当前位置:文档之家› 光谱检测技术与系统

光谱检测技术与系统

高光谱成像检测技术

高光谱成像检测技术 一、高光谱成像技术的简介 高光谱成像技术是近二十年来发展起来的基于非常多窄波段的影像数据技术,其最突出的应用是遥感探测领域,并在越来越多的民用领域有着更大的应用前景。它集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进技术,是传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。 高光谱成像技术的定义是在多光谱成像的基础上,在从紫外到近红外(200-2500nm)的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成像。在获得物体空间特征成像的同时,也获得了被测物体的光谱信息。 高光谱成像技术具有超多波段(上百个波段)、高的光谱分辨率(几个nm)、波段窄(≤10-2λ)、光谱范围广(200-2500nm)和图谱合一等特点。优势在于采集到的图像信息量丰富,识别度较高和数据描述模型多。由于物体的反射光谱具有“指纹”效应,不同物不同谱,同物一定同谱的原理来分辨不同的物质信息。 二、高光谱成像系统的组成和成像原理 高光谱成像技术的硬件组成主要包括光源、光谱相机(成像光谱仪+CCD)、装备有图像采集卡的计算机。光谱范围覆盖了200-400nm、400-1000nm、900-1700 nm、1000-2500 nm。 CCD 光源光栅光谱仪成像镜头

光谱相机的主要组成部分有:准直镜、光栅光谱仪、聚焦透镜、面阵CCD。 高光谱成像仪的扫描过程:面阵CCD探测器在光学焦面的垂直方向上做横向排列完成横向扫描(X方向),横向排列的平行光垂直入射到透射光栅上时,形成光栅光谱。这是一列像元经过高光谱成像仪在CCD上得到的数据。它的横向是X方向上的像素点,即扫描的一列像元;它的纵向是各像元所对应的光谱信息。 同时,在检测系统输送带前进的过程中,排列的探测器扫出一条带状轨迹从而完成纵向扫描(Y方向)。

光声光谱技术

光声效应的产生首先必须要有光的吸收。气体光声检测技术本质上基于气体红外吸收理论,它对气体的检测依赖于气体的红外特征吸收谱线,其定量测量则更是以气体的红外吸收定律为基础的。光声光谱技术在实现方式上与红外吸收技术不同,其主要区别在于,虽然入射能量也是以光谱光子的形式出现,但对光子与被测材料相互作用的研究,并非依靠对某些光子(透射光子或散射光子)的检测和分析,而是根据声信号间接测量材料与光束相互作用后所吸收的能量。 光声光谱技术是一种理想的无背景噪声信号技术,具有较高灵敏度和良好选择性。与传统光谱分析方法不同,光声光谱技术是监测物体吸收光能后产生的热能中以声压形式表现出来的那部分能量,即使在高反射弱吸收的情况下,吸收能也可被微音器检测。与其它气体检测方法相比较,光声光谱技术的主要优点是:长期稳定性好、灵敏度高;不消耗气样,如载气、标气;检测时间短,便于现场检测;适于多种气体成分的检测;系统结构简单。 原理:密闭在光声池中的气体分子吸收特定频率ν 的入射光后由基态E0跃迁至激发态E1,两能级间的能量差为E1- E0 = hν。受激分子与周围气体分子相碰撞,由激发态返回至基态,并将吸收的光能通过无辐射弛豫过程转变为碰撞分子间的平移动能,具体表现为气体温度升高,即加热。当入射光强度受到频率ω的调制时,加热过程将产生周期性变化。根据气体热力学定律,周期性温度变化产生同周期压力波动,即声波,此声波可通过安装在光声池上的微音器或压电

陶瓷传声器检测,并将其转换成电信号,即光声信号,该信号的产生过程称为光声效应。光声信号的大小与气体浓度成正比,通过检测该信号值便可得到被测气体的浓度。 能级跃迁所需能量不同,故需不同波长电磁辐射使其跃迁,即在不同光谱区出现吸收谱带。电子能级跃迁对应吸收光谱在紫外区和可见光区;原子振动能级跃迁对应于近红外区和中红外区;分子转动能级跃迁对应于远红外区和微波区。应用光声光谱法检测气体浓度主要利用分子红外光谱。红外光谱由原子振动和分子转动产生,故红外光谱又称为分子的振—转光谱。 气体光声检测系统原理图: 气体光声检测的基本原理是光声效应。光源发出特定频率ν 的单色光,经角频率为ω 的斩波器进行强度调制后,入射进入光声池。池内被测气体吸收光能后,发生光声效应,即产生与调制频率同周期的声波,由传声器接收到此信号并将其送至信号处理系统进行处理。 光声池内激发的光声信号由安装在池壁的微音器检测到,转化为相应的电信号,并将其送入信号处理系统进行信号处理。微音器的工作原理简图如图:

光谱除杂系统

光谱除杂系统

一、光谱除杂系统的设计、制作 及工艺方案 导读: 1、光谱除杂系统的设计。介绍了光谱除杂系统的工作原理及设备组成。对进料 输送机、视频柜、气流回收柜、电控柜、冷却系统的概况进行了介绍。2、光谱除杂系统的制作和工艺方案。介绍北京长征高科技公司对该设备的机械 和电气制作、生产工艺组织、工艺加工精度保证等方面的具体措施。

