西南科技大学大学物理学B(2)试卷-作业题(6)答案
- 格式:pdf
- 大小:288.89 KB
- 文档页数:1
西南科技大学试题(B卷)参考答案课程名称:《光电子技术》课程代码:1695命题人:命题组学院:理学院专业班级:光信息科学与技术2004级学号:共3页第页一、选择题(10分,2分/题)1、电磁波具有的性质有(A、B、C、D)A. 电场、磁场和波的传播方向满足右手定则B. 具有偏振C. 电场和磁场相位同步D. 电场与磁场存在相互依存关系2、图像通信系统主要由图像输入设备、(A、B、C、D)等组成。
A. 编码器B. 调制器C. 信道D. 显示终端3、在光线作用下,半导体的电导率增加的现象属于( D )A. 外光电效应B. 内光电效应C. 光电发射D. 光导效应4、厨房宜采用哪种形式的火灾报警探测器( C)A. 感温探测器B. 火焰探测器C. 感烟探测器D. 离子感烟探测器5、成像转换过程需要研究的有(A、B、C、D)A. 能量B. 成像特性C. 噪声D. 信息传递速率二、判断题(10分,2分/题)6、大气分子在光波电场的作用下产生极化,并以入射光的频率作受迫振动。
(√)7、某些晶体在外加电场的作用下,其折射率将发生变化,当光波通过此介质时,其传输特性就受到影响而改变,这种现象称为电光效应。
(√)8、光电池是利用光生伏特效应,直接将光能转换为电能的光电器件。
(√)9、热辐射光纤温度探测器是利用光纤内产生的热辐射来探测温度的一种器件。
(√)10、等离子体显示器缺点是每一个像素都是一个独立的发光管。
(√)三、填空题(10分,2分/题)11、处于空腔单位体积内,频率位于ν附近单位频率间隔的光波模式数为 3c 28πυ12、若超声频率为f s ,那么光栅出现和消失的次数则为2 f s ,因而光波通过该介质后所得到的调制光的调制频率将为声频率的 2 倍。
13、微光光电成像系统的核心部分是 微光像增强器件 。
14、 向列型 液晶由长径比很大的棒状分子组成,保持与轴向平行的排列状态。
15、光电二极管按结构分有 同质结与异质结光电二极管 。
西南科技大学201X-201X-2学期《大学物理A1》本科期末考试试卷(第四套)一、 选择题(把正确答案的序号填写在题后的括号内,每题3分,共36分)1、一小球沿斜面向上运动,其运动方程为245t t s -+=,则小球运动到最高点的时刻是:〔 〕 (A )1s ; (B )2s ; (C )3s ; (D )4s 。
2、一质点按规律232t t s +=在圆形轨道上作变速圆周运动,s 为沿圆形轨道的自然坐标。
如果当s t 2=时的总加速度大小为2/216s m ,则此圆形轨道的半径为:〔 〕 (A)m 16; (B)m 25; (C)m 50; (D) m 100。
3、当一列火车以35m/s 的速率水平向前行驶时,相对于地面匀速竖直下落的雨滴,在列车的窗子上形成的雨迹与竖直方向成30o的角。
则雨滴相对于地面的速率为( )。
A 、5 m/s B 、10m/s C 、15m/s ; D 、17.3 m/s4、粒子B 的质量是粒子A 的质量的4倍,开始时粒子A 的速度为34i+j , 粒子B 的速度为2i 7j -,由于两者的相互作用, 粒子A 的速度变为74i j -,此时粒子B 的速度等于( )。
(A) i 5j - (B) 27i j - (C) 0 (D) 53i j -5、下列说法中正确的是:〔 〕(A )对于质点系而言,质心加速度不仅与系统所受的外力有关,还与内力有关; (B )质点系的质心速度保持不变与质点系的动量不变是等效的; (C )质点系的质心加速度保持不变与质点系的动量不变是等效的; (D )质心就是地球对物体各部分引力的合力的作用点。
7、若从一惯性系中测得一相对其高速运动的宇宙飞船的长度为其固有长度的一半,则该宇宙飞船相对于此惯性系的飞行速率为:[ ] (A )2c ; (B )53c ; (C )54c; (D )23c ; (E )22c 。
8、质点以频率ν作简谐振动时,它的动能随时间的变化频率为:[ ]6、质量为M、长为L的柔软匀质链条,放置于光滑水平桌面上,下垂部分的长度为L/3,如图所示,此时链条由静止开始下落,则当整个链条脱离桌面时的速度大小为:〔 〕(A)3/2gL ; (B)32gL;(C)gL 2; (D)gL 232。
西南科技大学2011-2012-1学期《大学物理B2》本科期末考试试卷(A 卷)参考答案及评分细则一、选择题(每题3分,共30分) 1--10、AADCBBCADC二、填空题(每题2分,共14分)1、)(RIπ1120-μ 2、3R B πλω 3、2/λ 4、)2/2cos(4.02πππ+-=t a 5、0.10cos(2)()ππm t -6、1um7、变密。
三、计算题(共56分) 1、(10分)解: L 1在点产生的磁感应强度为零,即B 1=0 (2分)L 2在o 点产生的磁感应强度为RIB πμ402=、方向垂直于图面向外。
(3分)B 3+B 4=0。
(3分)o 点的磁感应强度 RIB B B B B o πμ404321=+++= 方向垂直于图面向外。
(2分) 2、(12分)解 xIB π20μ=(2分通过该面积元的磁通量为 x l xIS B Φd π2d d 0μ==(2分)⎰⎰⎰++++==Φ=vtb vt a vtb vta x x l Ix l xIt Φd π2d π2d )(00μμvta vtb Il ++=ln π20μ(3分)])()()([π2d d 20vt a v vt b v vt a vt b vt a lIN t N++-+++-=Φ-=με(3分) 令t = 0,并代入数据,则得线圈刚离开直导线时的感应电动势 33.010()V ε-=⨯(2分)按楞次定律可知ε的方向为图(b )中的顺时针方向。
