入③得y=3,∴原方程组的解为{x =2,y =3. 4.答案 -6解析 {a +m =3①,b −3=m②,把②代入①,得a+b-3=3, ∴a+b=6,∴-a-b=-6.5.解析 {x =2y①,x −y =6②,把①代入②得,2y-y=6,解得y=6, 把y=6代入①得,x=12, 则原方程组的解为{x =12,y =6. 6.解析 代入消元法.铭铭的解法不正确,错在第二步,正确解法:将方程①变形,得y=2x-3③,把③代入②,得x+2x-3=-12,解得x=-3,把x=-3代入③,得y=-9,所以原方程组的解为{x =−3,y =−9.能力提升全练7.A 根据题意得{m −1=n,m +n =3,解得{m =2,n =1.故选A. 8.D 由{x =−1,y =2为方程ax+by=10的解,{x =2,y =−1为方程ax+by=10的解,得{−a +2b =10,2a −b =10,解得{a =10,b =10.故选D. 9.C 把{x =2,y =1代入{ax +2by =8,2x =by +2,得{2a +2b =8,4=b +2,解得{a =2,b =2, ∴原方程组为{2x −4y =8,2x =2y +2,解得{x =−2,y =−3.故选C. 10.答案 3解析 ∵|x-2y+1|+|x+y-5|=0,∴{x −2y +1=0,①x +y −5=0,②由①得x=2y-1③,把③代入②,得2y-1+y-5=0,解得y=2,把y=2代入③,得x=2×2-1=3,∴原方程组的解为{x =3,y =2.11.答案 -4解析 由2y+x-5=2x-3得2y+x-2x=-3+5,∴2y-x=2,∴x-2y=-2.∴2(x-2y)=2×(-2)=-4.12.答案 13解析 根据题中的新定义得{a +2b −5=9,−3a +3b −5=−2,整理得{a +2b =14,①−a +b =1,②由②得b=1+a ③,把③代入①,得a+2(1+a)=14,解得a=4,把a=4代入③,得b=1+4=5.则原方程组的解为{a =4,b =5,则2a+b=8+5=13.13.答案 {x =−1y =3解析 ∵无论m 取何值,方程总有一个固定不变的解,∴{2x +y −1=0,3x −2y +9=0,解得{x =−1,y =3. 14.解析 解法一:∵y 的值是x 值的3倍,∴y=3x,∴{2x −3x −4m =0,14x −9x −20=0,解得{x =4,m =−1, ∴y=3×4=12.故x 的值为4,y 的值为12.解法二:{2x −y −4m =0,①14x −3y −20=0,② 由①得,y=2x-4m,③把③代入②,得14x-3(2x-4m)-20=0,∴x=−3m+52,∴y=-7m+5,∵y 的值是x 值的3倍,∴y=3x,∴-7m+5=3×−3m+52,解得m=-1.∴x=4,y=12.故x 的值为4,y 的值为12.15.解析 ∵两个方程组的解相同,∴可用方程5x+y=3,x-2y=5组成新方程组,得{5x +y =3,①x −2y =5,②由①得,y=3-5x ③,把③代入②,得x-2(3-5x)=5,解得x=1,把x=1代入③得y=-2,∴此方程组的解为{x =1,y =−2,把{x =1,y =−2代入{ax +5y =4,5x +by =1,得{a −10=4,5−2b =1,解得{a =14,b =2.素养探究全练16.解析 {2x −y −2=0,①6x−3y+45+2y =12,② 由①得2x-y=2③,将③代入②得3×2+45+2y=12,解得y=5,把y=5代入③得2x-5=2,解得x=3.5.所以原方程组的解为{x =3.5,y =5.17.解析 方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2中的两个方程的两边都除以5,得{a 1(35x)+b 1(25y)=c 1,a 2(35x)+b 2(25y)=c 2, 因为方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解是{x =3,y =4,所以{35x =3,25y =4,解得{x =5,y =10.所以方程组{3a 1x +2b 1y =5c 1,3a 2x +2b 2y =5c 2的解是{x =5,y =10.。
