数字逻辑 第三章习题讲解
- 格式:ppt
- 大小:234.00 KB
- 文档页数:13
第三章 课后习题(1)参考答案P1111、 试说明串行进位和并行进位方式的不同之处。
(P .61.) 答:串行进位中进位是逐级形成的,每一级的进位直接依赖于前一级的进位,延迟时间较长,但节省器件,成本低。
并行进位中,各位进位信号都有独自的进位形成逻辑,每位进位信号的产生时间都相同,与低位进位无关,可有效地减少进位延迟时间。
但这是以增加逻辑线路为代价的。
2、 用74181和74182芯片构成一个64位的ALU ,采用分级分组并行进位链。
画出逻辑框图,并注明输入、输出等。
参考(P .63. 图3-6)答:P .63. 图3-6 画出了一个16位的并行进位ALU 结构 (每个74181芯片处理4位,16位需要4片74181芯片,组间用1片74182芯片产生组间并行进位。
)64位ALU ,可采用4组图3-6 的结构,每组处理16位,再用1片74182,处理组间进位。
A 3~0B 3~0A 7~4B 7~4A 11~8B 11~8A 15~12B 15~12__ __Cn16位并行进位ALU结构A 15~0B 15~0A 31~16B 31~16A 47~32 B 47~32A 63~48B 63~48__ __Cn64位并行进位ALU结构3、 用变形补码计算[X]补+[Y]补,并指出是否溢出,说明是正溢还是负溢。
(P .66.) 答:(1)[X]补=00,110011 [Y]补=00,101101 [X]补+[Y]补 = 01,100000,正溢出 (2)[X]补=00,010110 [Y]补=00,100101 [X]补+[Y]补 = 00,111011 无溢出 (3)[X]补=00,1110011 [Y]补=11,101101 [X]补+[Y]补 = 11,100000,无溢出 (4)[X]补=11,001101 [Y]补=11,010011[X]补+[Y]补 = 10,100000,负溢出4、 用变形补码计算[X]补-[Y]补,并指出是否溢出。
第三章 时序逻辑1.写出触发器的次态方程,并根据已给波形画出输出 Q 的波形。
解:2. 说明由RS 触发器组成的防抖动电路的工作原理,画出对应输入输出波形解:3. 已知JK 信号如图,请画出负边沿JK 触发器的输出波形(设触发器的初态为0)1)(1=+++=+c b a Qa cb Q nn4. 写出下图所示个触发器次态方程,指出CP 脉冲到来时,触发器置“1”的条件。
解:(1),若使触发器置“1”,则A 、B 取值相异。
(2),若使触发器置“1”,则A 、B 、C 、D 取值为奇数个1。
5.写出各触发器的次态方程,并按所给的CP 信号,画出各触发器的输出波形(设初态为0)解:6. 设计实现8位数据的串行→并行转换器。
B A B A D +=DC B A K J ⊕⊕⊕==Q AQ B Q D Q C Q E Q F Q7. 分析下图所示同步计数电路解:先写出激励方程,然后求得状态方程状态图如下:该计数器是五进制计数器,可以自启动。
8. 作出状态转移表和状态图,确定其输出序列。
解:求得状态方程如下故输出序列为:000119. 用D 触发器构成按循环码(000→001→011→111→101→100→000)规律工作的六进制同步计数器解:先列出真值表,然后求得激励方程PS NS 输出N0 0 0 0 0 1 00 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1化简得:逻辑电路图如下:n Q 2n Q 1n Q 012+n Q 11+n Q 10+n Q n n n nn n n n n n nnQ Q Q Q Q Q Q Q Q Q Q Q Z 121002*********+==+==+++nnn nnn nnnn QQ Q D QQ Q D QQ Q Q D 121211121122+====+==+++10. 用D 触发器设计3位二进制加法计数器,并画出波形图。