1、光谱除杂系统的设计 北京长征高科技公司是国有科技型企业,隶属于中国运载火箭研究院,依托强大的技术科研实力,是国内率先开展光谱除杂系统研究的单位之一。经过多年潜心研究,突破了数项关键技术,于2004年推出了第四代光谱除杂系统,通过长期运行测试,各项性能指标达到或超过进口产品,获得了烟厂的良好评价。在10余家烟草企业安装了18台各种型号的光谱除杂系统。 北京长征高科技公司获得国家烟草专卖局的批文,能够生产销售光谱除杂系统。 2006年7月,北京长征高科技公司、龙岩卷烟厂共同立项:新型烟梗异物剔除设备,并且通过了专家组的严格评审,列入了国家烟草专卖局2006年烟草机械科学研究与技术开发项目的计划,样机已制作完成准备在贵州省试用。 光谱除杂系统原理 光谱除杂系统采用机器视觉原理,通过4台高速线阵彩色CCD摄像机(呈2上2下分布)抓捕烟叶动态图像,形成烟叶数字图像流,内置于FPGA图像处理卡的算法,根据先验条件,对烟叶数字图像流进行分析,从颜色、形状和纹理三方面进行判断,识别烟叶中的杂物,并标定杂物在电磁阀剔除阵列中的坐标位置,控制高速先导电磁阀在线剔除杂物。从而完成整个检测剔除流程。 设备工作流程详细介绍如下: 烟叶流通过振槽、摊薄机等辅联设备,在宽度方向上,加宽至1800毫米,并把烟叶运行速度提高到3米/秒,从而形成烟叶薄层,将杂物从烟叶中显露出来,使异物不上下夹杂

高光谱成像专业技术进展(光电检测专业技术大作业)

高光谱成像技术进展 By 130405100xx 一.高光谱成像技术的简介 高光谱成像技术的出现是一场革命,尤其是在遥感界。它使本来在宽波段不可探测的物质能够被探测,其重大意义已得到世界公认。高光谱成像技术光谱分辨率远高于多光谱成像技术,因此高光谱成像技术数据的光谱信息更加详细,更加丰富,有利于地物特征分析。有人说得好,如果把多光谱扫描成像的MSS(multi-spectral scanner)和TM(thematic mapper)作为遥感技术发展的第一代和第二代的话, 那么高光谱成像( hyperspectral imagery) 技术则是第三代的成像技术。 高光谱成像技术的具体定义是在多光谱成像的基础上,从紫外到近红外(200-2500nm)的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谐波段对目标物体连续成像。在获得物体空间特征成像的同时,也获得了被测物体的光谱信息。 (一)高光谱成像系统的组成和成像原理 而所谓高光谱图像就是在光谱维度上进行了细致的分割,不仅仅是传统所谓的黑、白或者R、G、B的区别,而是在光谱维度上也有N个通道,例如:我们可以把400nm-1000nm分为300个通道。因此,通过高光谱设备获取到的是一个数据立方,不仅有图像的信息,并且在光谱维度上进行展开,结果不仅可以获得图像上每个点的光谱数据,还可以获得任一个谱段的影像信息。 目前高光谱成像技术发展迅速,常见的包括光栅分光、声光可调谐滤波分光、棱镜分光、芯片镀膜等。下面分别介绍下以下几种类别: (1)光栅分光光谱仪 空间中的一维信息通过镜头和狭缝后,不同波长的光按照不同程度的弯散传播,这一维图像上的每个点,再通过光栅进行衍射分光,形成一个谱带,照射到探测器上,探测器上的每个像素位置和强度表征光谱和强度。一个点对应一个谱段,一条线就对应一个谱面,因此探测器每次成像是空间一条线上的光谱信息,为了获得空间二维图像再通过机械推扫,完成整个平面的图像和光谱数据采集。如下

高光谱成像检测技术.

高光谱成像检测技术 、高光谱成像技术的简介 高光谱成像技术是近二十年来发展起来的基于非常多窄波段的影像数据技术, 其最突出的应用是遥感探测领域, 并在越来越多的民用领域有着更大的应用前景。 它集中了光学、光电子学、电子学、信息处理、计算机科学等领域的先进传统的二维成像技术和光谱技术有机的结合在一起的一门新兴技术。 技术,是高光谱成像 技术的定义是在多光谱成像的基础上,在从紫外到近红外(200-2500nm 的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谱波段对目标物体连续成 像。在获得物体空间特征成像的同时, 也获得了被测物体的光谱信息。 高光谱成像技术具有超多波段(上百个波段、高的光谱分辨率(几个nm 、波 段窄(<1-2入光谱范围广(200-2500nm和图谱合一等特点。优势在于采集到的图像信息量丰富, 识别度较高和数据描述模型多。由于物体的反射光谱具有“指纹” 效应, 不同物不同谱, 同物一定同谱的原理来分辨不同的物质信息。、高光谱成像系统的组成和成像原理 高光谱成像技术的硬件组成主要包括光源、光谱相机(成像光谱仪+CCD 、装备有图像采集 卡的计算机。光谱范围覆盖了200-400nm 、400-1000nm 、900-1700 nm 、1000-2500 nm。

CC D 朮源「一光栅壯谱以 —a I \、 「维电移台 . 样品 A CCD。 光谱相机的主要组成部分有:准直镜、光栅光谱仪、聚焦透镜、面阵

高光谱成像仪的扫描过程:面阵CCD探测器在光学焦面的垂直方向上做横向排列完成横向扫描(X方向,横向排列的平行光垂直入射到透射光栅上时,形成光栅光谱。这是一列像元经过高光谱成像仪在CCD上得到的数据。它的横向是X方 向上的像素点,即扫描的一列像元;它的纵向是各像元所对应的光谱信息。 同时,在检测系统输送带前进的过程中,排列的探测器扫出一条带状轨迹从而完成纵向扫描(丫方向。 1\ 综合横纵扫描信息就可以得到样品的三维高光谱图像数据。