2.3 解二元一次方程组第2课时 加减消元法知识点 加减消元法解二元一次方程组对于二元一次方程组,当两个方程的同一个未知数的系数是互为相反数或相同时,可以通过把两个方程的两边相加或相减来消元,转化为一元一次方程求解.这种解二元一次方程组的方法叫做加减消元法,简称加减法.用加减法解二元一次方程组的一般步骤:(1)将其中一个未知数的系数化成相同(或互为相反数);(2)通过相减(或相加)消去这个未知数,得到一个一元一次方程(注意:一般在消去一个字母时,考虑用另一个字母系数大的式子减系数小的式子);(3)解这个一元一次方程,得到一个未知数的值;(4)将求得的未知数的值代入原方程组中的任一个方程,求得另一个未知数的值. (5)写出方程组的解.解方程组:⎩⎪⎨⎪⎧3x +2y =21,3x -4y =3.一 加减消元法解二元一次方程组教材例2变式题用加减法解方程组:⎩⎪⎨⎪⎧2x +3y =12,3x +4y =17.[归纳总结] 运用加减消元法解方程组时,首先要观察两个方程中同一个未知数的系数,若系数相等,则将这两个方程相减;若系数互为相反数,则将这两个方程相加,就可以消去该未知数.若系数既不相等也不互为相反数,我们应该设法使用等式的性质,将同一个未知数的系数化为相等或互为相反数.注意:(1)把某个方程乘一个数时,方程两边的每一项都要和这个数相乘;(2)把两个方程相加减时,一定要把两个方程两边分别相加减.二 灵活选择适当的方法解二元一次方程组教材补充题用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧6s +3t =13,3s -t =5;(2)⎩⎪⎨⎪⎧5x -6y =17,4x +3y =28.[归纳总结] 二元一次方程组解法的选取主要取决于未知数的系数,当方程组中某未知数的系数较简单,如系数为1或-1时,常选用代入消元法;当方程组中某未知数的系数相等或互为相反数或成倍数关系时,常选用加减消元法.[反思] 请观察下面解方程组⎩⎪⎨⎪⎧4x +3y =6,2x -y =4的过程,并判断该过程是否正确,若不正确,请写出正确的解法.解:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,②②×2,得4x -2y =8.③ ①-③,得y =-2.把y =-2代入②,得2x -(-2)=4,x =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =-2.一、选择题1.将方程-12x +y =1中含x 的项的系数化为3,则以下结果中,正确的是( )A .3x +y =1B .3x +6y =1C .3x -6y =1D .3x -6y =-62.方程组⎩⎪⎨⎪⎧x +y =5,①2x +y =10,②由②-①得到的正确的方程是( )A .3x =10B .x =5C .3x =-5D .x =-53.用加减法解方程组⎩⎪⎨⎪⎧2x +3y =3,3x -2y =11时,有下列四种变形,其中正确的是( )A .⎩⎪⎨⎪⎧4x +6y =3,9x -6y =11 B .⎩⎪⎨⎪⎧6x +3y =9,6x -2y =22C .⎩⎪⎨⎪⎧4x +6y =6,9x -6y =33D .⎩⎪⎨⎪⎧6x +9y =3,6x -4y =11 4.方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 后,得到的方程是( )A .y =4B .-7y =14C .7y =14D .y =145.2015·河北利用消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6,②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26.方程组⎩⎪⎨⎪⎧x +y =1,2x -y =5的解为( )A .⎩⎪⎨⎪⎧x =-1,y =2B .⎩⎪⎨⎪⎧x =-2,y =3 C .⎩⎪⎨⎪⎧x =2,y =1 D .⎩⎪⎨⎪⎧x =2,y =-17.已知方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .38.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B .34 C .43D .-43二、填空题9.用加减法解二元一次方程组⎩⎪⎨⎪⎧11x -3y =4,①13x -6y =-5,②将方程①两边乘________,再把得到的方程与方程②相__________,可以消去未知数________.10.2016·温州方程组⎩⎪⎨⎪⎧x +2y =5,3x -2y =7的解是________.11.