《平方根与立方根》典型例题透析
- 格式:doc
- 大小:108.00 KB
- 文档页数:2
平方根和立方根【知识归纳】1.平方根:(1)若x 2=a (a >0),那么a 叫做x 的 , 我们把 称为算术平方根,记为 。
规定,0的算术平方根为 。
(2)一个 的平方根有2个,它们互为 ; 只有1个平方根,它是0本身; 没有平方根。
(3)两个公式:(a )2= ( );=2a 2.立方根:1)若x 3=a (a >0),那么a 叫做x 的 ,记为 ;2)一个正数 的立方根有 个,0的个立方根为 ,负数有 个立方根。
3)立方根的性质:(1)()33a = ,(2)33a = . 【典型例题】求平方根(1)100 (2)25121(3)0.25 求值(1)4 (2)2516-(3)±16 (4)()27±【课堂练习】一、填空题 1.1的平方根是 , 的平方根是02.=36 ;=-2)9( ;=--2)3( 。
3. 当0≥a 时,a ±表示的意义是 ,其中被开方数是 . 225的算术平方根用符号表示为 ,它的结果是 。
4. -7的平方的算术平方根是 ,3的平方的平方根是 。
二求下列各数的平方根1. 0.64 2.94 3.2500 4.2)3(- 5. 8164 6.2.56 7.2)3(- 11.已知某数有两个平方根分别是a +3与2a -15,求这个数.12.已知:2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值.13.已知a <0,b <0,求4a 2+12ab +9b 2的算术平方根.14.要切一块面积为36 m 2的正方形铁板,它的边长应是多少?15.甲乙二人计算a +221a a +-的值,当a =3的时候,得到下面不同的答案:甲的解答:a +221a a +-=a +2)1(a -=a +1-a =1.乙的解答:a +221a a +-=a +2)1(-a =a +a -1=2a -1=5.哪一个解答是正确的?错误的解答错在哪里?为什么?立方根一、填空题1. 数a 的立方根,记作 ,其中被开方数是 ,根指数是 。
平方根和立方根(讲义)➢课前预习1.填空:(_____)2=0;(_____)2=4;(_____)2=9;(_____)2=16.由上述运算可知:①零的平方是______;任何非零数的平方都是______;任何数的平方都是_______;_______(“存在”或“不存在”)某个数的平方是负数.②互为相反数的两个数的平方________.2.做一做,想一想把两个边长为1的小正方形分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2的大正方形,设大正方形的边长为x,则x满足的条件为__________.➢知识点睛1.平方根:一般地,如果一个_______________________,即__________,那么这个________就叫做a 的平方根;也叫做____________;记作________,读作“____________”.2. 一个正数有_____个平方根,它们____________;0有____个平方根,是________;负数________平方根.3. 算术平方根:一般地,如果一个_______________________这个________就叫做a 的算术平方根;记作______,读作“平方根是______. 4. 求一个数a 的平方根的运算,叫做_____,其中a 叫做_______5. 立方根:一般地,如果一个_______________________,即________就叫做a 的立方根;也叫做____________;记作“____________”.6. 正数的立方根是______;0的立方根是______;负数的立方根是______.7. 求一个数a 的立方根的运算叫做______,其中a 叫做_______.➢ 精讲精练1. 4121的平方根是_________;(14-)2的算术平方根是_______. 2. 下列说法正确的是( )A .-2是-4的平方根B .2是(-2)2的算术平方根C .(-2)2的平方根是2D .8的平方根是43. 下列说法正确的是( )A .-81的平方根是±9B .任何数的平方是非负数,因而任何数的平方根也是非负数C .任何一个数的算术平方根都是正数D .2是4的平方根4. 下列各式中,正确的是( )A =B .0.6=±C 13=D 6=±5. 下列各式中,正确的是( )A .-(-7)=7B .412=121C 332244=+=D 0.1=±6.的值为______的平方根是______;的算术平方根是______的平方根是______.7. 2=____;2(=____=____=____;2=____;2=____=____=____.8. 2=______=______;=______;若x 2=(-7)2,则x =__________.9. 一个正数的平方根是a +3与2a -5,求这个正数.10. 一个正偶数的算术平方根是m ,则和这个正偶数相邻的下一个正偶数的算术平方根是__________.11. 2=,则2x +5的平方根是______;若2m +2的平方根是±4,3m +n +1的算术平方根是5,则m +2n 的值是_____.12. 下列说法正确的是( )A .-4没有立方根B .1的立方根是1±C .361的立方根是61 D .-5的立方根是35- 13. 下列说法错误的是( )A .2是8的立方根B .±4是64的立方根C .13-是127-的立方根D .(-4)3的立方根是-414. 340.1=10=,27=-,其中正确的有( )个.A .1B .2C .3D .415. =________=_________= ________;=_______;3=_________;3=_________.16. 3=________; 3=_________;=_________; =_________.17. 下列说法正确的是( )A .一个有理数的平方根有两个,它们互为相反数B .一个有理数的立方根,不是正数就是负数C .如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1中的一个D .如果一个数的平方根是这个数本身,那么这个数一定是1或者018. 的平方根是________的立方根是________.19. 若一个正数的立方根是m ,则比这个正数大1的数的平方根是______.20. 若x =3.21. (1)若a <0,则3=______;(2)若a 2=1,则3a =______.22. 若x <0,则2x =________,33x =________.【参考答案】➢课前预习1.0;2±;3±;4±①0;正数;非负数;不存在②相等2.22x=➢知识点睛1.数x的平方等于a,x2=a,数x;二次方根;,正负根号a2.两,互为相反数;一,0本身;没有3.正数x的平方等于a,x2=a,正数x a.04.开平方,被开方数5.数x的立方等于a,x3=a,数x a6.正数;0;负数7.开立方,被开方数➢精讲精练1.211±;142.B3.D4.C5.B6.2;2±7.3;9;10;6;a;-a;a;a8.8;0;507;7±9.这个正数是121 910.11.±3,1312.D13.B14.B15.425;0.6;-10;-5;27;﹣916.a;-a;a;-a17.C18.2±;219.20.221.-a,1±22.x-,x。