利用高光谱图像技术检测水果轻微损伤

高光谱图像技术检测苹果轻微损伤 摘要 传统的近红外光谱分析法和可见光图像技术应用于水果品质无损检测 中存在的检测区域小、检测时间长、仅能检测表面情况等局限性。提出了 利用高光谱图像技术检测水果轻微损伤的方法。试验以苹果为研究对象, 利 用 500~ 900nm范围内的高光谱图像数据, 通过主成分分析提取 547nm 波长 下的特征图像, 然后设计不均匀二次差分消除了苹果图像亮度分布不均匀 的影响, 最后通过合适的数字图像处理方法提取苹果的轻微损伤。 关键词: 无损检测苹果高光谱图像检测轻微损伤 引言 水果在采摘或运输过程中, 因外力的作用使其表皮受到机械损伤, 损伤处 表皮未破损, 伤面有轻微,色稍变暗, 肉眼难于觉察。受水果色泽的影响, 传统的计算机视觉技术不能对轻微损伤加以检测。但是轻微损伤是水果在线检测的主要指标之一, 随着时间的延长, 轻微损伤部位逐渐褐变, 最终导致整个果实腐 烂并影响其他果实。因此, 水果轻微损伤的快速有效检测是目前研究的难点和热点之一。虽然轻微损伤和正常区域在外部特征上呈现出极大的相似性, 但是损伤区域的内部组织发生一定的变化, 这种变化可以通过特定波长下的光谱表现出来。 当前, 一种能集成光谱检测和图像检测优点的新技术。高光谱图像技术正好能满足水果表面轻微损伤检测的需要。高光谱图像技术是光谱分析和图像处理在最低层面上的融合技术, 可以对研究对象的内外部特征进行可视化分析。在国内, 高光谱图像技术在农畜产品品质检测的应用还没有相关的文献报道; 在国外, 近几年来有部分学者将该技术应用于肉类和果蔬类的品质检测上。 本文采用高光谱图像技术对水果表面轻微损伤检测进行研究, 并通过合适 的数据处理方法寻找到最能准确辨别水果表面损伤的特征波长下的图像, 为实 现高光谱图像技术对水果轻微损伤的在线检测提供依据。 1 高光谱图像基本原理 高光谱图像是在特定波长范围内由一系列波长处的光学图像组成的三维图 像块。图 1 为苹果的高光谱图像三维数据块示意图。图中, x 和y 表示二维平面坐标轴, K表示波长信息坐标轴。可以看出,高光谱图像既具有某个特定波长 下的图像信息,并且针对 xy 平面内某个特定像素又具有不同波长下的光谱n

高光谱成像国内外研究与应用

前言 随着科学技术的发展,人们的感官得到了延伸,认识事物的能力也不断的提高,其中光谱成像和雷达成像成为其中的佼佼者,高谱和图像使人们能够在大千世界更好的认识到事物。高光谱成像技术作为一项优点显著,实用的成像技术,从20世纪80年代开始得到了世界各国的重视,经过深入的研究和发展如今已经被广泛地应用于各个领域。 高光谱遥感是当前遥感技术的前沿领域,它利用很多很窄的电磁波波段从感兴趣的物体获得有关数据,它包含了丰富的空间、辐射和光谱三重信息。高光谱遥感的出现是遥感界的一场革命,它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。 高光谱成像技术是基于非常多窄波段的影像数据技术,其中最突出的应用是在遥感探测领域,并在民用领域有着更大的应用前景。 本文通过分析介绍高光谱图像的成像原理,探讨了高光谱图像在国内外发展现状及其应用。

1.高光谱图像成像原理及特点 1.1高光谱遥感基本概念 高光谱遥感是通过高光谱传感器探测物体反射的电磁波而获得地物目标的空间和频谱数据,成立于20世纪初期的测谱学就是它的基础。高光谱遥感的出现使得许多使用宽波段无法探查到的物体,更加容易被探测到,所以高光谱遥感的出现时成功的是革命性的。 1.2高光谱图像成像原理 光源相机(成像光谱仪+ccd)装备有图像采集卡的计算机是高光谱成像技术的硬件组成,其光谱的覆盖范围为200-400nm,400-1000nm,900-1700nm,1000-2500nm。其中光谱相机的主要组成部分为准直镜,光栅光谱仪,聚焦透镜以及面阵ccd。 其扫描过程是当ccd探测器在光学焦面的垂直方向上做横向扫描(x),当横向的平行光垂直入射到投身光栅是就形成了光栅光谱,这是象元经过高光谱仪在ccd上得出的数据,它的横向式x方向上的像素点也就是扫描的象元,它的总想是各象元对应的信息。在检测系统输送前进是排列的他测器完成纵向扫面(y)。综合扫描信息即可得到物体的三围高光谱数据。 1.3高光谱遥感的特点 (1)波段多且宽度窄能够使得高光谱遥感探测到别的宽波段无法探测到的物体。 (2)光谱响应范围更广和光谱分辨率高使得它能够更加精细的发硬出被探测物的微小特征。 (3)它可以提供空间域和光谱域信息也就是“谱像合一”。 (4)数据量大和信息冗余多,由于高光谱数据的波段多,其数据量大,而且和相邻波段的相关性比较高就使得信息冗余度增加很多。 (5)高光谱遥感的数据描述模型多能够分析的更灵活。经常使用的3种模型有:图像,光谱和特征模型。 1.4高光谱的优势 随着高光谱成像的光谱分辨率的提高,其探测能力也有所增强。因此,与全色和多光谱成像相比较,高光谱成像有以下显著优著: (1)有着近似连续的地物光谱信息。高光谱影像在经过光谱反射率重建后,能获取与被探测物近似的连续的光谱反射率曲线,与它的实测值相匹配,将实验室中被探测物光谱分析模型应用到成像过程中。 (2)对于地表覆盖的探测和识别能力极大提高。高光谱数据能够探测具有诊断性光谱