3、解:设O 处振动方程为 )t Acos(0ϕω+=y 当t=0时,,即,所以,πϕ210000=<=v y )21t Acos(0πω+=y故入射波方程为)2-2t Acos(x y λππω+=入 ( 4分)在O '处入射波引起的振动方程为)-t Acos()472-2t Acos(1πωλλππω=⋅+=y反身波方程为]22t Acos[)]-47(2-t Acos[)]-O O (2-t Acos[πλπωλλπωλπω++=='='x x x y (4分)合成波方程为)()()(入2t cos 22Acos22t Acos 22-t Acos πωλππλπωπλπω+=++++='+=x x x y y y (2分) 将P 点坐标λλλ234-47x ==代入上述方程,则P 点的振动方程为)21-2Acos(πω+=t y (2分) 4、解:光在油膜上下表面的反射无半波损失,故由薄膜公式有δ反=2en 2=(k +21)λ当λ1=500nm 时,有2en 2=(k 1+21)λ1 (2分) 当λ2=700nm 时,有 2en 2=(k 2+21)λ2 (2分) 由于500nm 和700nm 这两个波长之间无别的波长发生相消,故k 1、 k 2为两个连续整数,且k 1> k 2,所以 k 1= k 2+1k 1=3, k 2=2 (3分)2112)21(n k e λ+==6731Å=6.731×10-4mm (3分) 5、 解:(1) 由单缝衍射明纹公式可知()111231221sin λλϕ=+=k a (取k =1 ) ()222231221sin λλϕ=+=k a (2分)f x /tg 11=ϕ , f x /tg 22=ϕ 由于 11tg sin ϕϕ≈ , 22tg sin ϕϕ≈所以 a f x /2311λ=a f x /2322λ= (2分)则两个第一级明纹之间距为 a f x x x /2312λ∆=-=∆=0.27 cm (2分) (2) 由光栅衍射主极大的公式 1111sin λλϕ==k d(2分)2221sin λλϕ==k d (2分)且有f x /tg sin =≈ϕϕ 所以d f x x x /12λ∆=-=∆=1.8 cm (2分)。
Ox-a a y +σ+σ作业题一(静止电荷的电场)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零. (C) 处处不为零. (D) 无法判定 .[ ] 2. 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]3. 将一个试验电荷q 0(正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小.(C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ]4. 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于:(A)6εq . (B)12εq .(C)24εq . (D)48εq. [ ]5. 高斯定理⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场. (B) 只适用于真空中的静电场.O E -a +a 02/εσx(A )0/εσOE-a +ax(B )-0/εσ0/εσOE-a +ax(D )/εσO E-a +ax(C )/εσ-P+q 0Abcd a q(C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. [ ]6. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为: (A) r0212ελλπ+. (B)20210122R R ελελπ+π(C)1012R ελπ. (D) 0. [ ]7. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]8. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ ]二、填空题9. A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.则A 、B 两平面上的电荷面密度分别为σA =_______________, σB =____________________.10. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+σ,如图所示,则A 、B 、C 、D 三个区域的电场强度分别为:E A =_________________,E B =_____________, E C =_________,E D =___________ (设方向向右为正). Pr λ2λ1 R 1R 2Q SqA BEE 0/3E 0/3+σ+σ+σA B C D11. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E =__________________ __________,场强方向为______________________.12. 如图所示,真空中两个正点电荷Q ,相距2R .若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强 度通量=______________;若以 0r 表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为________________________.三、计算题13. 带电细线弯成半径为R 的半圆形,电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.14. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.15. 一半径为R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体内外的场强分布.R OdqO+Q RS +Q ba 2Ry RxφOO R’O'16. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为:Ex =bx,Ey=0,Ez=0.高斯面边长a=0.1 m,常量b=1000 N/(C·m).