平方根算术平方根立方根三说一、平方根、算术平方根、立方根知识点概要1.平方根、算术平方根的概念与性质如果一个数 x 的平方等于 a(即x2 a ),那么这个数x 就叫做 a 的平方根(或二次方根),记作:x a ,这里a是x的平方数,故 a 必是一个非负数即 a 0;例如16的平方根是±4,从定义还可得出:一个正数有两个平方根,它们互为相反数;负数没有平方根;0 的平方根只有一个0,即为它本身。
正数 a 的正的平方根叫做 a 的算术平方根,表示为 a a 0 ,例如 16 的算术平方根是16 4 ,从定义中容易发现:算术平方根具有双重非负性:① a 0 ;② a 0 。
2.平方根、算术平方根的区别与联系区别:①定义不同;②个数不同;③表示方法不同;④取值范围不同:平方根可以是正数、负数、零,而算术平方根只能取零及正数,即非负数。
联系:①它们之间具有包含关系;②它们赖以生存的条件相同,即均为非负数;③ 0 的平方根以及算术平方根均为0。
3. 立方根的定义与性质如果一个数x 的立方等于a(即x3 a ),那么这个数x 就叫做 a 的立方根(或三次方根),记作:x 3 a 。
立方根的性质:正数的立方根是正数,0 的立方根是0,负数的立方根是负数。
二、解题中常见的错误剖析第 1 页共7 页例 1. 求 3 2的平方根。
2错解:393 2的平方根是 3剖析:一个正数有两个平方根,它们互为相反数,而2是一个正数,故它的平方根应有39两个即± 3。
例 2. 求9 的算术平方根。
错解:3299 的算术平方根是 3剖析:本题是没有搞清题目表达的意义,错误的认为是求9 的算术平方根,因而导致误解,事实上本题9 就是表示的9 的算术平方根,而整个题目的意义是让求9 的算术平方根的算术平方根。
9 3 ,而3的算术平方根为 3 ,故9 的算术平方根应为 3 。
仿此你能给出64 的平方根的结果吗?三、典型例题的探索与解析例 3. 已知:M a b 2 a8 是a8 算数平方根,N 2 a b 4 b 3 是b 3 立方根,求M N 的平方根。
专题09 算术平方根与立方根的综合运用【例题讲解】已知4是32a -的算术平方根,215a b --的立方根为5-.(1)求a 和b 的值;(2)求24b a --的平方根.【详解】(1)解:∵4是32a -的算术平方根,∴3216a -=,∴6a =,∵215a b --的立方根为5-,∴215125a b --=-,∴2156125b -´-=-,∴37b =.(2)解:242376464b a --=´--=,64的平方根为8±,∴24b a --的平方根为8±.【综合解答】1270-=,那么6()a b +的立方根是( )A .-1B .1C .3D .7【答案】B【解析】【分析】根据非负数的性质,得出a ,b 的值,再代入计算即可.【详解】:270-=,0=,3270b -=∴3640a +=,3270b -=,∴a=-4,b=3,∴6()a b +=1,∴6()a b +的立方根为1,故答案为:B .【点睛】本题考查了非负数的性质和立方根,掌握非负数的性质是解题的关键.2的值为( )A .114-B .114±C .154D .134【答案】A【解析】【分析】根据算术平方根和立方根的意义分别进行计算,然后根据有实数的运算法则求解即可.【详解】原式1300.52=---++11300.524=---++324=-;故答案为:A.【点睛】本题考查了实数的混合运算,解题的关键是熟练掌握据算术平方根和立方根的意义.3 1.442=0.6694=等于( )A .57.68B .115.36C .26.776D .53.552【答案】C【解析】【分析】根据立方根的运算法则即可.【详解】440.669410426.776===´´=,故答案为:C .【点睛】进行正确的拆分.4.下列计算正确的是( ).A 3B 8=±C 7=-D 13=-【答案】D【解析】【分析】根据立方根、算术平方根、绝对值等知识逐项进行计算即可求解.【详解】,故原选项计算错误,不合题意;B.8=,故原选项计算错误,不合题意;C. 7=,故原选项计算错误,不合题意;D. 13=-,故原选项计算正确,符合题意.故选:D【点睛】本题考查了立方根、算术平方根等知识,理解立方根、算术平方根的意义并正确计算化简是解题关键.5.一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是( )A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为奇数时,2的n 次方根随n 的增大而增大【答案】C【解析】【分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【详解】A.42=16Q 4(2)=16-,\16的4次方根是2±,故不符合题意;B.5232=Q ,5(2)32-=-,\32的5次方根是2,故不符合题意;C.设x y ==则155153232,28,x y ====1515,x y \> 且1,1,x y >>,x y \>\当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点睛】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.6.已知a 的算术平方根是12.3,b 的立方根是45.6-,x 的平方根是 1.23±,y 的立方根是456,则x 和y 分别是( )A .,1001000a x y b ==B .1000,1000b x a y ==-C .,1000100a x y b ==-D .,1000100a x yb ==【答案】C【解析】【分析】根据题意,x 的算术平方根和-b 的立方根,然后根据x 的算术平方根和a 的算术平方根即可求出x 与a 的关系,根据-b 的立方根和y 的立方根关系即可求出y 与b 的关系.【详解】解:∵a 的算术平方根是12.3,b 的立方根是45.6-,x 的平方根是 1.23±,y 的立方根是456,∴x 的算术平方根是1.23,-b 的立方根是45.6∵1.23=110×12.3,456=10×45.6∴x =2110a æöç÷èø,y=103(-b )即,1000100a x yb ==-故选C .【点睛】此题考查的是平方根、算术平方根和立方根,根据两数算术平方根的关系推出这两数的关系和两数立方根的关系推出这两数的关系是解题关键.7.实数a ___________.【答案】8【解析】【分析】先根据数轴的定义可得48a <<,从而可得20,100a a -<->,再计算算术平方根和立方根即可得.【详解】由数轴的定义得:48a <<,则20,100a a -<->,2108a a =-+-=,故答案为:8.【点睛】本题考查了数轴、算术平方根和立方根,熟练掌握算术平方根和立方根是解题关键.8.已知,a 、b 互为倒数,c 、d 互为相反数,求1=_____.【答案】0.【解析】【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.【详解】∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.9.已知21a -的平方根是±3,b +2 的立方根是2,则b a -的算术平方根是___________【答案】1【解析】【分析】先根据平方根,立方根的定义列出关于a 、b 的方程,求出a 、b 后再代入进行计算求出b a -的值,然后根据算术平方根的定义求解.【详解】解:根据题意得,2a-1=(±3)2=9,b+2 =23,∴a=5,b=6,∴b-a=1,∴b a-的算术平方根是1,故答案是:1.