高考数学总复习_高中数学必修一
- 格式:pdf
- 大小:155.64 KB
- 文档页数:14
高考数学必背知识点及公式归纳总结大全高考数学必背知识点及公式归纳总结大全高中数学理科是10本书,其中的数学公式非常多,那么关于高考数学的公式及知识点有哪些呢?以下是小编准备的一些高考数学必背知识点及公式归纳总结,仅供参考。
高考数学必考知识点归纳必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分。
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。
3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2。
选修1--1:重点:高考占30分。
1、逻辑用语:一般不考,若考也是和集合放一块考;2、圆锥曲线;3、导数、导数的应用(高考必考)。
选修1--2:1、统计;2、推理证明:一般不考,若考会是填空题;3、复数:(新课标比老课本难的多,高考必考内容)。
理科:选修2—1、2—2、2—3。
选修2--1:1、逻辑用语;2、圆锥曲线;3、空间向量:(利用空间向量可以把立体几何做题简便化)。
高中数学第一部分必备知识点第二部分学习难点必修1知识点重难点高考考点第一章:集合与函数1.1.1、集合1.1.2、集合间的基本关系1.1.3、集合间的基本运算1.2.1、函数的概念1.2.2、函数的表示法1.3.1、单调性与最大(小)值1.3.2、奇偶性重点:1、集合的交、并、补等运算。
2、函数定义域的求法3、函数性质难点:函数的性质1、集合的交、并、补等运算。
2、集合间的基本关系3、函数的概念、三要素及表示方法4、分段函数5、奇偶性、单调性和周期性第二章:基本初等函数(Ⅰ)2.1.1、指数与指数幂的运算2.1.2、指数函数及其性质2.2.1、对数与对数运算2..2.2、对数函数及其性质2.3、幂函数重点:1、指数函数的图像与性质2、对数函数的图像与性质3、特殊的幂函数的图像与性质4、指数、对数的运算难点:1、指数函数与对数函数相结合2、指数对数与不等式、导数、三角函数等结合1、指数函数的图像与性质2、对数函数的图像与性质3、特殊的幂函数的图像与性质4、指数、对数的运算5、数值大小的比较6、习惯与不等式、导数、三角函数等结合,难度较大第三章:函数的应用3.1.1、方程的根与函数的零点3.1.2、用二分法求方程的近似解3.2.1、几类不同增长的函数模型3.2.2、函数模型的应用举例重点:1、零点的概念2、二分法求方程近似解的方法难点:1、函数模型2、函数零点与导数,含有字母的参数相结合1、零点的概念2、二分法必修2知识点重难点高考考点第一章:空间几何体1、空间几何体的结构2、空间几何体的三视图和直观图3、空间几何体的表面积与体积重点:1、认识柱、锥、台、球及其简单组合体的结构特征2、几何体的三视图和直观图3、会利用公式求一些简单几何体的表面积和体积难点:空间想象能力1、几何体的三视图和直观图2、空间几何体的表面积与体积第二章:点、直线、平面之间的位置关系(重点)1、空间点、直线、平面之间的位置关系2、直线、平面平行的判定及其性质3、直线、平面垂直的判定及其性质重点:1、线面平行、面面平行的有关性质和判定定理2、证明线面垂直3、点到平面的距离难点:1、线面垂直2、点到平面的距离1、以选择填空的形式考查线与面、面与面的平行关系,考查线面位置的关系2、以解答的形式考查线与面、面与面的位置3、证明线面垂直4、点到平面的距离第三章:直线与方程1、直线的倾斜角与斜率2、直线方程3、直线的交点坐标与距离公式重点:1、初步建立代数方法解决几何问题的观念2、正确将几何条件与代数表示进行转化3、掌握直线方程并会用于定理地研究点与直线、直线与直线的位置关系。
高考数学必修一知识点梳理第一章 集合1.集合的概念(1) 集合中元素的三个特征:确定性、互异性、无序性.(2) 集合的表示法:列举法、描述法、Venn 图法等.(3) 元素特征可分为:数集、点集.(4) 常用数集符号:N 表示自然数集;N *或N +表示正整数集;Z 表示整数集;Q 表示有理数集;R 表示实数集.2. 两类关系(1) 元素与集合的关系,用∈或∉表示.(2) 集合与集合的关系,用⊆,⊂≠或=表示.3. 集合的运算 (1) 交集:A ∩B ={}x x A x B ∈∈且.(2) 并集:A ∪B ={}x x A x B ∈∈或. (3) 补集:A S ð={},x x S x A ∈∉但 4. 常见结论与等价关系(1) 若集合A 中有n (n ∈N)个元素,则A 的子集有 个,真子集有 个,非空真子集有 个.(2) A ∩B =A A B ⇔⊆;A ∪B =A A B ⇔⊇.