已知二元一次方程组⎩⎪⎨⎪⎧3x +4y =28,①4x +3y =7,②不解方程组,直接求x +y 与x -y 的值,则x+y =________,x -y =________.12.2015·咸宁如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为________. 13.已知方程3x2m +5n +9+4y4m -2n -7=2是关于x ,y 的二元一次方程,则m =________,n=________.三、解答题14.用加减法解方程组:(1)⎩⎪⎨⎪⎧3x -y =2,3x +2y =11;(2)⎩⎪⎨⎪⎧x 2-y +13=1,3x +2y =10.15.用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧x +2y =1,3x -2y =11; (2)⎩⎪⎨⎪⎧5x +3y =6,5x -2y =-4;(3)⎩⎪⎨⎪⎧4x -3y =39,7x +4y =-15; (4)⎩⎪⎨⎪⎧2(2x +5y )=3.6,5(3x +2y )=8.16.如果二元一次方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a 的解是二元一次方程3x -5y -38=0的一个解,请你求出a 的值.17.已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x +5y =-6,3x -5y =16和方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8的解相同,求代数式3a +7b 的值.1.[技巧性题目] 在解关于x ,y 的方程组⎩⎪⎨⎪⎧ax +by =2,cx -7y =8时,一位同学把c 看错而得到⎩⎪⎨⎪⎧x =-2,y =2,正确的解应是⎩⎪⎨⎪⎧x =3,y =-2,求a ,b ,c 的值.2.[技巧性题目] 如果关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -ay =16,2x +by =15的解是⎩⎪⎨⎪⎧x =7,y =1,那么关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3(x +y )-a (x -y )=16,2(x +y )+b (x -y )=15的解是什么?详解详析【预习效果检测】[解析] 解方程组⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②两个方程中x 的系数相等,因此,可直接由①-②消去未知数x .解:⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②①-②,得6y =18,解得y =3. 把y =3代入方程②,得 3x -4×3=3,解得x =5.所以原方程组的解是⎩⎪⎨⎪⎧x =5,y =3.【重难互动探究】例1 [解析] 方程组中两个方程的同一未知数的系数均不成倍数关系,则需选定一个系数相对简单的未知数,将两个方程通过变形使其绝对值相等,再进行消元.解:⎩⎪⎨⎪⎧2x +3y =12,①3x +4y =17,②①×3,得6x +9y =36,③ ②×2,得6x +8y =34,④③-④,得y =2,把y =2代入①,得x =3.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =2.例2 [解析] 用适当的方法解方程组要求同学们能认真观察方程组中各项系数的特征,根据代入消元法和加减消元法的解题思路选择简捷的方法求解.故(1)可选择代入法求解,(2)可选择加减法求解.解:(1)⎩⎪⎨⎪⎧6s +3t =13,①3s -t =5,②由②,得t =3s -5,③把③代入①,得6s +3(3s -5)=13, 解得s =2815.把s =2815代入③,得t =35.所以原方程组的解为⎩⎪⎨⎪⎧s =2815,t =35.(2)⎩⎪⎨⎪⎧5x -6y =17,①4x +3y =28,② ②×2,得8x +6y =56,③ ①+③,得13x =73,所以x =7313.把x =7313代入②,得4×7313+3y =28,所以y =2413. 所以原方程组的解为⎩⎪⎨⎪⎧x =7313,y =2413.【课堂总结反思】[反思] 该过程不正确.