3 33习 题1.解: CO =AB +BC +ACAC BC AB C B A ABC CO C B A ABC S +++++=+++=)()(AC BC AB C B A ABC )(+++=AC BC AB C AC BC AB B AC BC AB A ABC +++= A B AB C AC C A B C BC B A ABC +++= C B A C B A C B A ABC +++=真值表A B C S CO A B C S CO 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 011111111电路功能:一位全加器,A 、B 为两个加数,C 为来自低位的进位,S 是相加的和,CO 是进位。
2.解:处于工作状态的译码器C 、D 应输入的状态C D ① 0 0 ② 0 1 ③ 1 0 ④11逻辑功能:由74LS139构成的4线—16线译码器3.解:由图可见,74HC138的功能扩展输入端必须满足E 1=1、032==E E 才能正常译码,因此E 1=A 3=1;542A A E =,即A 4=1,A 5=1; 0763=+=A A E ,即A 6=0,A 7=0。
所以,该地址译码器的译码地址范围为A 7A 6A 5A 4A 3A 2A 1A 0=00111A 2A 1A 0=00111000~3 3400111111,用十六进制表示即为38H ~3FH 。
输入、输出真值表如表P3.3-1所示。
表3.3-1 地址译码器的真值表4.解:由图写出逻辑函数并化简,得02460246L Y Y Y Y Y Y Y Y A BC ABC ABC ABC C ==+++=+++=5. 解:F AB B C A B C AB C ABC ABC =+=+++3 359.解:4选1数据选择器的逻辑表达式为: 301201101001D A A D A A D A A D A A Y +++=将A 1=A ,A 0=B ,D 0=1,D 1=C ,C D =2,D 3=C 代入得 ABC C B A BC A C B A C B A ABC C B A BC A B A Y ++++=+++=根据表达式可画出波形图:C ABL10.解:(1)写出逻辑函数表达式: C AB C B A BC A C B A C B A L ++++=(2)用卡诺图化简3 3611.解:567m m m ABC C B A ABC C AB AC AB L ++=+++=+=13. 解:D C B D C D D C A D C B D C C A F +++=++=)(0⋅+++=+++=CD D C D C A D C AB D C B D C D C A D C A令A 1=C ,A 0=D ,AB D =0,A D =1,D 2=1,D 3=0 连线图:14. 解:3 371。
3-1 分析题图3-1所示电路,写出电路输出Y 1和Y 2的逻辑函数表达式,列出真值表,说明它的逻辑功能。
解:由题图3-1从输入信号出发,写出输出Y 1和Y 2的逻辑函数表达式为1Y A B C =⊕⊕ ; 2()()Y A B C AB A B C A =⊕⋅⋅=⊕⋅+B将上式中的A 、 B 、C 取值000~111,分别求出Y 1和Y 2,可得出真值表如题解 表3-1所示。
题解 表3-1ABCA B ⊕()A B C ⊕⋅AB1Y2Y0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 111111综上,由题解 表3-1可以看出,该电路实现了一位全加器的功能。
其中,A 和B 分别是被加数及加数,C 为相邻低位来的进位数;Y1为本位和数,Y 2为相邻高位的进位数。
3-2 分析题图3-2所示电路,要求:写出输出逻辑函数表达式,列出真值表,画出卡诺图,并总结电路功能。
解:由题图3-2从输入信号出发,写出输出F 的逻辑函数表达式为()()F A B C D =:::将上式中的A 、 B 、C 、D 取值0000~1111,求出F ,可得真值表和卡诺图分别如题解 表3-2和题解 图3-1所示。
题解 表3-2A B C DA B : C D :F0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 11 0 1 0 0 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1综上,由题解 表3-2可以看出,当输入A 、 B 、C 、D 中含有偶数个“1”时,输出;否则,当输入A 、 B 、C 、D 中含有奇数个“1”时,输出。