试求该闭合面中包含的净电荷.(真空介电常数 0=8.85×10-12 C2·N-1·m-2 )a a a axzy O作业题二(电势)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为(A) a q 04επ. (B) a q 08επ.(C)aq 04επ-. (D)aq 08επ-. [ ]2. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为r 处的P 点的场强大小及电势分别为: (A) E =0,U =104R Q επ. (B) E =0,U =⎪⎪⎭⎫ ⎝⎛-π210114R R Qε. (C) E =204rQ επ,U =rQ 04επ (D) E =204rQ επ,U =104R Q επ.[ ]3. 关于静电场中某点电势值的正负,下列说法中正确的是: (A) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选取.(D) 电势值的正负取决于产生电场的电荷的正负. [ ]4. 点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 (A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大. (C) 从A 到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等. [ ]5. 如图所示,直线MN 长为2l ,弧OCD 是以N点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =≦. (D) A =0. [ ] 6. 半径为r 的均匀带电球面1,带有电荷q ,其外有一同心的半径为R 的均匀aa+qPMOR 1R 2PrQ A B DC O-q7. N D P C +q M -q O带电球面2,带有电荷Q ,则此两球面之间的电势差U 1-U 2为: (A) ⎪⎭⎫⎝⎛-πR r q1140ε . (B) ⎪⎭⎫ ⎝⎛-πr R Q 1140ε .(C)⎪⎭⎫⎝⎛-πR Q r q 041ε . (D)rq 04επ . [ ] 7. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为 (A) d S q q 0212ε+. (B)d S q q 0214ε+. (C)d Sq q 0212ε-. (D)d Sq q 0214ε-. [ ]8. 面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为 (A)Sq02ε. (B)S q022ε. (C)2022Sqε. (D)202Sqε. [ ]二、填空题9. 如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×108C ,设无穷远处电势为零,则空间另一电势为零的球面半径r = __________________.10. 真空中一半径为R 的均匀带电球面,总电荷为Q .今在球面上挖去很小一块面积△S (连同其上电荷),若电荷分布不改变,则挖去小块后球心处电势(设无穷远处电势为零)为________________.11. 把一个均匀带有电荷+Q 的球形肥皂泡由半径r 1吹胀到r 2,则半径为R (r 1<R <r 2)的球面上任一点的场强大小E 由______________变为______________;电 势U 由 __________________________变为________________(选无穷远处为电势零点).12. 静电场的环路定理的数学表示式为:______________________.该式的物理意义是:____________________________________________________________.该定理表明,静电场是______ _________场.三、计算题dB ASSq 1q 2q 1q 2r 1r 213. 一“无限大”平面,中部有一半径为R的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O并与平面垂直的直线上各点的场强和电势(选O点的电势为零).14. 图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R1,外表面半径为R2.设无穷远处为电势零点,求空腔内任一点的电势.σOROR1R215.两个带等量异号电荷的均匀带电同心球面,半径分别为R1=0.03 m和R2=0.10 m.已知两者的电势差为450 V,求内球面上所带的电荷.16. 有两根半径都是R的“无限长”直导线,彼此平行放置,两者轴线的距离是d (d≥2R),沿轴线方向单位长度上分别带有+λ和-λ的电荷,如图所示.设两带电导线之间的相互作用不影响它们的电荷分布,试求两导线间的电势差.R+λR-λd作业题三(导体和电介质)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为 [ ] (A) S Q 012ε . (B)S Q Q 0212ε-.(C)SQ 01ε. (D)SQ Q 0212ε+.2. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A) N 上有负电荷入地.(B) N 上有正电荷入地. (C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ ] 3. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 [ ] (A) ε 0 E . (B) ε 0 ε r E .(C) ε r E . (D) (ε 0 ε r - ε 0)E . 4. 一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E,电位移为D,则 [ ](A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=.5. 