(3) ðU (A ∩B )=()()U U A B 痧,ðU (A ∩B )=()()U U A B 痧.第二章 函数1. 函数的概念设A ,B 是两个非空的数集,如果某个确定的对应关系f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么称f : A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A .其中所有的输入值x 组成的集合A 叫做函数y =f (x )的定义域;将所有输出值y 组成的集合叫做函数的值域.2. 函数的相等函数的定义含有三个要素,即定义域A 、值域C 和对应法则f . 当函数的定义域及对应法则确定之后,函数的值域也就随之确定.当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数.3. 函数的定义域(1) 函数的定义域是构成函数的非常重要的部分,若没有标明定义域,则认为定义域是使得函数解析式有意义的x的取值范围;(2) 分式中分母应不等于0;偶次根式中被开方数应为非负数,奇次根式中被开方数为一切实数;零指数幂中底数不等于0,负分数指数幂中底数应大于0;(3) 对数式中,真数必须大于0,底数必须大于0且不等于1,含有三角函数的角要使该三角函数有意义等.(4) 实际问题中还需考虑自变量的实际意义,若解析式由几个部分组成,则定义域为各个部分相应集合的交集.4.求函数值域主要有以下一些方法:(1) 函数的定义域与对应法则直接制约着函数的值域,对于一些比较简单的函数可直接通过观察法求得值域.(2) 二次函数或可转化为二次函数形式的问题,常用配方法求值域.(3) 分子、分母是一次函数或二次齐次式的有理函数常用分离变量法求值域;分子、分母中含有二次项的有理函数,常用判别式法求值域(主要适用于定义域为R的函数).(4) 单调函数常根据函数的单调性求得值域.5.函数的奇偶性⑴. 奇、偶函数的定义对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)+f(x)=0),则称f(x)为奇函数;对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x)(或f(-x)-f(x)=0),则称f(x)为偶函数.☆⑵奇、偶函数的性质①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).②奇函数的图象关于原点对称,偶函数的图象关于y轴对称.③若奇函数的定义域包含0,则f(0)=0.6.函数的单调性⑴. 函数单调性的定义①一般地,对于给定区间上的函数f(x),如果对于属于这个区间的任意两个自变量x1、x2,。
高考数学总复习:第二节命题及其关系、充分条件与必要条件学习要求:1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题间的相互关系.3.理解必要条件、充分条件与充要条件的意义.1.命题的概念在数学中用语言、符号或式子表达的,可以①判断真假的陈述句叫做命题,其中②判断为真的语句叫做真命题,③判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系:(2)四种命题的真假关系:(i)两个命题互为逆否命题,它们有⑦相同的真假性;(ii)两个命题互为逆命题或互为否命题,它们的真假性⑧没有关系.▶提醒在判断命题之间的关系时,要先分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性.3.充分条件与必要条件(1)若p⇒q,则p是q的⑨充分条件,q是p的⑩必要条件.(2)若p⇒q,且q⇒/p,则p是q的充分不必要条件.(3)若p⇒/q,且q⇒p,则p是q的必要不充分条件.(4)若p⇔q,则p是q的充要条件.(5)若p⇒/q,且q⇒/p,则p是q的既不充分也不必要条件.▶提醒不能将“若p,则q”与“p⇒q”混为一谈,只有“若p,则q”为真命题时,才有“p⇒q”.知识拓展从集合的角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为:(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A⫋B,则p是q的充分不必要条件;(5)若A⫌B,则p是q的必要不充分条件;(6)若A⊈B且A⊉B,则p是q的既不充分也不必要条件.1.判断正误(正确的打“√”,错误的打“✕”).(1)“x2-3x+2=0”是命题.()(2)一个命题的逆命题与否命题,它们的真假没有关系. ()(3)命题“若p不成立,则q不成立”等价于“若q成立,则p成立”.()(4)若p是q成立的充分条件,则q是p成立的必要条件.