第3章集成逻辑门电路3-1 如图3-1a)~d)所示4个TTL门电路,A、B端输入的波形如图e)所示,试分别画出F1、F2、F3和F4的波形图。
A1A234a)b)c)d)F1F2F3F4BAe)图3-1 题3-1图解:从图3-1a)~d)可知,11F=,2F A B=+,3F A B=⊕,4F A B= ,输出波形图如图3-2所示。
F1F2F3F4AB图3-2题3-1输出波形图3-2 电路如图3-3a )所示,输入A 、B 的电压波形如图3-3b )所示,试画出各个门电路输出端的电压波形。
1A 23b)a)AB图3-3 题3-2图解:从图3-3a )可知,1F AB =,2F A B =+,3F A B =⊕,输出波形如图3-4所示。
F 1F 2F 3AB图3-4 题3-2输出波形3-3在图3-5a )所示的正逻辑与门和图b )所示的正逻辑或门电路中,若改用负逻辑,试列出它们的逻辑真值表,并说明F 和A 、B 之间是什么逻辑关系。
b)a)图3-5 题3-3图解:(1)图3-5a )负逻辑真值表如表3-1所示。
表3-1 与门负逻辑真值表F 与A 、B 之间相当于正逻辑的“或”操作。
(2)图3-5b )负逻辑真值表如表3-2所示。
表3-2 或门负逻辑真值表F 与A 、B 之间相当于正逻辑的“与”操作。
3-4试说明能否将与非门、或非门和异或门当做反相器使用?如果可以,各输入端应如何连接?解:与非门、或非门和异或门经过处理以后均可以实现反相器功能。
1)与非门:将多余输入端接至高电平或与另一端并联; 2)或非门:将多余输入端接至低电平或与另一端并联;3) 异或门:将另一个输入端接高电平。
3-5为了实现图3-6所示的各TTL 门电路输出端所示的逻辑关系,请合理地将多余的输入端进行处理。
b)a)AB=A B=+A BC DABC D图3-6 题3-5图解:a )多余输入端可以悬空,但建议接高电平或与另两个输入端的一端相连;b )多余输入端接低电平或与另两个输入端的一端相连;c) 未用与门的两个输入端至少一端接低电平,另一端可以悬空、接高电平或接低电平;d )未用或门的两个输入端悬空或都接高电平。
1第3章 时序逻辑基础习题33-1 解 该电路的状态图如图3-5输入序列: 1 1 1 0 0 1 0 1 状态序列:S 0 S 1 S 2 S 2 S 3 S 4 S 5 S 5 S 1输出序列: 0 0 0 0 0 1 1 0最后一位输入后电路处于S 1状态。
3-2解 该电路的状态表如表3-5所示,为米里型电路。
输入序列: 1 0 1 1 1 0 1 状态序列: A C C D B C C D 输出序列:0 0 0 0 1 0 0 最后一位输入后电路处于D 状态。
3-3 解 逻辑符号如图3-8所示,真值表如表3-6所示,工作波形如图3-9所示。
3-4 解 输出波形如图3-11所示。
3-5 解 Q端波形如图3-13所示。
3-19(a)、(b)、(c)所示。
3-9 解 Q3-10 解 Q1、Q0的输出波形如图3-23图3-22X图3-161J1KC1QQCPJKRSCLRPR图3-20233-11 解 8进制异步行波加法计数器电路如图3-24所示。
3-12解 4进制异步行波可逆计数器电路如图3-25所示。
3-13 解 5进制异步加法计数器电路如图3-26所示。
3-14 解 8进制同步减法计数器电路如图3-27所示。
3-15 解 4图3-24CLK 1D Q 0 Q 0 C1 1D Q 1 Q 1C1 1DQ 2Q 2C143-16 解 用7493构成的13进制和172进制计数器电路分别如图3-29和图3-30所示,因为13=(1101)2,172=16⨯10+12。
3-17 分别用74163构成8421BCD 和5421BCD 加法计数器,并画出全状态图。
解 8421BCD 加法计数器及全状态图如图3-31所示,采用同步清0方式变模。
5421BCD 加法计数器及全状态图如图3-32所示,采用预置方式变模。
根据5421BCD 码的编码规律,当Q D Q C Q B Q A =0100时,下一个CP 脉冲应置入1000;当Q D Q C Q B Q A =1100时,下一个CP 脉冲应置入0000。