在静电场中,作闭合曲面S ,若有0d =⎰⋅SS D (式中D为电位移矢量),则S面内必定 [ ](A) 既无自由电荷,也无束缚电荷. (B) 没有自由电荷. (C) 自由电荷和束缚电荷的代数和为零.(D) 自由电荷的代数和为零.+Q 1+Q2ABMN6. 一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点[ ] (A) 保持不动. (B) 向上运动. (C) 向下运动. (D) 是否运动不能确定. 7.一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 12、电场强度的大小E 、电场能量W 将发生如下变化: [ ](A) U 12减小,E 减小,W 减小.(B) U 12增大,E 增大,W 增大. (C) U 12增大,E 不变,W 增大.(D) U 12减小,E 不变,W 不变. 8. 如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小. (C) 不变. (D) 如何变化无法确定.[ ] 二、填空题9. 半径为R 1和R 2的两个同轴金属圆筒,其间充满着相对介电常量为εr 的均匀介质.设两筒上单位长度带有的电荷分别为+λ和-λ,则介质中离轴线的距离为r 处的电位移矢量的大小D =____________,电场强度的大小 E =____________.10. 一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质,这时两极板上的电荷是原来的______倍;电场强度是原来的 _________倍;电场能量是原来的_________倍.11. 一平行板电容器,充电后切断电源,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质.此时两极板间的电场强度是原来的____________倍;电场能量是原来的___________ 倍.12. 分子的正负电荷中心重合的电介质叫做_______________ 电介质 .在外电场作用下,分子的正负电荷中心发生相对位移,形成________________________.三、计算题13. 如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求:(1) 球壳内外表面上的电荷.(2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势.+q m+Q-Qqq Q a b O r14. 半径分别为R1和R2 (R2 > R1 )的两个同心导体薄球壳,分别带有电荷Q1和Q2,今将内球壳用细导线与远处半径为r的导体球相联,如图所示, 导体球原来不带电,试求相联后导体球所带电荷q.OR2R1r1115. 假想从无限远处陆续移来微量电荷使一半径为R的导体球带电.(1) 当球上已带有电荷q时,再将一个电荷元d q从无限远处移到球上的过程中,外力作多少功?(2) 使球上电荷从零开始增加到Q的过程中,外力共作多少功?16. 一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R1= 2 cm,R2 = 5 cm,其间充满相对介电常量为εr 的各向同性、均匀电介质.电容器接在电压U = 32 V的电源上,(如图所示),试求距离轴线R = 3.5 cm处的A点的电场强度和A点与外筒间的电势差.作业题四(电流的磁场)A R1R2RεrU1213 班级:_____________ 姓名:_____________ 学号:_____________ 一、选择题1. 如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为 [ ](A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 =21B 2. (D) B 1 = B 2 /4.2. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0. (C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但B 3≠ 0. [ ] 3. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:[ ](A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .4. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为: (A) 01=B ,02=B . (B) 01=B ,lI B π=0222μ.(C) l I B π=0122μ,02=B . (D) lI B π=0122μ,lI B π=0222μ. [ ]5. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知 (A)0d =⎰⋅Ll B,且环路上任意一点B = 0.ACqqqqO3.a bcIO12a I I I a a a a2a I PQ O Ia IB 1IB 1 2ab c d IL OI14 (B) 0d =⎰⋅Ll B,且环路上任意一点B ≠0. (C) 0d ≠⎰⋅Ll B,且环路上任意一点B ≠0.(D)0d ≠⎰⋅Ll B,且环路上任意一点B =常量. [ ]6. 如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的? (A)I l HL 2d 1=⎰⋅. (B)I l HL =⎰⋅2d(C)I l HL -=⎰⋅3d. (D)I l HL -=⎰⋅4d. [ ]7. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?(A) Ⅰ区域. (B) Ⅱ区域.(C) Ⅲ区域. (D) Ⅳ区域.(E) 最大不止一个. [ ]8. 