【点睛】本题考查了平方根,立方根,算术平方根的定义,列式求出a、b的值是解题的关键.10.已知2a﹣1的平方根是±3,3a+b+10的立方根是3,求a+b的算术平方根___.【解析】【分析】先根据2a−1的平方根是±3,3a+b+10的立方根是3得出21931027aa b-=ìí++=î,解之求出a、b的值,再利用算术平方根定义得出答案.【详解】解:∵2a−1的平方根是±3,3a+b+10的立方根是3,∴21931027aa b-=ìí++=î,解得a=5,b=2,∴a+b=7,则a+b【点睛】本题主要考查立方根、平方根、算术平方根,解题的关键是掌握立方根、平方根、算术平方根的定义.11.已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,则a+2b+c的算术平方根为_____.【答案】4【解析】【分析】由题意首先根据平方根与立方根的概念可得2a-1与3a+b-9的值,进而可得a 、b 的大小,可得c 的值,进而可得a+2b+c ,根据算术平方根的求法可得答案.【详解】解:根据题意,可得2a-1=9,3a+b-9=8;解得:a=5,b=2;又有7<8,可得c=7;则a+2b+c=16;则16的算术平方根为4.故答案为:4.【点睛】本题主要考查平方根、立方根、算术平方根的定义及无理数的估算能力,熟练掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法是解题的关键.12A B ,则A +B =________.【答案】【解析】【详解】===A+B=三、解答题13.()20151-.(2)已知∶2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值.(3)已知a b -3是400.【答案】(1)114;(2)m +2n =13;=6【解析】【分析】(1)首先进行开方和乘方运算,再进行有理数的加减运算,即可求得;(2)根据平方根的定义得出方程,解方程即可分别求得m 、n 的值,据此即可解答;(3) 根据无理数的估算和算术平方根的定义,即可求得a 、b 的值,据此即可解答.【详解】解:(1) ()20151+-52314=+-- 114=(2)Q 2m +2的平方根是±4,3m +n +1的平方根是±5,2216m \+=,3m +n +1=25,解得m =7,n =3,272313m n \+=+´=;(3)\,13,13a \=,又Q b -3是400的算术平方根,400的算术平方根是20,320b \-=,解得b =23,6==.【点睛】本题考查了二次根式的加减混合运算,平方根和算术平方根的定义,无理数的估算,代数式求值问题,熟练掌握和运用各运算法则和方法是解决本题的关键.14.已知4是32a -的算术平方根,2+a b 的立方根是2.C 的整数部分.(1)求a ,b ,c 的值;(2)求2a b c -+的平方根.【答案】(1)6a =,1b =, 5c =(2)3±【解析】【分析】(1)根据算术平方根和立方根的定义列出式子,解出a ,b ,c 的值即可.(2)将(1)中所求数值代入,并计算平方根即可.(1)解:由题有2324a -=,322a b +=解得: 6a =;1b =.<∴5< ,∴5c =,即:6a =,1b =,5c =;(2)(2)解:把6a =,1b =,5c =,代入2a b c -+得26215a b c -+=-´+,29a b c -+=,∴2a b c -+的平方根是3±.【点睛】本题考查算术平方根,平方根,立方根的定义,无理数的整数部分,熟练理解平方根,算术平方根,立方根的定义是解题的关键.15.(1)计算:①②(2)求方程中的x 的值①()242160x +-=②()32621127x -+=【答案】(1)①12;②142)①0x =或4x =-;②23x =【解析】【分析】(1)根据算术平方根以及立方根进行计算即可;(2)根据算术平方根以及立方根解方程即可.【详解】(1)①解:原式=()442-´-48=+12=②解:原式=()())563114-----+-563114=-+++14=(2)①()242160x +-=()224x +=22x +=±解得0x =或4x =-②()32621127x -+=()312127x -=1213x -=解得23x =【点睛】本题考查了算术平方根以及立方根,掌握算术平方根以及立方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根.16.(1)一个正数m 的两个平方根分别为3a -和21a +,求这个正数m .(2)已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分,求3a b c -+的平方根.(3)3a =,求a b +的立方根.【答案】(1)49;(2)4±;(3)-1【解析】【分析】(1)根据一个正数的平方根互为相反数列式子求解即可;(2)根据立方根和算术平方根的定义及无理数的估算列出关于a 、b 、c 的式子求值,再计算平方根即可;(3)先根据二次根式有意义的条件求出b 的值,从而得出a 的值,再计算两数的和,从而得出立方根.【详解】解:(1)解:依题意:3210a a -++=,解得4a =-,37a -=,2m 749==.(2)解依题意:3523a +=,2314a b +-=,34<<解得5a =,2b =,3c =316a b c -+=,16的平方根是4±(3)解:依题意2020b b -³ìí-³î,得2b =,代入3a =,得3a =-1ab +=-,a b +的立方根是-1.【点睛】本题考查了平方根和立方根的综合,熟练掌握含义列出式子是解题的关键.17.观察下列各式,并用所得出的规律解决问题:(1=1.414=14.14==0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2=2.236=7.071= ,= ;(3=1=10=100…小数点变化的规律是: .(4=2.154=4.642= ,= .【答案】(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【解析】【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(1=1.414=14=141.4…=0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(2=2.236=7.071=0.7071=22.36,(3=1=10=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)=2.154=4.642,=21.54,=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.18.观察下列各式,并用所得出的规律解决问题:(1 1.414»14.14»141.4»,……0.1732» 1.732»17.32»,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2 3.873» 1.225»»_____»______.(31=10=100=,……小数点的变化规律是_______________________.(4 2.154»0.2154»-,则y =______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【解析】【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1 1.414»14.14»141.4»,……0.1732» 1.732»17.32»,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2 3.873» 1.225»12.25»0.3873»;故答案为:12.25;0.3873;(31=10=100=,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4) 2.154»0.2154»-,0.2154»,0.2154»-,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