()(5)命题“若p,则q”的否命题是“若p,则¬q”.()(6)一个命题非真即假.()答案(1)✕(2)✕(3)√(4)√(5)✕(6)√2.“若x>1,则x>0”的否命题是()A.若x>1,则x≥0B.若x≤1,则x>0C.若x≤1,则x≤0D.若x<1,则x<0答案 C3.当命题“若p,则q”为真时,下列命题中一定为真的是()A.若q,则pB.若¬p,则¬qC.若¬q,则¬pD.若p,则¬q答案 C4.(新教材人教A版必修第一册P34复习参考题1T5改编)已知a>0,b>0,则“ab>1”是“a+b>2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A已知a>0,b>0,充分性:若ab>1,因为a2+b2≥2ab,所以(a+b)2≥4ab,所以(a+b)2>4,所以a+b>2;必要性:时,ab=1,所以必要性不成立.若a+b>2,则当a=3,b=13因此“ab>1”是“a+b>2”的充分不必要条件.5.(易错题)“ln x<0”是“x<1”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案B因为ln x<0,所以0<x<1,又集合(0,1)为集合(-∞,1)的真子集,所以“ln x<0”为“x<1”的充分不必要条件.故选B.易错分析本题容易忽视x的取值范围.命题及其相互关系典例1 (多选题)下列命题为真命题的是( )A.“若xy=1,则lg x+lg y=0”的逆命题;B.“若a·b=a·c,则a⊥(b-c)”的逆否命题;C.“若b≤0,则方程x2-2bx+b2+b=0有实根”的否命题;D.“等边三角形的三个内角均为60°”的逆命题.答案ACD名师点评1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,则写其他三种命题时需保留大前提.2.(1)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易时,可间接判断.1.[2021年1月“八省(市)联考”]关于x的方程x2+ax+b=0,有下列四个命题:甲:x=1是该方程的根; 乙:x=3是该方程的根;丙:该方程两根之和为2; 丁:该方程两根异号.如果只有一个假命题,则该命题是()A.甲B.乙C.丙D.丁答案A若甲是假命题,则乙、丙、丁是真命题,则x1=3,x2=-1,符合.若乙是假命题,则甲、丙、丁是真命题,则x1=1,x2=1,两根不异号,不符合.若丙是假命题,则甲、乙、丁是真命题,x1=1,x2=3,两根不异号,不符合.若丁是假命题,则甲、乙、丙是真命题,则x1=1,x2=3,两根和不为2,不符合.综上可知,选A.2.(多选题)下列命题为真命题的是()A.“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;B.命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;C.命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;D.命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.答案BD充分条件、必要条件的判断1.(2020四川达州高三第三次诊断性测试)已知条件p:a>b,条件q:a2>b2,则p是q的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案D当a=1,b=-2时,a2<b2,故充分性不成立;当a2>b2时,a2-b2>0,即(a-b)(a+b)>0,所以a>b且a+b>0或a<b且a+b<0,故必要性不成立.故选D.2.(2020北京,9,4分)已知α,β∈R,则“存在k∈Z使得α=kπ+(-1)kβ”是“sinα=sinβ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案C(1)充分性:已知存在k∈Z使得α=kπ+(-1)kβ,(i)若k为奇数,则k=2n+1,n∈Z,此时α=(2n+1)π-β,n∈Z,sinα=sin(2nπ+π-β)=sin(π-β)=sinβ;(ii)若k为偶数,则k=2n,n∈Z,此时α=2nπ+β,n∈Z,sinα=sin(2nπ+β)=sinβ.由(i)(ii)知,充分性成立.(2)必要性:若sinα=sinβ成立,则角α与β的终边重合或角α与β的终边关于y轴对称,即α=β+2mπ或α+β=2mπ+π,m∈Z,即存在k∈Z使得α=kπ+(-1)kβ,必要性也成立,故选C.≥a成立”的()3.(2020山东潍坊高三模拟)“a=2”是“∀x>0,x+1xA.