如图两个半径为R 的相同的金属环在a 、b 两点接触(ab 连线为环直径),并相互垂直放置.电流I 沿ab 连线方向由a 端流入,b 端流出,则环中心O 点的磁感强度的大小为(A) 0. (B) RI40μ. (C) R I 420μ. (D)RI0μ. (E)RI 820μ. [ ]二、填空题9. 如图,在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路.两个回路与长直载流导线在同一平面,且矩形回路的一边与长直载流导线平行.则通过面积为S 1的矩形回路的磁通量与通过面积为S 2的矩形回路的磁通量之比为____________. 10. 如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B _____________.(2) 磁感强度B沿图中环路L 的线积分=⎰⋅Ll Bd __________________________________.L 2L 1L 3L 42IIⅠⅡⅢⅣIIbaS 1S 2a a 2a 10. BxAaL yP11. 图中所示的一无限长直圆筒,沿圆周方向上的面电流密度(单位垂直长度上流过的电流)为i,则圆筒内部的磁感强度的大小为B =________,方向_______________.12. 将半径为R的无限长导体薄壁管(厚度忽略)沿轴向割去一宽度为h ( h << R)的无限长狭缝后,再沿轴向流有在管壁上均匀分布的电流,其面电流密度(垂直于电流的单位长度截线上的电流)为i (如上图),则管轴线磁感强度的大小是__________________.三、计算题13. 半径为R的无限长圆柱形导体和内半径为R0,外半径也为R的无限长圆筒形导体,都通有沿轴向的,在横截面上均匀分布的电流I,导体的磁导率都为 0.今取长为l、宽为2 R的矩形平面ABCD和A′B′C′D′,AD及A′D′正好在导体的轴线上,如图所示.(1) 通过ABCD的磁通量大小为多少?(2) 通过A′B′C′D′的磁通量为多少?(3) 若电流I不变,外半径R不变,圆筒壁变薄,直至壁厚趋于零,再求(2) .14. 一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R的四分之一圆弧,其余为直线.导线中通有电流I,求图中O点处的磁感强度.15. 平面闭合回路由半径为R1及R2 (R1 > R2 )的两个同心半圆弧和两个直导线段组成(如图).已知两个直导线段在两半圆弧中心O处的磁感强度为零,且闭合载流回路在O处产生的总的磁感强度B与半径为R2的半圆弧在O点产生的磁感强度B2的关系为B =2 B2/3,求R1与R2的关系.iOO′R ihA DBC lA′D′B′C′l12 34RROIR1R2OI151616. 如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为σ.该筒以角速度ω绕其轴线匀速旋转.试求圆筒内部的磁感强度.作业题五(电流在磁场中受力)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 按玻尔的氢原子理论,电子在以质子为中心、半径为r 的圆形轨道上运动.如果把这样一个原子放在均匀的外磁场中,使电子轨道平面与B垂直,如图所示,则在r 不变的情况下,电子轨道运动的角速度将: [ ](A) 增加. (B) 减小. (C) 不变. (D) 改变方向.2. 如图,一个电荷为+q 、质量为m 的质点,以速度v沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v -从磁场中某一点出来,这点坐标是x = 0 和 [ ] (A) qBm y v +=. (B) qBm y v 2+=.Rωσepxy +q, mv BO17(C) qBm y v 2-=. (D) qBm y v -=.3. 一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会发生?(A) 在铜条上a 、b 两点产生一小电势差,且U a > U b . (B) 在铜条上a 、b 两点产生一小电势差,且U a < U b . (C) 在铜条上产生涡流.(D) 电子受到洛伦兹力而减速. [ ] 4. 如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将 [ ] (A) 向着长直导线平移. (B) 离开长直导线平移. (C) 转动. (D) 不动.5. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将 (A) 绕I 2旋转. (B) 向左运动.(C) 向右运动. (D) 向上运动.(E) 不动. [ ] 6. 如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: [ ](A) 靠近大平板. (B) 顺时针转动.(C) 逆时针转动. (D) 离开大平板向外运动. 7. 两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 [ ] (A)RrI I 22210πμ. (B)Rr I I 22210μ.(C)rRI I 22210πμ. (D)0.8. 两根载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势是 [ ] (A) 沿x 方向平动. (B) 绕x 轴转动.I 1I 2 I 2I 1 6. I 1I 2O rR I 1I 2y zxI 1I 2a b B³ ³ ³ ³³ ³ ³ ³³ ³ ³ ³18 (C) 绕y 轴转动. (D) 无法判断.二、填空题9. 如图,均匀磁场中放一均匀带正电荷的圆环,其线电荷密度为λ,圆环可绕通过环心O 与环面垂直的转轴旋转.当圆环以角速度ω 转动时,圆环受到的磁力矩为_________________, 其方向__________________________.10. 