人教版七年级数学下册期考重难点突破、典例剖析与精选练习:平方根、立方根和开立方知识网络重难突破知识点一平方根算术平方根概念:一般的如果一个正数x的平方等于a,即算术平方根的表示方法:非负数a的算术平方根记作平方根概念:如果一个数的平方等于,那么这个数就叫做的平方根或二次方根,即,那么x叫做a 的平方根。
平方根的性质与表示:表示:正数a的平方根用表示,叫做正平方根,也称为算术平方根,叫做a的负平方根。
性质:一个正数有两个平方根:(根指数2省略)且他们互为相反数。
0有一个平方根,为0,记作负数没有平方根平方根与算术平方根的区别与联系:【典型例题】1.(2019·迁安市期末)25的算术平方根是( ) A .5B .5±C .5-D .252.(2018·( ) A .±3B .3C .9D .813.(2020·的值在( ) A .2到3之间B .3到4之间C .4到5之间D .5到6之间4.(2020·沈阳市第七中学初二期末)9的平方根是( ) A .±3B .3C .±4.5D .4.55.(2020·东营市期末)16的平方根是( ) A .±4B .±2C .4D .﹣46.(2020·沭阳县外国语实验学校初二期末)下列说法正确的是( )A .(﹣3)2的平方根是3B ±4C .1的平方根是1D .4的算术平方根是27.(2019·=4,那么x 等于( ) A .2B .2±C .4D .4±8.(2020·河南省实验中学初二期中)已知一个正数的两个平方根分别为35a -和7a -,则这个正数的立方根是( ) A .4B .3C .2D .19.(2020·宝鸡市期末)一个正数的两个平方根分别是21a -与2a -+,则a 的值为( ) A .-1B .1C .-2D .210.(2020·南京市期末)面积为13的正方形的边长是( ) A .13的平方根B .13的算术平方根C .13开平方的结果D .13的立方根11.(2019·恩施市期末)已知(x +1)2= 16 ,则 x 的值是( ) A .3B .7C .3 或-5D .7 或-812.(2020·银川市期末)“1625的算术平方根是45”,用式子表示为( )A .=±45B =±45C .1625=45D .±1625=4513.(2020·陕西省宝鸡市第一中学初二期中)下列运算中错误的有( ) ①164,=②366497=±,③233-=-,④23±=3 A .4个B .3个C .2个D .1个14.(2020·沈阳市第二十三中学初一期中)若x 是9的算术平方根,则x 是( ) A .3B .-3C .9D .8115.(2020·贵港市期末)若a 2=4,b 2=9,且ab <0,则a ﹣b 的值为( ) A .﹣2B .±5C .5D .﹣5知识点二 立方根和开立方立方根概念:如果一个数的立方等于,即那么x 叫做的立方根或三次方根,表示方法:数a 的立方根记作,读作三次根号a立方根的性质:任何实数都有唯一确定的立方根。
《平方根与立方根》习题精选及参考答案习题一一1.填表。
其中13 14 16 17 19121 144 225 324 4002.求下列各数的平方根及算术平方根:169,361,,0,0.36,0.0121,,900,19,37。
3.求下列各式的值:4.求下列各式的值:5.求下列各式的值:6.如果一定等于吗?如果是任意一个数,等于什么数?参考答案1.第一行依次填11,12,15,18,20,第二行依次填169,196,256,289,361。
2.平方根依次为:±13,±19,±,±,0,±0.6,±0.11,±,±30,±,±算术平方根依次为:13,19,,,0,0.6,0.11,,30,,3.4,-1.2,1,,,0.144.9,15,42,,0.3,,125,4.155.2,3,,0.4,,35,0.016.时,,如果x是任意一个数,(或时,;时,二1.已知:都是正数,且.求证:的最小值是2.2.一个圆的半径是10cm,是它面积2倍的一个正方形的边长约为多少cm(精确到0.1cm)3.在物理学中我们知道:动能的大小取决于物体的质量与它的速度.关系式是:动能,若某物体的动能是25焦(动能单位),质量m是0.7千克,求它的速度为每秒多少米?(精确到0.01)4.飞出地球,遨游太空,长久以来就是人类的一种理想,可是地球的引力毕竟太大了,飞机飞得再快,也得回到地面,导弹打得再高,也得落向地面,只有当物体的速度达到一定值时,才能克服地球引力,围绕地球旋转,这个速度我们叫做第一宇宙速度,计算式子是:千米/秒,其中重力加速度千米/秒2,地球半径千米,试求出第一宇宙速度的值(单位:千米/秒).参考答案1.,∴,∴,∴的最小值是2.2.设正方形的边长为 cm.3.(米/秒).4.7.9千米/秒.三1.填空题(1)的立方根是_____________.(2)的立方根是________________.(3)是___________的立方根.(4)若的立方根是6,则 _______.(5)0的立方根是______.(6)7的立方根是_______.(7) _______.(8) ________.2.填空题(1)的倒数为________.(2)49的算术平方根的立方根是________.(3)若,则(4) ______.(5) ________.(6)的绝对值为_______.(7) _______.(8)的立方根为_______.3.填空题(1)的立方根是_______.(2)是_____的立方根.(3)81的平方根的立方根是_______.(4) _______.(5)的立方根是______.(6)的立方根是________.(7)若,则 _______.(8)已知,则 _______.参考答案:1.(1)(2)(3)(4)216(5)0 (6)(7)(8)32.(1)(2)(3)(4)60(5)(6)117 (7)(8)13.(1)(2)-11(3)(4)15 (5)(6)(7)-4 (8)2四1.填表3 5 6 8 91 8 64 343 10002.求下列各数的立方根:27,-125,1,-1,0.512,-0.000729,640003.求下列各式的值:(1),(2),(3),(4),(5)4.求下列各式的值:5.与有什么相同点与不同点?6.大正方体的体积为1331cm3,小正方体的体积为125cm3,如图那样摞在一起,这个物体的最高点A离地面C的距离是多少cm?7.一个正方体的体积为64cm3,它的边长是多少cm?如果它的边长扩大一倍,它的体积是原正方体体积的多少倍?若正方体的体积改为原正方体体积的一半,它的边长是多少cm?就本题的计算过程,你能得出什么结论?参考答案1.第一行依次填:1,2,4,7,10,第二行依次填:27,125,216,512,729.2.3,-5,1,-1,0.8,-0.09,403.