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件≥2,答案A∵∀x>0时,x+1x≥a”等价于a≤2,∴“∀x>0,x+1x而a=2可以推出a≤2,但a≤2不能推出a=2,≥a成立”的充分不必要条件,故选A.∴“a=2”是“∀x>0,x+1x4.集合A={x|x>1},B={x|x<2},则“x∈A或x∈B”是“x∈(A∩B)”的条件.答案必要不充分名师点评充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据p,q成立对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,判断原命题的逆否命题的真假.这个方法特别适合以否定形式给出的问题.充分、必要条件的应用典例2(1)设α:1≤x≤3,β:m+1≤x≤2m+4,m∈R,若α是β的充分条件,则m的取值范围是.(2)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若¬p 是¬q 的必要不充分条件,则实数a 的取值范围是 .答案 (1)[-12,0] (2)[0,12]解析 (1)若α是β的充分条件,则α对应的集合是β对应集合的子集,则{x +1≤1,2x +4≥3,解得-12≤m ≤0.(2)由2x 2-3x +1≤0,得12≤x ≤1,设条件p 对应的集合为P ,则P ={x |12≤x ≤1}.由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,设条件q 对应的集合为Q ,则Q ={x |a ≤x ≤a +1}. ∵¬p 是¬q 的必要不充分条件,∴q 是p 的必要不充分条件, ∴P ⫋Q ,∴0≤a ≤12,∴实数a 的取值范围是[0,12].名师点评1.解题“2关键”:(1)把充分、必要条件转化为集合之间的关系.(2)根据集合之间的关系列出关于参数的不等式(组)求解.2.解题“1注意”:求参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求参数的取值范围时,不等式能否取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.1.(2020陕西山阳中学高三月考)已知集合A ={x |2xx -2<1},集合B ={x |x 2-(2m +1)x +m 2+m <0},p :x ∈A ,q :x ∈B ,若p 是q 的必要不充分条件,则实数m 的取值范围是 . 答案 [-2,1] 解析 集合A ={x |2xx -2<1}={x |x +2x -2<0}={x |-2<x <2},集合B ={x |x 2-(2m +1)x +m 2+m <0} ={x |m <x <m +1},因为p 是q 的必要不充分条件, 所以B ⫋A ,得{x ≥-2,x +1≤2,解得-2≤m ≤1,所以m 的取值范围为[-2,1].2.(2020河南高三月考)已知p :|x -1|≤2,q :x 2-2x +1-a 2≥0(a >0),若p 是¬q 的必要不充分条件,则实数a 的取值范围是 . 答案 (0,2]解析 ∵|x -1|≤2,∴-1≤x ≤3,即p :-1≤x ≤3; ∵x 2-2x +1-a 2≥0(a >0),∴x ≤1-a 或x ≥1+a , ∴¬q :1-a <x <1+a ,∵p 是¬q 的必要不充分条件,∴{x >0,1-x ≥-1,1+x ≤3,解得0<a ≤2, ∴实数a 的取值范围是(0,2].A 组 基础达标1.命题“若x ≥a 2+b 2,则x ≥2ab ”的逆命题是 ( ) A.若x <a 2+b 2,则x <2ab B.若x ≥a 2+b 2,则x <2ab C.若x <2ab ,则x <a 2+b 2D.若x ≥2ab ,则x ≥a 2+b 2答案 D2.(2020河北邯郸鸡泽第一中学高三月考)下列命题是真命题的为 ( )A.若1x =1x ,则x =y B.若x 2=1,则x =1C.若x=y,则√x=√xD.若x<y,则x2<y2答案 A3.(2020浙江高三开学考)“x=1”是“lg2x-lg x=0”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A因为lg2x-lg x=0,所以lg x=0或lg x=1,解得x=1或x=10,所以由“x=1”可以推出“lg2x-lg x=0”成立;但由“lg2x-lg x=0”不能推出“x=1”,所以“x=1”是“lg2x-lg x=0”成立的充分不必要条件.故选A.4.(2019河北承德第一中学高三月考)命题“若两个整数a,b都是奇数,则它们的和a+b是偶数”的逆否命题是()A.