正确的解法如下:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,②②×2,得4x -2y =8.③ ①-③,得5y =-2,y =-25.把y =-25代入②,得2x -⎝ ⎛⎭⎪⎫-25=4,x =95. ∴原方程组的解是⎩⎪⎨⎪⎧x =95,y =-25.【作业高效训练】[课堂达标] 1.D 2.B3.[解析] C 根据等式的基本性质进行检验,发现正确答案为C . 4.B 5.D 6.D7.[解析] D 两式相加,可得3x +3y =9,故x +y =3.8.[解析] B 解方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k ,得⎩⎪⎨⎪⎧x =7k ,y =-2k. 把x ,y 的值代入二元一次方程2x +3y =6,得2×7k +3×(-2k)=6,解得k =34.9.[答案] 2 减 y[解析] ①×2,得22x -6y =8,③ ③-②可消去y.10.[答案] ⎩⎪⎨⎪⎧x =3,y =111.[答案] 5 -21[解析] ①+②,得7x +7y =35,即x +y =5.②-①,得x -y =-21. 12.[答案] -5413.[答案] 1 -2[解析] 根据二元一次方程的定义可知,x ,y 的次数都是1,所以得方程组:⎩⎪⎨⎪⎧2m +5n +9=1,4m -2n -7=1, 解方程组,得⎩⎪⎨⎪⎧m =1,n =-2.14.[解析] 方程组(2)较复杂,可先通过化简,将其变形为二元一次方程组的一般形式后再消元.解:(1)⎩⎪⎨⎪⎧3x -y =2,①3x +2y =11,②②-①,得3y =9,解得y =3.把y =3代入①,得3x -3=2,解得x =53.所以原方程组的解是⎩⎪⎨⎪⎧x =53,y =3.(2)原方程组可化简为⎩⎪⎨⎪⎧3x -2y =8,①3x +2y =10,②①+②,得6x =18,解得x =3.将x =3代入①,得 9-2y =8,解得y =12.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =12.15.[解析] 认真观察每个方程组,发现方程组(1)用加减法求解比较简便;(2)未知数x的系数相同,可通过相减消去“x”,用加减法比较简便;(3)是一个较复杂的方程组,用加减法求解较合适;(4)需先将此方程组化简,再确定求解方法.解:(1)⎩⎪⎨⎪⎧x +2y =1,①3x -2y =11,②①+②,得4x =12,解得x =3.把x =3代入①,得3+2y =1, 解得y =-1.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-1.(2)⎩⎪⎨⎪⎧5x +3y =6,①5x -2y =-4,② ①-②,得5y =10,解得y =2. 把y =2代入①,得5x +3×2=6, 解得x =0.所以原方程组的解是⎩⎪⎨⎪⎧x =0,y =2.(3)⎩⎪⎨⎪⎧4x -3y =39,①7x +4y =-15,② ①×4,得16x -12y =156,③ ②×3,得21x +12y =-45,④ ③+④,得37x =111, 解得x =3.把x =3代入①,得4×3-3y =39, 解得y =-9.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-9.(4)将原方程组化简为⎩⎪⎨⎪⎧4x +10y =3.6,①15x +10y =8,②②-①,得11x =4.4,解得x =0.4.把x =0.4代入①,得1.6+10y =3.6, 解得y =0.2.所以原方程组的解为⎩⎪⎨⎪⎧x =0.4,y =0.2.16.[解析] 用方程组中的a 分别表示x ,y ,再把x ,y 的值代入3x -5y -38=0,即可求得a 的值.解:解方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a ,得⎩⎪⎨⎪⎧x =3a ,y =-2a. 把⎩⎪⎨⎪⎧x =3a ,y =-2a代入方程3x -5y -38=0, 得3×3a-5×(-2a)-38=0, 解得a =2.17.解:⎩⎪⎨⎪⎧2x +5y =-6,①3x -5y =16,②①+②,得5x =10,x =2.把x =2代入①,得2×2+5y =-6,y =-2.将⎩⎪⎨⎪⎧x =2,y =-2代入方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8,得 ⎩⎪⎨⎪⎧2a +2b =-4,2b -2a =-8, 解这个方程组,得⎩⎪⎨⎪⎧a =1,b =-3,所以3a +7b =3×1+7×(-3)=-18.