(1)-4 (2)0.6 (3)-9 (4)(5)4.-7,-23,0.17,,,1255.相同点:,不同点:的意义是求的立方,是求的立方根.6..∴ cm,即这个物体的最高点A 离地面C是16cm.7.边长为4cm,边长扩大一倍,体积为512cm3,体积为原来体积的8倍.体积为原体积的一半为32cm3,边长是 cm(或 cm).边长扩大一倍,体积扩大8倍,体积缩小一倍,边长是原边长的倍.习题二1.(a-b)3的立方根为()A.a-b B.b-aC.±(a-b) D.(a-b)3答案:A说明:根据立方根的定义,不难得出只有a−b的立方为(a−b)3,即正确答案为A.2.某自然数的一个平方根是a,则与其相邻的下一个自然数的算术平方根是()A.a+1 B.a2+1C.a+1D.a2+1答案:D说明:由该自然数的一个平方根是a可得该自然数为a2,与其相邻的下一个自然数即a2+1,a2+1的算术平方根为,所以答案为D.3.下列各式正确的是()A.(-7)2=-7 B.-(-7)2=-7C.(-7)2=±7 D.±(-7)2=7答案:B说明:== 7,所以,选项A、C错;−= −=−7,选项B正确;而±= ±=±7,选项D错,答案为B.4.若0<a<1,b=a,则a与b的大小关系是()A.a>b B.a<bC.a=b D.不能确定答案:B说明:因为0<a<1,b=,可知0<b<1,且b2=a,因为0,1之间的数平方后比自身要小,即有b2<b,也即a<b成立,所以答案为B.5.16的平方根和立方根分别是()A.±4,16B.±2,±4C.2,4D.±2,4答案:D说明:= 4,因此的平方根即4的平方根,由平方根的定义知4的平方根应为±2,再由立方根的定义知4的立方根应为,所以正确答案应该是D.6.下列判断不正确的是()A.若m=n,则m = nB.若m=n,则m=nC.若m2=n2,则m=nD.若m3=n3,则m=n答案:C说明:选项A,由=两边同时平方即有m=n成立;选项B,由=两边同时立方即有m=n成立;选项C,若m=1,n=−1,则=成立,但m≠n,所以选项C错;选项D,因为=m,=n,所以=即m=n;因此,答案为C.7.-(-2)3的平方根是__________,立方根是___________.答案:±2;2说明:−(−2)3=−(−8)=8,由平方根的定义知8的平方根为±=±=±2,而8的立方根则是2.8.一个正数x的两个平方根为m+1和m-3,则m =__________,x =___________.答案:1;4提示:一个正数的平方根有两个,它们互为相反数,因此(m+1)+(m−3)=0,故m=1,进而x=4.9.若式子5x+6总有平方根,则x_________.答案:≥−说明:要使式子5x+6总有平方根,则5x+6≥0,解这个不等式可得x≥−.10.若式子x-的平方根只有一个,则x=__________.答案:说明:平方根只有一个的就是0,因此式子x−= 0,即x=.11.某运动场地是一个矩形,长是宽的4倍,面积为1156m2,求运动场地的长和宽.答案:长 68m宽 17m说明:设宽为x,则长为4x,由已知面积为1156m2,得x×4x=1156m2,即x2=289m2,x=± 17m(−17m不合题意,舍去),4x=68m,即运动场地的长为68m,宽为17m.探究活动你能判断出谁年轻吗?如今的时代是知识爆炸的时代,是科技高速发展的时代,中国的航天技术正在飞速发展,宇宙的奥秘正逐步展现在我们面前.有两名宇航员李飞(二十八岁)和刘学(二十五岁).李飞乘着以光速0.98倍的速度飞行的宇宙飞船,作了五年宇宙旅行后回来(这个五年是指地面上的五年).这时谁年轻?年轻几岁?(精确到一年)提示:根据爱因期坦的相对论,当地面上经过1秒时,宇宙飞船内还只经过秒,公式内的c是指光速(30万千米/秒),v是指宇宙飞船速度.参考答案:地面上经过1秒,飞船内经过秒,相当于地面上时钟走的速度的五分之一,所以地面上过了五年,宇宙飞船上才过去一年,因此李飞的岁数这时是29岁,而刘学的岁数是30岁,李飞比刘学年轻一岁.。
6.1 平方根、立方根1.了解平方根、算术平方根、立方根的定义和性质,会用根号表示非负数的平方根、算术平方根、立方根.2.能利用平方根、算术平方根、立方根的定义和性质解题. 3.知道开方是乘方的逆运算,会用开方求某些非负数的平方根. 4.能运用算术平方根解决一些简单的实际问题.1.平方根(1)平方根的概念:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根.换句话说,如果x 2=a ,那么x 叫做a 的平方根,例如22=4,(-2)2=4,则4的平方根是+2和-2(也可合写为±2),+2和-2都是4的平方根.(2)平方根的性质:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.(3)平方根的表示:正数a 有两个平方根,一个是a 的正的平方根,记作“a ”,读作“根号a ”,另一个是a 的负的平方根,记作“-a ”,读作“负根号a ”,这两个平方根合起来可记作“±a ”,读作“正、负根号a ”,其中a 叫做被开方数.【例1-1】求下列各数的平方根:(1)0.64;(2)3625;(3)⎝ ⎛⎭⎪⎫-322.分析:要求一个数的平方根,我们可以根据平方根的概念,首先找到一个数,使它的平方等于已知的数,然后就可以求出这个数的平方根.解:(1)∵(±0.8)2=0.64,∴0.64的平方根是±0.8.(2)∵⎝ ⎛⎭⎪⎫±652=3625,∴3625的平方根是±65.(3)∵⎝ ⎛⎭⎪⎫±322=⎝ ⎛⎭⎪⎫-322,∴⎝ ⎛⎭⎪⎫-322的平方根是±32.求一个数的平方根,必须牢记正数有两个平方根,它们互为相反数,不会因为表达形式的改变而改变,如⎝ ⎛⎭⎪⎫-322是个正数,那么它有两个平方根,不要错误地认为它的平方根仅有-32.【例1-2】下列各数有平方根吗?如果有,求出它的平方根;若没有,请说明理由. (1)2516;(2)0;(3)-4;(4)-0.49;(5)(-3)2. 分析:解:(1)因为16是正数,所以16有两个平方根.由于⎝ ⎛⎭⎪⎫±542=2516,所以2516的平方根是±54.(2)0只有一个平方根,是它本身.(3)因为-4是负数,所以-4没有平方根.(4)因为-0.49是负数,所以-0.49没有平方根.(5)因为(-3)2=9,所以(-3)2为正数,有两个平方根.由于9的平方根是±3,所以(-3)2的平方根是±3.2.算术平方根的概念正数a 的正的平方根a 叫做a 的算术平方根.0的算术平方根是0.因此如果x 2=a ,那么正数x 叫做a 的算术平方根.平方根与算术平方根的区别与联系(1)区别:①表示方法不同:正数a 的平方根表示为±a ;正数a 的算术平方根表示为a .②个数不同:一个正数的平方根有两个,它们互为相反数;一个正数的算术平方根只有一个.③性质不同:一个正数的平方根有两个,可以是负数;一个非负数的算术平方根一定是非负数.平方根等于本身的数只有一个数,这个数是0;算术平方根等于本身的数有两个:0和1.(2)联系:平方根包含算术平方根,算术平方根是平方根的一个;平方根和算术平方根都只有非负数才有.负数没有平方根和算术平方根;0的平方根和算术平方根都是0.【例2】求下列各数的算术平方根:(1)196;(2)179;(3)16.分析:根据算术平方根的定义,求正数a 的算术平方根,也就是求一个非负数x ,使x 2=a ,则x 就是a 的算术平方根.(1)因为142=196,所以196的算术平方根是14.