若两个整数a与b的和a+b是偶数,则a,b都是奇数B.若两个整数a,b不都是奇数,则a+b不是偶数C.若两个整数a与b的和a+b不是偶数,则a,b都不是奇数D.若两个整数a与b的和a+b不是偶数,则a,b不都是奇数答案 D5.(多选题)下列命题中是真命题的是()A.∀x∈R,2x-1>0B.∀x∈N+,(x-1)2>0C.∃x∈R,lg x<1D.∃x∈R,tan x=2答案ACD6.(2020浙江高三模拟)已知a,b为正实数,则“a+1x >b+2x”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A 若0<a ≤b ,则1x ≥1x ,所以2x ≥1x ,所以a +1x ≤b +2x , 所以由a +1x >b +2x能够推出a >b.当a =19,b =110时,满足a >b ,但此时a +1x <b +2x , 所以a >b 推不出a +1x>b +2x ,综上,“a +1x>b +2x”是“a >b ”的充分不必要条件.故选A .7.(多选题)已知a ,b ,c 是实数,则下列结论正确的是 ( ) A.“a 2>b 2”是“a >b ”的充分条件 B.“a 2>b 2”是“a >b ”的必要条件 C.“ac 2>bc 2”是“a >b ”的充分条件D.“|a |>|b |”是“a >b ”的既不充分也不必要条件 答案 CD8.(多选题)下列命题错误的是 ( ) A.∃x ∈R,e x≤0 B.∀x ∈R,2x >x 2C.a +b =0的充要条件是xx =-1D.若x ,y ∈R,且x +y >2,则x ,y 中至少有一个大于1答案 ABC 根据指数函数的性质可得e x >0,故A 错误;当x =2时,2x >x 2不成立,故B 错误;当a =b =0时,xx 没有意义,故C 错误;因为“若x ,y ∈R,且x +y >2,则x ,y 中至少有一个大于1”的逆否命题为“若x ,y ∈R,且x ,y 都小于等于1,则x +y ≤2”,是真命题,所以原命题为真命题,故选ABC.B 组 能力拔高 9.圆x 2+y 2=1与直线y =kx -3有公共点的充分不必要条件是 ( )A.k ≤-2√2或k ≥2√2B.k ≤-2√2C.k ≥2D.k ≤-2√2或k >2答案 B 若直线与圆有公共点,则圆心(0,0)到直线kx -y -3=0的距离d =√≤1,即√x 2+1≥3,∴k 2+1≥9,即k 2≥8,∴k ≥2√2或k ≤-2√2,∴由选项知圆x 2+y 2=1与直线y =kx -3有公共点的充分不必要条件是k ≤-2√2,故选B .10.已知条件p :|x -4|≤6;条件q :(x -1)2-m 2≤0(m >0),若p 是q 的充分不必要条件,则m 的取值范围是 ( )A.[21,+∞)B.[9,+∞)C.[19,+∞)D.(0,+∞)答案 B 由题意知,条件p :-2≤x ≤10,条件q :1-m ≤x ≤m +1,又p 是q 的充分不必要条件,故有{1-x ≤-2,1+x ≥10,x >0,解得m ≥9.11.(2020江苏扬州中学高三月考)“a >b ”是“3a >3b ”的 条件(填“充分不必要”“必要不充分”“既不充分也不必要”或“充要”).答案 充要解析 因为y =3x 在R 上是增函数,所以当a >b 时,3a >3b ,故充分性成立;当3a >3b 时,a >b ,故必要性成立.故“a >b ”是“3a >3b”的充要条件.12.(2020黑龙江鹤岗一中期末)下列命题中为真命题的是 .(填序号)①命题“若x >y ,则x >|y |”的逆命题;②命题“若x >1,则x 2>1”的否命题;③命题“若x =1,则x 2+x -2=0”的否命题;④“若x 2<4,则-2<x <2”的逆否命题.答案 ①④解析 对于①,命题的逆命题为“若x >|y |,则x >y ”,为真命题,对于②,命题的否命题为“若x ≤1,则x 2≤1”,为假命题,对于③,命题的否命题为“若x ≠1,则x 2+x -2≠0”,为假命题,对于④,命题“若x2<4,则-2<x<2”为真命题,故其逆否命题为真命题,综上,①④为真命题.C组思维拓展13.(2020河南高三模拟)若关于x的不等式(x-a)(x-3)<0成立的充要条件是2<x<3,则a=.答案 2解析因为2<x<3是不等式(x-a)(x-3)<0成立的充分条件,所以a≤2,因为2<x<3是不等式(x-a)(x-3)<0成立的必要条件,所以2≤a<3,故a=2.14.设集合A={x|x(x-1)<0},B={x|0<x<3},那么“m∈A”是“m∈B”的条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).答案充分不必要解析由m∈B不能推出m∈A,如x=2,故必要性不成立.由x∈A能推出x∈B,所以“m∈A”是“m∈B”的充分不必要条件.15.在熟语“水滴石穿”中,“石穿”是“水滴”的条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).答案必要不充分解析“水滴”可以推出“石穿”,但“石穿”推不出“水滴”,有可能是“化学腐蚀”,故“石穿”是“水滴”的必要不充分条件.。