红外光谱检测技术

以后改动策划类的文档可以用批注简单、明了 中药材红外光谱鉴别技术操作规程 一、红外光谱分析原理 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。红外吸收光谱也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱(产生红外光谱的基本条是:要有偶矩的变化)。 1 红外光区的划分 红外光谱在可见光区和微波光区之间,波长范围约为 0.75 - 1000μm,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区(0.75 -2.5μm ),中红外光区(2.5- 25μm ),远红外光区(25-1000μm )。 1.1 近红外光区(0.75- 2.5μm ) 近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收等产生的。该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。 1.2 中红外光区( 2.5-25μm ) 绝大多数有机化合物和无机离子的基频吸收带出现在该光区。由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数

据资料,因此它是应用极为广泛的光谱区。通常,中红外光谱法又简称为红外光谱法。 1.3 远红外光区(25-1000μm ) 该区的吸收带主要是由气体分子中的纯转动跃迁振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。由于低频骨架振动能很灵敏地反映出结构变化,所以对异构体的研究特别方便。此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究。但由于该光区能量弱,除非其它波长区间内没有合适的分析谱带,一般不在此范围内进行分析。 曲线或T-λ红外吸收光谱一般用T-1(单位为μm ),或波数(单位为cm-1)。λ波数曲线表示。纵坐标为百分透射比T%,因而吸收峰向下,向上则为谷;横坐标是波长 中红外区的波数范围是4000-400 cm-1 。 二、红外光谱法的特点 紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及在分子量上只有微小差异的化合物外,凡是具有结构不同的两个化合物,一定不会有相同的红外光谱。通常红外吸收带的波长位置与吸收谱带的强度,反映了分子结构上的特点,可以用来鉴定未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与分子组成或化学基团的含量有关,可用以进行定量分析和纯度鉴定。由于红外光谱分析特征性强,气体、液体、固体样品都可测定,并具有用量少,分析速度快,不破坏样品的特点。因此,红外光

光谱图像与高光谱图像的区别介绍

光谱图像与高光谱图像的区别介绍 光谱分辨率在10l数量级范围内的光谱图像称为高光谱图像(Hyperspectral Image)。遥感技术经过20世纪后半叶的发展,无论在理论上、技术上和应用上均发生了重大的变化。其中,高光谱图像技术的出现和快速发展无疑是这种变化中十分突出的一个方面。通过搭载在不同空间平台上的高光谱传感器,即成像光谱仪,在电磁波谱的紫外、可见光、近红外和中红外区域,以数十至数百个连续且细分的光谱波段对目标区域同时成像。在获得地表图像信息的同时,也获得其光谱信息,第一次真正做到了光谱与图像的结合。与多光谱遥感影像相比,高光谱影像不仅在信息丰富程度方面有了极大的提高,在处理技术上,对该类光谱数据进行更为合理、有效的分析处理提供了可能。因而,高光谱图像技术所具有的影响及发展潜力,是以往技术的各个发展阶段所不可比拟的,不仅引起了遥感界的关注,同时也引起了其它领域(如医学、农学等)的极大兴趣。 高光谱图像:是指一系列包含一些列可见/近红外光谱,一般有400-1000 nm,已经包含了可见光(400-780 nm)和近红外(780-1000nm)。 多光谱图像简介多光谱图像是指包含很多带的图像,有时只有3个带(彩色图像就是一个例子)但有时要多得多,甚至上百个。每个带是一幅灰度图像,它表示根据用来产生该带的传感器的敏感度得到的场景亮度。在这样一幅图像中,每个像素都与一个由像素在不同带的数值串,即一个矢量相关。这个数串就被称为像素的光谱标记。 1.用不相关或独立的其他带替换当前带;这个问题特别与遥感应用有关,但在一般的图像处理中,如果要从多光谱图像生成一幅单带灰度图像也与此有关。 2.使用一个像素的光谱标记来识别该像素所表示的目标种类。这是一个模式识别问题,它取决于下列图像处理问题的解:消除一个像素的光谱标记对图像采集所用光谱的依赖性。这是一个光谱恒常性问题。 3.处理多光谱图像的特定子集,它包括在电磁谱里仅光学部分的3个带,它需要以或者替换或者模仿人类感知颜色的形式来进行处理。 4.在特定应用中使用多光谱图像,并对它们进行常规的操作。这里的一个问题是,现在

MOS-500圆二色光谱仪吸收光谱测试操作步骤

MOS-500圆二色光谱仪 吸收光谱测试操作步骤 本手册包括: 吸收光谱测试。 (仅包含完成吸收光谱测试的关键步骤。开/关机、数据保存等请参考CD光谱扫描测试文档) 1.开机 1.1打开光源(建议此步骤10-15分钟后进行测试工作,以保证光源达到稳定状态); 1.2打开MOS-500主机前面板开关; 1.3打开电脑,双击BioKine图标启动程序。 2.检查加载设备(如不更改任何配置则无需进行此步骤直接运行步骤3) 3.测试 3.1仪器连线及初始化 ●选择菜单栏“Device→Scanning spectrometer(MOS-500)”; 3.2仪器设定 ●设置狭缝宽度,这里设置为0.5nm ●点击窗口上部“Acquisition Setup”,显示