有一半径为a ,流过稳恒电流为I 的1/4圆弧形载流导线bc ,按图示方式置于均匀外磁场B中,则该载流导线所受的安培力大小为_______________________.11. 如图所示,在真空中有一半径为a 的3/4圆弧形的导线,其中通以稳恒电流I ,导线置于均匀外磁场B 中,且B与导线所在平面垂直.则该载流导线bc 所受的磁力大小为_________________.12. 如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l Id 所受的安培力Fd 的 大小为_______________,方向_________________.OR ω λBOa c abBIaa IcbBOOIalI d19三、计算题13. 在一顶点为45°的扇形区域,有磁感强度为B方向垂直指向纸面内的均匀磁场,如图.今有一电子(质量为m ,电荷为-e )在底边距顶点O 为l 的地方,以垂直底边的速度 v射入该磁场区域,若要使电子不从上面边界跑出,电子的速度最大不应超过多少?14. 一圆线圈的半径为R ,载有电流I ,置于均匀外磁场B中(如图示).在不考虑载流圆线圈本身所激发的磁场的情况下,求线圈导线上的张力.(载流线圈的法线方向规定与B的方向相同.)l45° vBOI RB2015. 一矩形线圈边长分别为a =10 cm 和b =5 cm ,导线中电流为I = 2 A ,此线圈可绕它的一边OO '转动,如图.当加上正y 方向的B =0.5 T 均匀外磁场B,且与线圈平面成30°角时,线圈的角加速度为β = 2 rad/s 2,求∶(1) 线圈对OO '轴的转动惯量J =?(2) 线圈平面由初始位置转到与B 垂直时磁力所做的功?16. 一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.O xyzI30° BO ′ a bIIR 1R 2R 3作业题六(电磁感应)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小. (C) 铜环中感应电动势小,木环中感应电动势大. (D) 两环中感应电动势相等. [ ]2. 如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的 --t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势?[ ]3. 一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将 (A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.(C) 对磁场不起作用. (D) 使铜板中磁场反向. [ ]4. 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω与B同方向),BC 的长度为棒长的31,则(A) A 点比B 点电势高.(B) A 点与B 点电势相等.(B) A 点比B 点电势低.(D)有稳恒电流从A 点流向B 点. [ ]☜ t O (A ) ☜ t O (C ) ☜t O(B )☜ tO(D ) C D Oω BO O ′BBAC5. 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a – U c为 [ ] (A) =0,U a – U c =221l B ω. (B) =0,U a – U c =221l B ω-.(C) =2l B ω,U a – U c =221l B ω.(D) =2l B ω,U a – U c =221l B ω-.6. 如图所示,两个线圈P 和Q 并联地接到一电动势恒定的电源上.线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计.当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是[ ](A) 4. (B) 2. (C) 1. (D)21.7. 在感应电场中电磁感应定律可写成tlE LKd d d Φ-=⎰⋅,式中K E为感应电场的电场强度.此式表明:(A) 闭合曲线L 上K E处处相等.(B) 感应电场是保守力场.(C) 感应电场的电场强度线不是闭合曲线. (D) 在感应电场中不能像对静电场那样引入电势的概念. [ ] 8. 对位移电流,有下述四种说法,请指出哪一种说法正确. (A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律. (D) 位移电流的磁效应不服从安培环路定理. [ ]二、填空题9. 如图所示,aOc 为一折成∠形的金属导线(aO =Oc =L ),位于xy 平面中,磁感强度为 B的匀强磁场垂直于xy 平面.当aOc 以速度v沿x 轴正向运动时,导线上a 、c两点间电势差U ac =____________;当aOc 以速度v沿y 轴正向运动时,a 、c 两点的电势相比较, 是____________点电势高.Ba b clωPQv B yO xv ca θ³³³³³³³³³10. 一导线被弯成如图所示形状,acb 为半径为R 的四分之三圆弧,直线段Oa 长为R .若此导线放在匀强磁场B 中,B的方向垂直图面向内.导线以角速度ω在图面内绕O 点匀速转动,则此导线中的动生电动势 i =___________ , 电势最高的点是________________________.11. 一长直导线旁有一长为b ,宽为a 的矩形线圈,线圈与导线共面,长度为b 的边与导线平行且与直导线相距为d ,如图.线圈与导线的互感系数为 ______________________.12. 一无铁芯的长直螺线管,在保持其半径和总匝数不变的情况下,把螺线管拉长一些,则它的自感系数将____________________.三、计算题13. 均匀磁场 B被限制在半径R =10 cm 的无限长圆柱空间内,方向垂直纸面向里.取一固定的等腰梯形回路abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如图所示.