高考数学必修一必背知识点数学作为高中阶段的一门重要学科,对于学生的学习能力和思维能力的培养具有重要作用,特别是高考数学对于学生的综合素质考核起着至关重要的作用。
在掌握基本知识的基础上,高考数学必修一的知识点尤为重要,下面将详细介绍一些必背知识点。
1. 平面直角坐标系高中数学无论是几何还是代数都离不开平面直角坐标系。
必背的知识点有:坐标的表示法、向量、直线的方程与性质、圆的方程与性质等。
2. 二次函数与图像二次函数是数学中重要的一个概念,必背的知识点有:二次函数的性质、二次函数图像的性质与分析和二次函数与一次函数的关系等。
3. 不等式与线性规划不等式与线性规划在高中数学中占有较大的比重,必背的知识点有:不等式的性质与基本型、不等式组的解法、线性规划的概念与解法等。
4. 几何初步几何是高中数学中重要的一部分,必背的知识点有:几何基本概念、平行线与三角形的性质、圆锥曲线的基本性质等。
5. 概率与统计初步概率与统计是数学中相对轻松的部分,但也有必背的知识点,如:事件的概率、随机变量、统计图表的分析等。
6. 三角函数初步三角函数也是高中数学中重要的知识点之一,必背的内容有:三角函数的概念、基本性质、图像与性质、三角函数的应用等。
7. 导数与函数的应用导数与函数的应用是高中数学中较为复杂和抽象的内容,但也不可忽视。
必背的知识点有:函数的导数与基本函数的求导法则、函数的极值与最值等。
以上列举的知识点是高考数学必修一中较为重要的内容,对于高中数学的学习和高考的备考都有很大的帮助和作用。
当然,不同的学校和地区对于重点知识的侧重点可能有所不同,因此,同学们在备考之前一定要结合自己的实际情况,合理分配时间和精力,有针对性地进行学习。
为了更好地掌握这些知识点,同学们可以通过做大量的习题、刷真题、做模拟考试等方式进行巩固和提高。
此外,在备考过程中,灵活运用各种学习资源也是非常重要的,可以参加各种辅导班、利用学习APP、找老师或同学请教等方式加深对知识点的理解和应用。
专题二 集 合1.集合的基本概念(1)集合中元素的三大特性:确定性、互异性、无序性. (2)元素与集合的关系:a ∈A 或a ∉A . (3)常见集合的符号表示(4)2.集合间的关系(1)两个集合A ,B 之间的关系(2)空集规定:①空集是任何集合的子集;②空集是任何非空集合的真子集. (3)子集的个数集合的子集、真子集个数的规律为:含n 个元素的集合有2n 个子集,有2n -1个真子集(除集合本身),有2n -1个非空子集,有2n -2个非空真子集(除集合本身和空集,此时n ≥1).遇到形如A ⊆B 的问题,务必优先考虑A =∅是否满足题意. 3.集合间的运算考向一 集合的基本概念1、(2013·江西,2)若集合A={}x ∈R |ax 2+ax +1=0中只有一个元素,则a =( )A .4 B .2 C .0 D .0或42、(2014·福建,16)已知集合{a ,b ,c }={0,1,2},且下列三个关系:①a ≠2;②b =2;③c ≠0有且只有一个正确,则100a +10b +c 等于________.3、(2016·山东济南一模,3)若集合A={-1,1},B={0,2},则集合z={z|z=x+y,x∈A,y∈B}中元素的个数为()A.5 B.4 C.3 D.2考向二集合的基本关系4、(2013·福建,3)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2 B.3 C.4 D.165、(2012·大纲全国,2)已知集合A={1,3,m},B={1,m},A∪B=A,则m=()A.0或 3 B.0或3 C.1或 3 D.1或36、(2013·课标Ⅰ,1)已知集合A={x|x2-2x>0},B={x|-5<x<5},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B 考向三集合的基本运算7、(2015·福建,2)若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于()A.{0} B.{1} C.{0,1,2} D.{0,1}变式7.1:设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|-1<x<3} B.{x|-1<x<1} C.