●在出现的“Scanning Setup(MOS-500)”对话框中:扫描方式“Acquisition mode”选择“Absorbance”。填入/选择相应的测试条件,而后单击“OK”确认。 ●这里我们以左氧氟沙星的水溶液样品为例设置参数:起始波长(Begin)250nm,终止波长(End)350nm,步长(Step)1nm,重复(Repeat)1次,采集时间(Acquisition period)0.2s/点。(其它Options栏都不用勾选) 3.3参考谱测试(高压调节) ●不同于CD光谱扫描,这里首先需要点击“Reference spectrum”的“record”记录光源能谱。 ●在这个过程中“HV on“为打开,“Auto”为关闭。在一次参考谱扫描完成后,查看谱图纵轴电压值范围。手动输入HV的值,再次扫描参考谱,建议使谱图纵轴电压最大值在8V-9V 左右。

荧光光谱检测技术

荧光光谱技术是一种重要的光电检测技术,具有许多独特优势,选题合理。请尽快确定课题完成方式,完善相关技术路线,开展课题调研论证工作。80 荧光光谱检测技术 荧光光谱技术是一种重要的光电检测技术,特别是在物质种类检测中有着重要的应用。它是对辐射能激发出的辐射强度进行定量分析的发射光谱分析方法。物体经过叫短波长的光照射后辐射出较长波长的光,这种光就是荧光,最常见的日光灯的发光原理就是物质吸收较短波长的光(紫外光)能量辐射出较长波长的光(可将光)的现象。 一、荧光光谱检测技术原理 通常条件下,分子处于单重态的基态。分子受到紫外至红外激励的光子入射作用后,分子得到受激而引起电子能级的跃迁或振动和转动能级的跃迁,分子受激后,处于电子激发的单重态的某种振动激发态( v ≠0)的分子(见图1)或通过内部转换(Internal Conversion)和振动弛豫(Vibrational Relaxation)的非辐射,相继发 射荧光光子,回到电子基态得到荧光光谱 hv;或通过激发单重态S1和激发三重 f 态T1间的系间窜越(Intersystem Crossing)和振动弛豫至T1 ( v =0),放出能量回到基态S0( v =0,1)得到荧光光谱的光子 hv。 r 图1 光致发光系统部分

每一种物质的分子或原子结构是独一无二的,原子能级图也就有不同的分布,原子能级跃迁也就会辐射出不同频率的电磁波,就好比是人的指纹;每一种物质的荧光效应都有其特定的吸收光的波长和发射的荧光波。利用这一特性,可以定性鉴别物质。研究分子的荧光光谱可为研究分子的微观结构、分子的构象特点及变换情况提供帮助。 任何发荧光的分子都具有两个特征光谱:荧光激发光谱(Excitation Spectrum)和荧光发射光谱(Emission Spectrum)。它们是荧光分析法进行定性和定量分析的基本参数和依据,也是荧光光谱稳态分析中的两个基本特征。 二、荧光光谱检测技术的特点 1.灵敏度高 荧光光谱检测分析有着极高的灵敏度。与常用的紫外—可见分光光度法比较,荧光是从入射光的直角方向检测,即在相对的暗背景下检测荧光的发射,而分光光度法是在人射光的直线方向检测,即在亮背景下检测暗线。因此一般荧光检测分析的灵敏度要比分光光度法大2-3个数量级。例如,对易致癌的3, 4苯并花(3,4-Benzopyrene)的测定,若采用分光光度法,可检测到10-6数量级;而采用荧光法可以达到10-9数量级。 2.选择性强 荧光光谱包括激发光谱和发射光谱。所以荧光法既能依据特征发射,又可按照特征吸收,即用激发光谱来鉴定物质.假如某几种物质的发射光谱相似,可从激发光谱差异区分它们。若其吸收谱相同,则可用发射谱将其区别。因此,与只能得到待测物质的特征吸收光谱的分光光度法相比,在鉴定物质时,荧光法选择性更强。 3.样品用量少及方法简便 由于灵敏度高,所以可大大减少样品用量。特别在使用微量样品时,效果明显。例如用荧光法测定蛋白质中色氨酸的含量时,只用40ug的样品即可。另外荧光分析方法简便,快速。 4.能提供较多的物理参数 可提供包括激发光谱、发射光谱及荧光强度、量子产率、荧光寿命、荧光偏振等许多物理参数.这些参数反映了分子的各种特性,且通过它们可以得到被研究分子的更多信息,这也是分光光度法不能相比的地方。 5. 环保特点 具备环保性,试验后的样品不污染环境,绿色检测手段,将会获得不断推广。 三、荧光光谱检测技术的应用 由于荧光光谱检测具有如上诸多优点,所以在工程应用中有着广泛的应用,如在食品加工过程中用于食品安全的监测、地质学中用于石油矿物勘探、土壤矿物成分的测定以及物质中微量元素的检测等等。 1.用于元素种类的定性分析 由Moseley 定律可知: 1 =- K Z S () λ