(2)因为179=169,⎝ ⎛⎭⎪⎫432=169,所以169的算术平方根是43,即179的算术平方根是43.(3)因为要求的是16的算术平方根,所以要先算出16,再求算术平方根.16表示的是16的算术平方根,所以16=4.由于22=4,所以4的算术平方根是2,即16的算术平方根是2.解:(1)196=14.(2)179=169=43.(3)因为16=4,4的算术平方根是2,所以16的算术平方根是2.求正数a 的算术平方根,只需找出平方等于a 的正数.求一个分数的算术平方根或平方根,当这个分数是带分数时,要先化成假分数,再求这个数的算术平方根或平方根,不要出现11649=147的错误.3.开平方(1)求一个数的平方根的运算叫做开平方.(2)用计算器求一个非负数的算术平方根及近似值.用计算器求一个非负数的算术平方根,只需直接按书写顺序按键即可.例如,用计算器求529与44.81的算术平方根:①在计算器上依次键入529=,显示结果为23,因此529的算术平方根为529=23.②在计算器上依次键入44.81=,显示结果为6.940 271 88,如果要求精确到0.01,那么44.81≈6.94.(1)平方根是一个数,是开平方的结果;而开平方是和加、减、乘、除、乘方一样的一种运算,是求平方根的过程.(2)开平方是平方的逆运算.我们可以用平方运算来检验开平方的结果是否正确. (3)平方和开平方之间的关系,我们可以这样来理解:已知底数m 和指数2,求幂,是平方运算,即m 2=(?);已知幂a 和指数2,求底数,是开平方,即(?)2=a .(4)选用的计算器不同,按键的顺序也不同,因此应该仔细阅读计算器的说明书,按照要求操作.【例3】求下列各式中未知数的值:(1)x 2=25;(2)(2a +3)2=16.分析:如果一个数的平方等于a ,那么这个数叫做a 的平方根,它有一正一负两个值.(1)因为x 2=25,所以x 就是25的平方根,有两个,是±5;(2)将2a +3看成一个整体,根据平方根的定义易知2a +3就是16的平方根,是±4,即2a +3=±4,在此基础上,分两种情况分别求出a 的值即可.解:(1)因为(±5)2=25, 所以x =±5.(2)因为(±4)2=16, 所以2a +3=±4.当2a +3=4时,解得a =12.当2a +3=-4时,解得a =-72.故所求a 的值是12或-72.利用开平方解方程的方法是:先把方程化为x 2=m (m ≥0)的形式,然后根据开平方得到x =±m .特别地,要注意整体思想的应用.4.立方根(1)立方根的概念:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根(也叫做三次方根).也就是说,如果x 3=a ,那么x 叫做a 的立方根.(2)立方根的表示方法:数a 的立方根记为“3a ”,读作“三次根号a ”,其中a 是被开方数,3是根指数,这里的根指数“3”不能省略.【例4】求下列各数的立方根:(1)27;(2)-27;(3)338;(4)-0.064;(5)0;(6)-5.分析:求一个数a 的立方根,关键是求出满足等式x 3=a 中x 的值,同时在学习了立方根的表示方法后,应用符号表示解题过程比语言叙述更为简洁.解:(1)因为33=27,所以327=3. (2)因为(-3)3=-27,所以3-27=-3.(3)因为338=278,而⎝ ⎛⎭⎪⎫323=278,所以3338=32.(4)因为(-0.4)3=-0.064, 所以3-0.064=-0.4. (5)因为03=0,所以30=0. (6)-5的立方根是3-5.开方开不尽的数,保留根号,如本题(6),-5的立方根是3-5.5.开立方(1)求一个数的立方根的运算叫做开立方. ①开立方与立方互为逆运算.我们可以根据这种关系求一个数的立方根或检验一个数是否是某个数的立方根.②被开立方的数可以是正数、负数和0;③求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根. (2)用计算器求一个数的立方根及近似值.用计算器求一个数的立方根的操作过程和求平方根操作过程基本相同,主要差别是先按2ndf 键,再按书写顺序按键即可.例如用计算器求31 845,在计算器上依次键入2ndf 31845=,显示结果为12.264 940 82,若计算结果要求精确到0.01,则1 845的立方根为12.26,即31 845≈12.26.【例5】解方程:(1)125x 3-27=0;(2)(5x -3)3=343.分析:(1)把原方程变形为x 3=27125后,可知x 是27125的立方根.(2)把5x -3看做整体,则易知它是343的立方根,其值可求,在此基础上可求x .解:因为125x 3-27=0,所以x 3=27125.故x =35.(2)因为(5x -3)3=343,所以5x -3=3343=7, 即5x =10.故x =2.利用开立方解方程的方法:先把方程化为x 3=m 的形式,然后根据开立方得到x =3m .特别地,要注意整体思想的应用.6.立方根的性质正数的立方根是一个正数,负数的立方根是一个负数,0的立方根是0. (1)立方根的符号与被开方数的符号一致; (2)一个数的立方根是唯一的; (3)3-a =-3a ,3a 3=a ,(3a )3=a . 【例6】下列语句正确的是( ). A .64的立方根是2 B .-3是27的立方根C .125216的立方根是±56D .(-1)2的立方根是-1解析:因为64=8,而2的立方等于8,所以64的立方根是2,即A 正确,解答时不要把“求64的立方根”误解为“求64的立方根”;因为-3的立方是-27,所以-3是27的立方根是错误的;因为56的立方是125216,所以125216的立方根是56,因此C 是错误的;因为(-1)2=1,它的立方根是1,而不是-1,所以D 是错误的.故本题选A .答案:A(1)任何数都有立方根,而负数没有平方根;(2)任何数的立方根只有一个,而正数有两个平方根.7.用平方根与立方根的定义及性质解题已知一个数的平方根或立方根求原数是利用平方根与立方根的定义及性质解题中的常见题型.(1)一个正数的两个平方根互为相反数,而互为相反数的两个数的和为零. (2)对于立方根来说,任何数的立方根只有一个,根据立方根的定义可知,3-a =-3a ,也就是说,求一个负数的立方根时,只要先求出这个负数的绝对值的立方根,然后再取它的相反数即可.(3)当两个数相等时,这两个数的立方根相等.反之,当两个数的立方根相等时,这两个数也相等.这与平方根不同,在平方根的计算中,若两数的平方根相等或互为相反数时,这两个数相等;若这两个数相等时,则两数的平方根相等或互为相反数.【例7-1】已知2x -1和x -11是一个数的平方根,求这个数.分析:因为2x -1和x -11是一个数的平方根,根据平方根的定义,可知2x -1和x -11相等或互为相反数.当2x -1和x -11相等时,可列出方程2x -1=x -11,当2x -1和x -11互为相反数时,可列出方程2x -1+x -11=0,从而求出x 的值,进一步可求出这个数.解:根据平方根的定义,可知2x -1和x -11相等或互为相反数.当2x -1=x -11时,x =-10,所以2x -1=-21,这时所求的数为(-21)2=441;当2x -1+x -11=0时,x =4,所以2x -1=7,这时所求的数为72=49. 综上可知,所求的数为49或441.【例7-2】若32a -1=-35a +8,求a 2 012的值.分析:根据立方根的唯一性和3-a =-3a ,可知2a -1与5a +8互为相反数,从而可构造出关于a 的一元一次方程2a -1=-(5a +8).