{x|1<x<2} D.{x|2<x<3}变式7.2:已知全集R,集合A=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪⎝⎛⎭⎪⎫12x≤1,B={x|x2-6x+8≤0},则A∩(∁R B)=()A{x|x≤0} C.{x|0≤x<2或x>4} B.{x|2≤x≤4} D.{x|0<x≤2或x≥4}考向四集合的新定义9、(2015·湖北,10)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30能力提高:1.(2016·课标Ⅰ)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}2.(2016·课标Ⅲ)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8} B.{0,2,6} C.{0,2,6,10} D.{0,2,4,6,8,10}3.(2016·天津)已知集合A={1,2,3},B={y|y =2x-1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}4.(2016·山东)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=() A.{2,6} B.{3,6} C.{1,3,4,5} D.{1,2,4,6}5.(2016·北京)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5} C.{x|2<x<3} D.{x|x<2或x>5}6.(2016·四川)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6 B.5 C.4 D.37.(2016·浙江,1,易)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}8.(2015·课标Ⅰ,1,易)已知集合A={x|x=3n +2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.29.(2015·安徽,2,易)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=()A.{1,2,5,6} B.{1} C.{2} D.{1,2,3,4}10.(2015·山东,1,易)已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)11.(2015·课标Ⅱ,1,易)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=() A.(-1,3) B.(-1,0) C.(0,2) D.(2,3)12.(2015·陕西,1,易)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1] C.[0,1) D.(-∞,1]13.(2013·山东,2,中)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B=()A.{3} B.{4} C.{3,4} D.∅14.(2012·湖北,1,中)已知集合A={x|x2-3x +2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2 C.3 D.415.(2015·江苏,1,易)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为________.16.(2015·湖南,11,易)已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=________.。
高中数学必修一知识点总结归纳引言高中数学必修一通常涵盖了代数、函数、几何等多个基础数学领域,为学生进一步学习数学打下坚实的基础。
一、代数基础1.1 集合论概念:集合的表示、子集、并集、交集、补集。
1.2 逻辑用语逻辑连接词:与、或、非、蕴含、当且仅当。
1.3 不等式解法:一元一次不等式、一元二次不等式的解法。
二、函数2.1 函数的概念定义:函数的定义、定义域、值域。
2.2 函数的性质性质:单调性、奇偶性、周期性、有界性。
2.3 反函数概念:反函数的定义、性质及求法。
2.4 复合函数运算:复合函数的定义、运算法则。
2.5 函数图像绘制:函数图像的绘制方法和变换规律。
三、解析几何3.1 坐标系统介绍:直角坐标系、极坐标系的基本概念。
3.2 直线的方程形式:直线的点斜式、斜截式、一般式。