[数学活动]小初高学习+K12小初高学习+K12 1.[解析] 根据题意,把⎩⎪⎨⎪⎧x =-2,y =2代入方程ax +by =2,得关于a ,b 的一个方程,再把⎩⎪⎨⎪⎧x =3,y =-2代入方程ax +by =2,得关于a ,b 的另一个方程,组成方程组,求得a ,b 的值.把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8,即可求得c 的值. 解:把⎩⎪⎨⎪⎧x =-2,y =2,⎩⎪⎨⎪⎧x =3,y =-2分别代入方程ax +by =2, 得⎩⎪⎨⎪⎧-2a +2b =2,3a -2b =2, 解得⎩⎪⎨⎪⎧a =4,b =5. 把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8, 得3c +14=8,解得c =-2.即a =4,b =5,c =-2.2.解:设x +y =m ,x -y =n ,所求方程组可变形为⎩⎪⎨⎪⎧3m -an =16,2m +bn =15.由题意,可得该方程组的解为⎩⎪⎨⎪⎧m =7,n =1,由此可得到关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =7,x -y =1,解得⎩⎪⎨⎪⎧x =4,y =3.故所求方程组的解是⎩⎪⎨⎪⎧x =4,y =3.。
2.3 解二元一次方程组(二)
一、选择题
1.已知⎩⎪⎨⎪⎧a +2b =4,3a +2b =8,则a +b 等于 ( )
A .3 B.83
C .2
D .1 2.已知二元一次方程组⎩⎪⎨⎪
⎧x +7y =-19,①x -5y =17. ②方程①减去②,得 ( )
A .2y =-2
B .2y =-36
C .12y =-2
D .12y =-36
3.解方程组①⎩⎪⎨⎪⎧y =2x +1,6x +5y =-11; ②⎩⎪⎨⎪⎧2x +3y =10,2x -3y =-6.
比较简便的方法( ) A .均用代入法 B .均用加减消元法
C .①用代入法,②用加减消元法
D .①用加减消元法,②用代入法
4.解二元一次方程组⎩⎪⎨⎪⎧8x +6y =3,①6x -4y =5,② 得y = ( ) A .-112 B .-217 C .-234 D .-1134
5.由方程组⎩
⎪⎨⎪⎧2x +m =1,y -3=m 可得出x 与y 的关系是 ( ) A .2x +y =4 B .2x -y =4
C .2x +y =-4
D .2x -y =-4
二、填空题
6.方程组⎩
⎪⎨⎪⎧x +y =3,2x -y =6 的解为__ __. 7.已知x ,y 满足方程组⎩
⎪⎨⎪⎧2x +y =5,x +2y =4,则x -y 的值为__ __. 8.用加减消元法解方程组⎩
⎪⎨⎪⎧2x -4y =6, ①3x +2y =17 ②时,将方程②的两边同乘__ __,再把所得的方程与①相__ __,就可以消去未知数y .
9.若关于x ,y 的二元一次方程组⎩
⎪⎨⎪⎧3x +y =1+a ,x +3y =3的解满足x +y =2,则a 的值__ __。
10.已知⎩⎪⎨⎪⎧x =2,
y =1 是二元一次方程组⎩⎪⎨⎪⎧mx +ny =8,nx -my =1 的解,则2m -n 的值为 。
三、解答题
11.解方程组:
(1)⎩⎪⎨⎪⎧2x +y =2, ①3x -2y =10. ② (2)[2012·南京]⎩
⎪⎨⎪⎧x +3y =-1, ①3x -2y =8. ②
12.为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖
品.已知购买5个文具盒、2支钢笔共需100元;购买4个文具盒、7支钢笔共需161元.每个文具盒、每支钢笔各多少元?
13.求当m ,n 为何值时,关于x ,y
的两个方程组⎩
⎪⎨⎪⎧mx +2ny =60, ①3x -y =5 ②与⎩⎪⎨⎪⎧2x +y =10, ③mx +y =22-n ④的解相同.
参考答案2.3(二)
1、A,
2、D ,
3、C ,
4、D ,
5、A ,
6、⎩
⎪⎨⎪⎧x =3,y =0 7、1, 8、2,加, 9、4, 10、4 11、(1)⎩⎪⎨⎪⎧x =2,y =-2., (2)⎩
⎪⎨⎪⎧x =2,y =-1. 12、每个文具盒14元,每支钢笔15元. 13、当m =4,n =6时,它们的解相同。