进一步可求出a 2 012的值. 解:因为32a -1=-35a +8,所以32a -1=3-a +,即2a -1=-(5a +8).解得a =-1.故a 2 012=(-1)2 012=1. 8.非负性的应用非负数指的是正数和零,常用的非负数主要有: (1)绝对值|a |≥0;(2)平方a 2≥0;(3)算术平方根a 具有双重非负性: ①a 本身具有非负性,即a ≥0;②算术平方根a 的被开方数具有非负性,即a ≥0. 非负数有如下性质:若两个或多个非负数的和为0,则每个非负数均为0.在解决与此相关的问题时,若能仔细观察、认真地分析题目中的已知条件,并挖掘出题目中隐含的非负性,就可避免用常规方法造成的繁杂运算或误解,从而收到事半功倍的效果.与算术平方根和平方数的非负性相关的求值问题,一般情况下都是它们的和等于0的形式.此类问题可以分成以下几种形式:一是算术平方根、平方数、绝对值三种中的任意两种组成一题〔| |+( )2=0,| |+ =0,( )2+ =0〕,甚至同一道题目中出现这三个内容〔| |+( )2+ =0〕;二是题目中没有直接给出平方数,而是需要先利用数学公式把题目中的某些内容进行变形,然后再利用非负数的性质进行计算.【例8-1】如果y =2x -1+1-2x +2,则4x +y 的平方根是__________.解析:因为2x -1≥0且1-2x ≥0,所以2x -1=1-2x =0,即x =12.于是y =2x -1+1-2x +2=2.因此4x +y =4×12+2=4.故4x +y 的平方根为±2.答案:±2【例8-2】如果y =x 2-4+4-x 2x +2+2 012成立,求x 2+y -3的值.分析:由算术平方根被开方数的非负性知x 2-4≥0,4-x 2≥0,因此,只有x 2-4=0,即x =±2;又x +2≠0,即x ≠-2,所以x =2,y =2 012,于是得解.解:由题意可知x 2-4≥0且4-x 2≥0,因此x 2-4=0,即x =±2. 又∵x +2≠0,即x ≠-2, ∴x =2,y =2 012.故x 2+y -3=22+2 012-3=2 013.【例8-3】已知a -1+(b +2)2=0,求(a +b )2 012的值.分析:a -1表示a -1的算术平方根,所以a -1为非负数.因为(b +2)2为偶次幂,所以(b +2)2为非负数.由于两个正数相加不能为0,所以这两项都为0,因此解方程求值即可.解:因为a -1≥0,(b +2)2≥0,且a -1+(b +2)2=0,所以a -1=0,(b +2)2=0, 解得a =1,b =-2.故(a +b )2 012=(1-2)2 012=1.9.利用方根探索规律(1)可以利用计算器探究被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律. 规律:如果将被开方数的小数点向左(右)每移动2位,则它的算术平方根的小数点就相应地向同一方向移动1位.即当被开方数扩大(或缩小)100倍时,其算术平方根相应地扩大(或缩小)10倍;当被开方数扩大(或缩小)10 000倍时,其算术平方根相应地扩大(或缩小)100倍….(2)可利用计算器探究被开方数扩大(或缩小)与它的立方根扩大(或缩小)的规律. 规律:如果将被开方数的小数点向左(右)每移动3位,则它的立方根的小数点就相应地向同一方向移动1位.即当被开方数扩大(或缩小)1 000倍时,其立方根相应地扩大(或缩小)10倍;当被开方数扩大(或缩小)1 000 000倍时,其立方根相应地扩大(或缩小)100倍….(3)还可利用方根为问题背景进行规律的探索. 【例9】(1)观察下列各式:1+13=213,2+14=314,3+15=415,…,请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________.(2)借助计算器可以求出42+32,442+332,4442+3332,…,观察上述各式特点,__________.解析:(1)第一个等式右边的2比左边被开方数里的1大1,被开方数13与左边被开方数的13相同且3比2大1;第二个等式右边的3比左边被开方数里的2大1,被开方数14与左边被开方数14相同且4比3大1,…,故有n +1n +2=(n +1)1n +2(n ≥1). (2)借助计算器,可以分别求得42+32=5,442+332=55,4442+3332=555,…,由此观察发现每个式子的结果都是由若干个5组成的,且5的个数为相应式子的左边4或35n 个.答案:(1)n +1n +2=(n +1)1n +2(n ≥1) (2)5555n 个10.平方根与立方根的实际应用解实际问题时,首先要读懂题意,善于构造数学模型,将它转化为数学问题.与平方根、立方根有关的实际应用多以正方形、正方体等几何图形为问题背景设题,解答时,常常根据题意列出方程,然后再利用平方根与立方根的定义及性质解方程即可.注意求出的结果要符合实际问题的实际意义.【例10-1】计划用100块地板砖来铺设面积为16 m 2的客厅,求需要的正方形地板砖的边长.解:设地板砖的边长为x m ,根据题意,得100x 2=16,即x 2=0.16,所以x =±0.16=±0.4.由于长度不能为负数,所以x =0.4(m). 故地板砖的边长为0.4 m.【例10-2】一种形状为正方体的玩具名为“魔方”,(每个面由9个小正方体面组成)体积为216 cm 3,求组成它的每个小正方体的棱长.解:设小正方体的棱长为a cm ,则玩具的棱长为3a cm ,由题意得(3a )3=216.于是27a3=216,a 3=8,a =2(cm).故每个小正方体的棱长为2 cm.。
中考真题解析:平方根与立方根1.)A、3B、-3C、±3D、考点:算术平方根.分析:此题考查的是9的算术平方根,需注意的是算术平方根必为非负数.,故选A.点评:此题主要考查了算术平方根的定义,一个正数只有一个算术平方根,0的算术平方根是0.2.(南通)计算的结果是()A.±3B. 3C. ±3D. 3考点:立方根.分析:根据立方根的定义进行解答即可.解答:∵33=27,∴=3.故选D.点评:本题考查的是立方根的定义,即如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.3.(山东日照)(-2)2的算术平方根是()A.2 B.±2 C.-2 D.2考点:算术平方根;有理数的乘方.分析:首先求得(-2)2的值,然后由4的算术平方根为2,即可求得答案.解答:∵(-2)2=4,4的算术平方根为2,∴(-2)2的算术平方根是2.故选A.点评:此题考查了平方与算术平方根的定义.题目比较简单,解题要细心.4.(贵州毕节)的算术平方根是()A.4 B.±4 C.2 D.±2考点:算术平方根.专题:计算题.分析:根据算术平方根的定义:一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为解答:∵(±2)2=4=,∴的算术平方根是2.故选C.点评:本题考查了算术平方根,求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.5. (黔南)9的平方根是( )A 、3B 、±3C 、3D 、±3考点:算术平方根;平方根. 分析:首先根据平方根概念求出9=3,然后求3的平方根即可. 解答:∵9=3, ∴9的平方根是±3.故选D .点评:本题主要考查了平方根、算术平方根概念的运用.如果x 2=a (a≥0),则x 是a 的平方根.