机器视觉之高光谱成像技术分析

高光谱成像技术 高光谱成像技术起源于地质矿物识别填图研究,逐渐扩展为植被生态、海洋海岸水色、冰雪、土壤以及大气的研究中。对空间探测、军事安全、国土资源、科学研究等领域都具有非常重要的意义。 所谓高光谱图像就是在光谱维度上进行了细致的分割,不仅仅是传统所谓的黑、白或者R、G、B的区别,而是在光谱维度上也有N个通道,例如:我们可以把400nm-1000nm分为300个通道。因此,通过高光谱设备获取到的是一个数据立方,不仅有图像的信息,并且在光谱维度上进行展开,结果不仅可以获得图像上每个点的光谱数据,还可以获得任一个谱段的影像信息。 目前高光谱成像技术发展迅速,常见的包括光栅分光、声光可调谐滤波分光、棱镜分光、芯片镀膜等。 原理: 光栅分光原理: 在经典物理学中,光波穿过狭缝、小孔或者圆盘之类的障碍物时,不同波长的光会发生不同程度的弯散传播,再通过光栅进行衍射分光,形成一条条谱带。也就是说:空间中的一维信息通过镜头和狭缝后,不同波长的光按照不同程度的弯散传播,这一维图像上的每个点,再通过光栅进行衍射分光,形成一个谱带,照射到探测器上,探测器上的每个像素位置和强度表征光谱和强度。一个点对应一个谱段,一条线就对应一个谱面,因此探测器每次成像是空间一条线上的光谱信息,为了获得空间二维图像再通过机械推扫,完成整个平面的图像和光谱数据采集。 经过狭缝的光由于不同波长照射到不同的探测器像元上,光能量很低,因此需要选择高灵敏相机,同时需要加光源。例如系统如下:

声光可调谐滤波分光(AOTF)原理: AOTF由声光介质、换能器和声终端三部分组成。射频驱动信号通过换能器在声光介质内激励出超声波。改变射频驱动信号的频率,可以改变AOTF衍射光的波长,从而实现电调谐波长的扫描。 最常用的AOTF晶体材料为TeO2即非共线晶体,也就是说光波通过晶体之后以不同的出射角传播。如上图所示:在晶体前端有一个换能器,作用于不同的驱动频率,产生不同频率的振动即声波。不同的驱动频率对应于不同振动的声波,声波通过晶体TeO2之后,使晶体中晶格产生了布拉格衍射,晶格更像一种滤波器,使晶体只能通过一种波长的光。光进入晶体之后发生衍射,产生衍射光和零级光。 l AOTF系统组成: AOTF系统组成:成像物镜+准直镜+偏振片+晶体+偏振片+物镜+detector,入射光经过物镜会聚之后进入准平行镜(把所有的入射光变成平行光),准平行光进入偏振片通过同一方向的传播的光,平行光进入晶体之后,平行于光轴的光按照原来方向前行,非平行光进行衍射,分成两束相互垂直o光和e光(入射光的波长不同经过晶体之后的o光与e光的角度也不同,因此在改变波长的过程中,图像会出现漂移);o 光和e光及0级光分别会聚在不同的面上。

光谱测试系统的软件设计资料

摘要 摘要 当今显示器件在各行各业已经得到了广泛的应用。在显示器件研发和测试过程中,器件的发光光谱是一个重要参数。 本文详细阐述了一个光谱测试系统的软件设计开发过程,该软件基于Windows 平台。系统通过控制研华公司PCI-1710L数据采集卡,采用中断方式进行采集光源光谱数据,并达到实时显示的目的。软件利用Visual C++开发,采用单文档结构。界面友好,操作简便,现主要应用于科研。 关键字:光谱,软件,PCI-1710,中断,采集 I

ABSTRACT ABSTRACT Nowadays, display devices are widely used everywhere. In the process of the development and reaserch, the spectrum is important parameter. The design of software of the spectrum measurement system, which is based on the Visual C++ of Windows platform, is described in this paper. The system controls the Advantech's PCI-1710L data acquisition card to sample and display the spectral date real-time by interrupt mode. The software is a single document structure and has a friendly interface. Now, it is mainly used in scientific research. Key Words: spectra, software, PCI-1710, interrupt, acquisition II

高光谱成像技术进展(光电检测技术大作业)

高光谱成像技术进展 By 130405100xx 一.高光谱成像技术的简介 高光谱成像技术的出现是一场革命,尤其是在遥感界。它使本来在宽波段不可探测的物质能够被探测,其重大意义已得到世界公认。高光谱成像技术光谱分辨率远高于多光谱成像技术,因此高光谱成像技术数据的光谱信息更加详细,更加丰富,有利于地物特征分析。有人说得好,如果把多光谱扫描成像的MSS ( multi-spectral scanner) 和TM( thematic mapper) 作为遥感技术发展的第一代和第二代的话, 那么高光谱成像( hyperspectral imagery) 技术则是第三代的成像技术。 高光谱成像技术的具体定义是在多光谱成像的基础上,从紫外到近红外(200-2500nm)的光谱范围内,利用成像光谱仪,在光谱覆盖范围内的数十或数百条光谐波段对目标物体连续成像。在获得物体空间特征成像的同时,也获得了被测物体的光谱信息。 (一)高光谱成像系统的组成和成像原理 而所谓高光谱图像就是在光谱维度上进行了细致的分割,不仅仅是传统所谓的黑、白或者R、G、B的区别,而是在光谱维度上也有N个通道,例如:我们可以把400nm-1000nm分为300个通道。因此,通过高光谱设备获取到的是一个数据立方,不仅有图像的信息,并且在光谱维度上进行展开,结果不仅可以获得图像上每个点的光谱数据,还可以获得任一个谱段的影像信息。 目前高光谱成像技术发展迅速,常见的包括光栅分光、声光可调谐滤波分光、棱镜分光、芯片镀膜等。下面分别介绍下以下几种类别: (1)光栅分光光谱仪 空间中的一维信息通过镜头和狭缝后,不同波长的光按照不同程度的弯散传播,这一维图像上的每个点,再通过光栅进行衍射分光,形成一个谱带,照射到探测器上,探测器上的每个像素位置和强度表征光谱和强度。一个点对应一个谱段,一条线就对应一个谱面,因此探测器每次成像是空间一条线上的光谱信息,为了获得空间二维图像再通过机械推扫,完成整个平面的图像和光谱数据采集。