设磁感强度以d B /d t =1 T/s 的匀速率增加,已知 π=31θ,cm 6==Ob Oa ,求等腰梯形回路中感生电动势的大小和方向.14.如图所示,有一半径为r =10 cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B中(B = 0.5 T ).圆形线圈可绕通过圆心的轴O 1O 2转动,转速 n =600rev/min .求圆线圈自图示的初始位置转过π21时,(1) 线圈中的瞬时电流值(线圈的电阻R 为 100 Ω,不计自感);(2) 圆心处的磁感强度.(μ0 =4π×10-7 H/m)ωa bc OBabdO 1O 2Brω×× × RB cb da O θ15. 两个半径分别为R和r的同轴圆形线圈相距x,且R>>r,x>>R.若大线圈通有电流I而小线圈沿x轴方向以速率v运动,试求x =NR时(N为正数)小线圈回路中产生的感应电动势的大小.16. 载有电流的I长直导线附近,放一导体半圆环MeN与长直导线共面,且端点MN的连线与长直导线垂直.半圆环的半径为b,环心O与导线相距a.设半圆环以速度v 平行导线平移,求半圆环内感应电动势的大小和方向以及MN两端的电压UMU N .xrIRxvbM NeaIOv。
大学物理b试题库及答案详解大学物理B试题库及答案详解在大学物理B的课程学习中,学生往往需要通过大量的练习来加深对物理概念的理解和应用能力。
本文将提供一套大学物理B试题库及答案详解,以帮助学生更好地掌握物理知识。
一、选择题1. 某物体的质量为2kg,受到的重力大小为多少牛顿?A. 19.6 NB. 20 NC. 20.4 ND. 21 N答案:B解析:根据重力公式 \( F = mg \),其中 \( m \) 为物体的质量,\( g \) 为重力加速度(取9.8 m/s²),计算得 \( F = 2 \times 9.8 = 19.6 \) N。
由于选项中没有19.6 N,故选择最接近的20 N。
2. 光在真空中的传播速度是多少?A. 299792 km/sB. 299792.458 km/sC. 300000 km/sD. 299792.5 km/s答案:B解析:光在真空中的传播速度精确值为 \( 299792.458 \) km/s。
二、填空题1. 牛顿第二定律的表达式为 ________ 。
2. 根据能量守恒定律,一个物体的动能与其势能之和在没有外力作用下保持不变,这被称为________。
答案:1. \( F = ma \)2. 机械能守恒定律解析:1. 牛顿第二定律描述了力与加速度之间的关系,即 \( F = ma \),其中 \( F \) 是作用在物体上的力,\( m \) 是物体的质量,\( a \) 是物体的加速度。
2. 机械能守恒定律是能量守恒定律在宏观物体运动中的应用,它指出在没有外力作用的情况下,一个系统的总机械能(动能加势能)是守恒的。
三、简答题1. 简述什么是电磁感应现象,并给出一个应用实例。
答案:电磁感应现象是指当导体在变化的磁场中移动时,导体中会产生感应电动势和感应电流的现象。
这一现象是由法拉第电磁感应定律所描述的。
一个常见的应用实例是发电机,它利用电磁感应原理将机械能转换为电能。
西南科技大学2011-2012-1学期《大学物理B2》本科期末考试试卷(A 卷)一、 选择题(每题3分,共30分)1、电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用12B B 、和3B表示,则O 点的磁感强度大小 [ ]A 、B ≠ 0,因为虽然B2 = 0、B3= 0,但B1≠0. B 、 B = 0,因为虽然B1≠ 0、B2≠ 0,但120B B =+,B3 = 0. C 、 B = 0,因为B1 = B2 = B3 = 0. D 、 B ≠ 0,因为虽然120B B ≠+,但B3≠ 02、如图,均匀磁场B 被限制在半径为R 的无限长圆柱形空间内,,其变化率tBd d为正的常数。
圆柱形空间外距轴线r 的P 处的感生电场r E的大小为[ ]A 、22r RtBd d B 、2r dtB dC 、0D 、2R tB d d3、如图所示,长度相等的三条直导线以等距离的方式并排安放在同一平面内。
若通以等值同向的电流,那么在磁场力作用下,三条导线将作平动。
其中,导线1L 、2L 、 3L 将[ ](1) 向左 (2) 向右 (3) 不动A 、(1)(3)(2)B 、(3)(2)(1)C 、 (2)(3)(1)D 、(1)(2)(3)4、铁磁质的主要特性可归结为以下哪几点?[ ](1) 矿藏丰富 (2) 高r μ值 (3) 非线性 (4) 磁滞A 、(1)(3)(4)B 、(1)(2)(3)C 、(2)(3)(4)D 、 (1)(2)(4)3L2L1L IP5、如图所示,为一向右传播的简谐波在t 时刻的波形图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为[ ]6、一平面谐波沿X 轴正向传播,波速为u ,如图所示。
西南科技大学2009—2010学年第2学期《大学物理A1》期末考试试卷(B 卷)学院:_______________班级:_____________姓名:_______________学号:____________ 一、选择题:(每题3分,共30分) 1.下列说法中正确的是( B ). A 、作曲线运动的物体,必有切向加速度 B 、作曲线运动的物体,必有法向加速度 C 、具有加速度的物体,其速率必随时间改变2.一质点从静止开始沿半径为R 的圆周作匀加速率运动,其切向加速度和法向加速度相等时,质点运动经历的时间是 ( B ). A 、τa RB 、τa RC 、R a τD 、Ra τ3. 质量为m 的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M ,万有引力恒量为G ,则当它从距地球中心R 1处下降到R 2处时,飞船增加的动能应等于( C ). A 、2R GMmB 、22R GMmC 、 2121R R R R GMm -D 、 2121R R R GMm- E 、 222121R R R R GMm - 4.如图所示,一质量为m 的物体,位于质量可以忽略的直立弹簧正上方高度为h 处,该物体从静止开始落向弹簧。