若a >0,则它有两个平方根并且互为相反数,我们把正的平方根叫a 的算术平方根;若a=0,则它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.6. (黔南)有一个数值转换器,原理如下:当输入的x=64时,输出的y 等于( )A 、2B 、8C 、23D 、22考点:算术平方根.专题:图表型.分析:根据图中的步骤,把64输入,可得其算术平方根为8,8再输入得其算术平方根是22,是无理数则输出.解答:解:由图表得,64的算术平方根是8,8的算术平方根是22;故选D .点评:本题考查了算术平方根的定义,看懂图表的原理是正确解答的关键.7. (杭州)下列各式中,正确的是( )解答:选B .点评:此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.8. 2210b b ++=,则221a b a +-= . 考点:完全平方公式;非负数的性质:偶次方;非负数的性质:算术平方根. 专题:计算题;整体思想. 分析:根据非负数的性质先求出221a a+、b 的值,再代入计算即可.2210b b ++=,2(1)0b +=+(b +1)2=0,∴a 2-3a +1=0,b +1=0,∴1a a +=3,221a a+=7; b =-1. ∴221a b a +-=7-1=6. 故答案为:6.点评:本题考查了非负数的性质,完全平方公式,整体思想,解题的关键是整体求出221a a +的值.解答:∵|6-3m|+(n-5)2=3m-6-2(3)m n ,∴6-3m <0,∴m >2,∴n-5=0,n=5,∴m-3=0,m=3,则m-n=3-5=-2.故答案为:-2.点评:此题主要考查了算术平方根以及绝对值的性质,根据题意得出n ,m 的值是解决问题的关键.10. (广东茂名)已知:一个正数的两个平方根分别是2a-2和a-4,则a 的值是 .考点:平方根.专题:计算题.分析:正数有两个平方根,它们互为相反数.解答:解:∵一个正数的两个平方根分别是2a-2和a-4,∴2a -2+a -4=0,解得a =2.故答案为:2.点评:本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11. (浙江宁波)实数27的立方根是 .如果点P (4,-5)和点Q (a ,b )关于原点对称,则a 的值为 .考点:关于原点对称的点的坐标;立方根.专题:计算题;数形结合.分析:找到立方等于27的数即为27的立方根,根据两点关于原点对称,横纵坐标均为相反数即可得出结果.解答:解:∵33=27,∴27的立方根是3,∵点P (4,-5)和点Q (a ,b )关于原点对称,∴a =-4,b =5,故答案为:3,-4.点评:本题考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算,以及在平面直角坐标系中,两点关于原点对称,横纵坐标均为相反数,难度适中. 12.(湖南张家界)我们可以利用计数器求一个正数a 的算术平方根,其操作方法是按顺序进行按键输入:.小明按键输入显示结果为4,则他按键输入显示结果应为.考点:计算器—数的开方.专题:计算题;规律型.分析:根据被开方数扩大100倍,算术平方根扩大10倍,直接解答即可.16,160016100=⨯.故答案为40.点评:本题主要考查数的开方,根据题意找出规律是解答本题的关键.。
6.1平方根、算术平方根、立方根例题讲解第一部分:知识点讲解1、学前准备【旧知回顾】2.平方根( 1)平方根的定义:一般的,若是一个数的平方等于a ,那么这个数叫做 a 的平方根,也叫做二次方根。
即若 x2 a ,( a0) ,则x叫做a的平方根。
即有 x a ,(a0 )。
( 2)平方根的性质:( 3)注意事项:x a , a 称为被开方数,这里被开方数必然是一个非负数(a0 )。
( 4)求一个数平方根的方法:(5)开平方:求一个数平方根的运算叫做开平方。
它与平方互为逆运算。
3.算术平方根( 1)算术平方根的定义:若x2 a , (a 0) ,则x叫做a的平方根。
即有x a ,( a 0 )。
其中x a 叫做 a 的算术平方根。
( 2)算术平方根的性质:( 3)注意点:在今后的计算题中,像22, 5 分别指的是 2 和25 ( - 2),其中5的算术平方根。
4.几种重要的运算:①ab a ? b a 0, b 0, a ? b ab a 0,b0②a a0),a a0,b0) b(a 0,bb(ab b③(a )2a ( a 0) ,2,2aaa( - a)★★★ 若 a b 0,则(a b)2 a b a b a b5.立方根(1)立方根的定义:一般地,若是一个数的立方等于 a ,那么这个数叫做 a 的立方根,也叫做三次方根。
即若x3 a ,则x叫做a的立方根。
即有x 3 a。
(2)立方根的性质:(3)开立方求一个数的立方根的运算叫做开立方,它与立方互为逆运算。
6.几个重要公式:3ab 33,33b3ab③ a ?b a ?a 33a a3a(b 0),3(b 0) b33b bb④3333,33( a ) a (a可以为任何数),a a(- a)-a 第二部分:例题讲解题型 1:求一个数的平方根、算术平方根、立方根。
1.求平方根、算术平方根、立方根。
(1) 0 的平方根是,算术平方根是.(2) 25 的平方根是,算术平方根是.(3)1的平方根是,算术平方根是. 64(4)(9) 2的平方根是,算术平方根是.(5) 23 的平方根是,算术平方根是.(6)16的平方根是,算术平方根是.(6)(2,算术平方根是. 16)的平方根是(8)- 9的平方根是,算术平方根是.(9)8。
《平方根与立方根》典型例题透析
例1.下列各数中哪些是有理数?哪些是无理数? 0.25 ,4.3 ,π,3
1-
,21,
解:有理数:0.25 ,4.3 ,3
1-,21,
无理数:π
例2.(1)9的平方根是: (2)16的算术平方根是 (3)2)3(-的算术平方根是 例3求下列各数的平方根和算术平方根
(1)1.21 (2)2514
2(3)2
74⎪
⎭
⎫
⎝⎛-
解:(1)因为()21.11.12
=±,所以1.21的平方根是1.1±,算术平方根为1.1 .
(2)因为2564
25142=
,而25
64582
=
⎪⎭
⎫
⎝⎛±,所以25
142
的平方根为5
8±
,算术平方
根5
8
.
(3)因为4916742
=
⎪⎭⎫
⎝⎛-,而4916742
=
⎪⎭
⎫
⎝⎛±
所以2
74⎪
⎭
⎫
⎝⎛-的平方根是7
4±
,算术平方根为7
4
例4.求下列各数的立方根 (1) 0.216 (2) 64
371-
解:(1)因为216.06.03=,所以0.216的立方根是0.6 .
(2) 因为6427
64371=
-,而6427433
=⎪⎭
⎫
⎝⎛,所以64
371-
的立方根是
4
3 .
例5.求下列各式的值: (1)221213--
(2)()()273-⨯-± (3)327
351-
解:(1)525121322-=-=-- (2)()()981273±=±=-⨯-± (3)3
227
827
3513
3-
=-=
-
例6.若数m 的平方根是15+a 和19-a ,求m 的值 解:由题意,知本题分两种情况来求解, 当0>m 时,其平方根为一对互为相反数, 则有:01915=-++a a 故,3=a
则,1615=+a ,1619-=-a ,故256162==m 当0=m 时,其方根是0, 则,015=+a ,019=-a 故,5
1-
=a 且故,19=a
显然不可能
综合上述可知m 的值为256 .。