光谱测量技术

课程教学大纲 课程名称(中文):激光光谱学与光谱测量技术 课程名称(英文):Laser spectroscopy and spectral detection technique 课程性质:(通识必修、通识选修、学科基础、专业必修、专业选修、教师教育)专业必修 学分:2 学时:36 ,其中理论学时:36 ,实践(实验)学时:0 授课对象:电子科学与技术 授课语言:中文 开课院系:物理与材料科学学院 课程网址:(没有请填写“无”)无 撰写人:邓莉 审定人:无 一、课程简介(中文) 《激光光谱学与光谱测量技术》是电子科学技术的专业必修课程。该课程围绕激光光谱学基本原理及检测方法展开。知识点涵盖基础光学、原子物理学、非线性光学、光电子技术等学科领域。本课程主要突出激光光谱学基本原理、基础知识与基本方法,让学生了解激光光谱新技术与发展方向,为本科生掌握激光光谱学基础知识及起步相关专业方向研究奠定扎实基础。本课程适用于具有一定光学、原子物理基础的高年级学生学习,总学时为36学时左右(每周2学时,共1学期)。 课程简介(英文)

Laser spectroscopy and spectral detection technique is the required course for the students of Electronic Science Technique major. This course mainly revolves around the basic principles and the measurement methods of laser spectroscopy. All the knowledges are related with basic optics, atomic physics, nonlinear optics and electric technique. This course can help students gain the new techniques and the development of the laser spectroscopy, meanwhile is to lay a solid foundation for the students’ further study. It is suitable for the students who have already learned optics and atom ic physics. This course has about 36 hours in total (2 hours per week,18 weeks in one semester). 二、课程目标 通过本课程的学习,使学生对各种光谱测量技术的原理,实现方法,技术技巧有比较全面的了解。对各种光谱学技术学习的过程中,可以培养学生根据实际问题结合物理原理提出解决方案思维能力,提升全面思考方案可行性并不断优化方案的理念。 三、教学内容、学时分配和作业要求 第一章光谱学基础知识(学时2) 本章总结了光谱学的基础知识。首先在了解光本性的基础上,介绍光与物质相互间的作用。基于能级跃迁理论,揭示光谱中所反映的物质能级信息,光谱的宽度和线型表征光谱的重要参数。