若弹簧的劲度系数为k ,不考虑空气阻力,则物体可能获得的最大动能是( C )。
A 、 mgh B 、kgm mgh 222-C 、k g m mgh 222+D 、 kg m mgh 22+5.一水平转台可绕固定的铅直中心轴转动,转台上站着一个人,初始时转台和人都处于静止状态。
当此人在转台上随意走动时,该系统的动量、角动量和机械能是否守恒正确的说法是( B )A 、 动量守恒B 、 对铅直中心轴的角动量守恒C 、 机械能守恒D 、 动量、机械能和对铅直中心轴的角动量都守恒。
6. 用公式T CE V ∆=∆ν(式中V C 为定体摩尔热容量,视为常量,ν为气体摩尔数)计算理想气体内能增量时,此式( D )A 、 只适用于准静态的等体过程.B 、 只适用于一切等体过程.C 、 只适用于一切准静态过程.D 、 适用于一切始末态为平衡态的过程.7. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体.若把隔板抽出,气体将进行自由膨胀,达到平衡后 ( A ) A 、 温度不变,熵增加. B 、 温度升高,熵增加.C 、 温度降低,熵增加.D 、 温度不变,熵不变.8.机械波在弹性媒质中传播时,若媒质中某质元刚好达到最大位移,则它的能量为:( B )A 、 动能最大,势能也最大B 、动能最小,势能也最小C 、 动能最大,而势能最小D 、动能最小,而势能最大9. 当质点以频率ν 作简谐振动时,它的动能的变化频率为( B ) A 、 4 ν B 、 2 ν C 、 ν D 、 ν/2.10. 在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为 5 s ,则乙相对于甲的运动速度是(c 表示真空中光速) ( B )A 、 (4/5) c .B 、 (3/5) c .C 、 (2/5) c .D 、 (1/5) c . 二、填空题。
大学物理b2期末考试题及答案一、选择题(每题5分,共20分)1. 光在真空中的传播速度是()。
A. 3×10^8 m/sB. 3×10^5 m/sC. 3×10^6 m/sD. 3×10^7 m/s答案:A2. 根据牛顿第三定律,作用力和反作用力的大小()。
A. 相等B. 不相等C. 相反D. 相等但方向相反答案:D3. 一个物体的动能与其质量成正比,与其速度的平方成正比,这个关系式是()。
A. E_k = 1/2 mv^2B. E_k = mvC. E_k = m^2vD. E_k = 1/2 mv答案:A4. 电磁波的频率与波长的关系是()。
A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率与波长的平方成正比答案:B二、填空题(每题5分,共20分)1. 根据欧姆定律,电阻R等于电压V除以电流I,即 R = ________。
答案:V/I2. 一个物体从静止开始做匀加速直线运动,其加速度为a,经过时间t后的速度为v,则 v = ________。
答案:at3. 万有引力定律表明,两个物体之间的引力F与它们的质量m1和m2的乘积成正比,与它们之间的距离r的平方成反比,即 F = ________。
答案:G * m1 * m2 / r^24. 光的折射定律,即斯涅尔定律,表明入射角i与折射角r之间的关系是 n1 * sin(i) = n2 * sin(r),其中n1和n2分别是入射介质和折射介质的折射率,即 ________。
答案:n1 * sin(i) = n2 * sin(r)三、简答题(每题10分,共30分)1. 简述电磁感应定律的基本原理。
答案:电磁感应定律,也称为法拉第电磁感应定律,指出当磁场发生变化时,会在导体中产生电动势,从而产生电流。
其基本原理是变化的磁场会在导体中激发出电场,电场驱动电荷移动,形成电流。
2. 描述牛顿第二定律的物理意义。
大学物理b2试题及答案根据题目要求,以下是一篇符合要求的大学物理B2试题及答案内容:一、选择题(每题2分,共20分)1. 一个物体从静止开始做匀加速直线运动,第1秒内、第2秒内、第3秒内位移之比为:A. 1:3:5B. 1:2:3C. 1:3:6D. 1:4:9答案:B2. 一质点做匀速圆周运动,其角速度为ω,周期为T,则其线速度大小为:A. ωTB. 2πωC. 2π/TD. ω/2π答案:C3. 一弹簧振子做简谐振动,振幅为A,周期为T,其最大加速度为:A. 2πA/TB. 4π²A/TC. 2A/TD. 4A/T²答案:B4. 一物体从高度为h处自由下落,不计空气阻力,其落地时的速度大小为:A. √(2gh)B. √(gh)C. √(2h/g)D. √(h/g)答案:A5. 一物体以初速度v₀沿斜面匀加速下滑,加速度大小为a,斜面倾角为θ,则其沿斜面下滑的加速度大小为:A. aB. a*sinθC. a*cosθD. a*tanθ答案:B6. 一质量为m的物体以初速度v₀沿水平方向抛出,忽略空气阻力,其落地时的速度大小为:A. v₀B. √(v₀²+2gh)C. √(v₀²+2gh)*sinθD. √(v₀²+2gh)*cosθ答案:B7. 一质量为m的物体以初速度v₀沿斜面匀加速上滑,加速度大小为a,斜面倾角为θ,则其沿斜面上升的加速度大小为:A. aB. a*sinθC. a*cosθD. a*tanθ答案:C8. 一质量为m的物体从高度为h处自由下落,不计空气阻力,其落地时的动能为:A. mghB. 1/2mv₀²C. 1/2mv²D. 1/2mv₀²+mgh答案:C9. 一质量为m的物体以初速度v₀沿水平方向抛出,忽略空气阻力,其落地时的动能为:A. 1/2mv₀²B. 1/2mv²C. 1/2mv₀²+mghD. 1/2mv²+mgh答案:D10. 一质量为m的物体从高度为h处自由下落,不计空气阻力,其落地时的重力势能变化量为:A. -mghB. mghC. 0D. 2mgh答案:A二、填空题(每题2分,共20分)11. 一物体做匀加速直线运动,初速度为v₀,加速度为a,第t秒内的位移为x,则x=v₀t+1/2at²。