基于高光谱技术的葡萄糖度无损检测方法研究

基于高光谱技术的葡萄糖度无损检测方法研究 发表时间:2018-11-13T20:07:56.373Z 来源:《电力设备》2018年第20期作者:吕茁源[导读] 摘要:葡萄作为世界十大水果之一,其种植面积和年生产量始终处于世界水果生产前列。 (北京四中) 摘要:葡萄作为世界十大水果之一,其种植面积和年生产量始终处于世界水果生产前列。在2015年,中国以1260万吨的葡萄产量(含鲜食葡萄),成为世界第一大葡萄生产国(占全球总量的 17%),逐渐从原来传统的农业与工业混合型朝着现代农业转型。但与世界发达国家相比,中国葡萄的优质化、标准化生产以及市场运作还处于初级阶段,葡萄浆果的产后处理,品质鉴别检测一直是农产品加工研究的重要课题。目前我国葡萄含糖量测试方法是从每穗摘取1至3粒葡萄,获得葡萄汁再进行糖度的测量,这样的方法耗时耗力,还会对葡萄造成损伤,并且不能满足现代农业生产的需求。本课题采用可见——近红外光谱技术,实现葡萄的无损糖度测量。 关键词:特征光谱,光谱鉴别,糖度分析 一、引言 国外非常重视水果产后的商品化处理,所有果品上市前必须经过分选包装线,根据超市要求,对果品进行严格分选和包装,常年满足超市的供货需求。在澳大利亚太平洋世纪集团的一个农场里所出的水果,无论是葡萄、柑橘、柠檬,还是荔枝等等,百分之百都经过水果加工的生产线进行预冷、清洗、挑选、杀虫、杀菌、打蜡、分选、包装冷藏后再推向市场,因而他们的葡萄在市场上可以卖到300至600元/箱,而新疆的“红地球葡萄”在市面上也只能卖至70至150元/箱,其价格相差5至6倍[1]。 葡萄浆果的含糖量是葡萄品质评定的重要指标,尤其在作为酿酒原料时,由于要适应葡萄酒的种类及其酿造工艺,对葡萄浆果的含糖量要严格控制。传统的葡萄浆果含糖量的检测方法是从每穗摘取1至3粒葡萄,取一定数量的浆果以获得250mL左右的葡萄汁再进行含糖量的测定,这样的测量方式耗时费力,对葡萄进行损伤,易造成样本变质,人为误差较大。利用近红外光谱分析技术具有快速、非破坏性、无需前期处理以及多组分类同时定量分析、测试等优势。可充分利用全谱或多谱长下的光谱数据进行定性和定量分析[2-3]。另外,快速无损的糖度检测方法给工业化、无人化农业生产提供了可能。果农可通过数据实时监测水果的成熟情况,从而科学地种植、采摘甚至运输,大幅度地降低生产、运输损耗,提高生产效率,降低生产成本。 二、近红外光谱分析技术发展现状 无损检测技术是在不损坏被检测对象的性质和使用效果的前提下,以光学、化学、声学、电学、物理、图像视觉等方法为手段,借助先进的技术和设备[3],对物体表面与内部的结构、性质、状态进行检查或测试的一种检测手段,经过国内外研究人员不断地深入研究,无损检测技术正逐步与高精度化、低辐射化、智能化、信息化接轨[1]。近年来,现代光纤通讯技术飞速发展,带动小型化的半导体激光器LD,发光二极管LED等新型光源器件不断涌现,为开发小型化的专用水果糖度检测仪器提供了技术支持[2]。通过可见光近红外光谱技术对水果的检测也在不断地发展和拓展,在越来越多种的水果种植中提供生产信息[4]。 三、可见光——近红外光谱技术对葡萄的检测方法 (一)选定实验器材。实验中选用钨灯作为光源,将波长量程在390-1100nm左右的光谱仪和折光糖度仪作为实验仪器使用。 (二)选定实验材料。考虑到季节因素,所测试时间为冬季,选用市场上的的四种提子,表皮颜色不同,分别为青提、黑提、红提和小红提。将新鲜的样品储存在冰箱中,实验前两小时取出,洗净,分离果粒,并选择分别从四种提子中选取各1至3粒颗粒饱满的果粒待测。 (三)预实验。首先需要控制测试温度、测试湿度、测试光线等变量,找到适合本实验的测试方法以提高实验数据的准确性,然后通过测试剔除异常样本。因为正常葡萄表面都会有“白霜”,属于葡萄在生长过程中合成的天然物质。为保证实验结果的准确性,试验时选取葡萄样本上最接近原本表皮颜色的区域上一点作为测试点。 (四)实验。第一步,打开光谱仪与光源并进行预热三十分钟,保持设备的稳定性。第二步,打开光谱仪软件,将待测葡萄置于白板上,分别测量并保存三种葡萄的光谱数据。第三步,将葡萄样本分别转入带有标记的纸杯中,准备下一步糖度测量。第四步,室温下,用滴管吸取少量蒸馏水,滴加在折光仪上,待显示折光仪示数为0可以开始实验。第五步,挤压果粒,将汁液覆盖折射仪镜面并直接读取数值,重复取样测量 3 次,计算平均值作为该串葡萄样本的最终 SSC 值。每次平行测定之间只需纸巾擦去汁液,两个样品之间需用蒸馏水冲洗镜面擦干后再进行测定,并做好相关记录。 四、实验数据处理与模型建立 (一)葡萄籽粒提取可溶性固形物样本的选取。在建立葡萄可溶固形物定量模型时,我们进行了异常样本的剔除,选用了39个葡萄样本。 建模样本与检测样本的合理选择直接影响葡萄可溶固形物数学模型的建立和预测效果的好坏。通常建模样本的性质需要具有广泛代表性及一定数量,所建立的数学模型才具有通用性,也才能对未知的葡萄样本做出比较好的预测结果。因此,对于每个品种均从中随机选取67%作为校正集,其余33%作为验证集。表1为提子可溶固形物模型建立的建模样本和检测样本的选取情况。 表1 建模样本与检测样本的选取 (二)葡萄籽粒可溶性固形物含量PLS模型的建立与检验。按照 GB-12295《水果、蔬菜制品可溶性固形物含量的测定》中规定的方法来测定葡萄可溶性固形物的含量,用数字式糖度折射仪,仪器的精度为0.1°Brix,测量范围为 0~45°Brix。以穗为单位,去除代表该穗葡萄的 12 颗葡萄样本非可食部分,将可食部分压榨后用滤纸过滤获得葡萄汁混匀。测试前,需用蒸馏水进行零点校正,将汁液覆盖折射仪镜面并直接读取数值,重复取样测量 3 次,计算平均值作为该串葡萄样本的最终 SSC 值。每次平行测定之间只需纸巾擦去汁液,两个样品之间需用蒸馏水冲洗镜面擦干后再进行测定,并做好相关记录。

国产全光谱水质在线监测仪的应用原理及研发步骤分析(精)

国产全光谱水质在线监测仪的应用原理及研发步骤分析 一、全光谱在线分析仪器市场现状我国环境水质监测仪器以往主要依赖进口,从2000年开始,成熟的国产化设备才开始在全国范围内大规模推广。我国的环境水质在线监测仪器厂家主要以民营为主,在成长初期,普遍存在规模偏小、技术不够成熟、仪器的可靠稳定性不足等问题,难以满足我国复杂的水体环境和日益多样化的污染物监测需求。另外,仪器市场整体存在集中度不高、区域分割严重、单一企业所占市场份额小等问题。后期随着国家对环保产业的重视和水质自动监测网络体系的建立,环境水质在线监测仪器厂家数量迅速增长,部分具备自主研发实力的企业发展壮大起来,成为与国外品牌如美国哈希、日本岛津等相抗衡的仪器生产企业。 具体到光谱在线监测领域,国内目前主要以单光谱UV254为主,较为先进也只有COD 等少数数值可进行在线测量,且测量参数及精度较国外设备均有一定差距,如S::CAN公司的高端产品spectro 就可以同时测量COD ,BOD ,BTX ,NO3-N ,TSS ,温度,AOC 等参数,并保证测量精度。 外国设备价钱高企业和政府采购难以负担高额成本,而国内仪器设备技术落后等缺陷却无法满足精准监测的要求,此外国外仪器在国内也存在“水土不服”的情况,针对这一矛盾现状,陕西正大环保科技与浙江大学强强合作,发挥自身优势推进全光谱在线设备国产化进程,正大环保以多年的设备设计与运维经验选择相应的原材料进行整合,提供基础设备;浙江大学提供设备内部计算模型及先进完善机制,共同致力于为客户提供运行稳定,数据可靠,价格合理的全光谱在线监测设备。 二、全光谱分析法原理 朗伯-比尔定律光度分析中定量分析是最基础、最根本的依据, 如图所示, 可以用如下公式描述: 式中: A 为吸光度值; I0为空白溶液(即

相关主题
文本预览
相关文档 最新文档