3.3 圆的方程形式:圆的标准方程、一般方程。
3.4 圆锥曲线类型:椭圆、双曲线、抛物线的方程和性质。
四、算法初步4.1 算法的概念定义:算法的定义、特征。
4.2 程序框图绘制:程序框图的绘制方法,如顺序结构、条件结构、循环结构。
4.3 算法案例分析:常见算法问题的解决步骤,如排序、查找。
五、统计5.1 随机事件与概率概念:随机事件的定义、概率的计算方法。
5.2 概率的性质总结:概率的基本性质,如非负性、规范性、加法法则。
5.3 统计初步指标:均值、中位数、众数、方差、标准差的计算与意义。
5.4 统计图类型:条形图、直方图、饼图的绘制与解读。
六、数列6.1 等差数列公式:等差数列的通项公式、求和公式。
6.2 等比数列公式:等比数列的通项公式、求和公式。
6.3 数列的极限概念:数列极限的定义、无穷等比数列的极限。
6.4 数列的应用案例:数列在实际问题中的应用,如分期付款、人口增长模型。
七、推理与证明7.1 推理的概念定义:推理的定义、日常生活中的推理应用。
7.2 证明的方法步骤:直接证明、间接证明、反证法的一般步骤。
7.3 证明的策略技巧:构造法、归纳法、演绎法在证明中的应用。
高三数学集合复习必修一知识点高考高考,匆忙的考,匆忙的结束。
加油吧,友爱的同学们,最终一天的努力不会白费,最终一天的努力就是日后胜利的条件。
我为你整理了以下(高三数学)集合复习必修一学问点,欢迎阅读,祝福天下全部的学子们都能取得的成果!【一】任一x?A,x?B,记做ABAB,BAA=BAB={x|x?A,且x?B}AB={x|x?A,或x?B}Card(AB)=card(A)+card(B)-card(AB)(1)命题原命题若p则q逆命题若q则p否命题若p则q逆否命题若q,则p(2)AB,A是B成立的充分条件BA,A是B成立的必要条件AB,A是B成立的充要条件1.集合元素具有①确定性;②互异性;③无序性2.集合表示(方法)①列举法;②描述法;③韦恩图;④数轴法(3)集合的运算①A∩(B∪C)=(A∩B)∪(A∩C)②Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB(4)集合的性质n元集合的字集数:2n真子集数:2n-1;非空真子集数:2n-2【二】1、集合的概念集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。
组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。
元素常用小写字母a、b、c、…来表示。
集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。
2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做a∪A;元素a不属于集合A,记做a?A。
3、集合中元素的特性(1)确定性:设A是一个给定的集合,x是某一详细对象,则x或者是A的元素,或者不是A的元素,两种状况必有一种且只有一种成立。
例如A={0,1,3,4},可知0∪A,6?A。
(2)互异性:“集合张的元素必需是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。
(3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。
高中数学必修一集合知识点总结高中数学必修一集合知识点总结一、集合有关概念1.集合的含义:将一些指定的对象集合在一起形成一个集合,每个对象称为一个元素。
2、集合的中元素的三个特性:①.元素的确定性; ②.元素的互异性; ③.元素的无序性描述:(1)对于给定的集合,集合中的元素是确定的,任何对象要么是给定集合的元素,要么不是。
(2)在任何给定的集合中,任何两个元素都是不同的对象。
当同一对象包含在一个集合中时,它只是一个元素。
(3)集合中的元素相等,没有顺序。
所以判断两个集合是否相同,只需要比较它们的元素是否相同,而不需要考察排列顺序是否相同。
(4)集合元素的三个特征使得集合本身具有确定性和整体性。
3、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{xx2=-5}4、集合的表示:{ … } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员}B={12345}2.集合的表示方法:枚举和描述。
注意啊:常用数集及其记法:非负整数集(即自然数集) 记作:N高考数学一轮复习知识点二轮专题性复习目前所有学校都已结束第一轮,进入第二轮。
第一轮一般以技能技巧逐点扫描梳理为主,综合运用为辅,第二轮以专题复习为主。
这个阶段涉及的问题大多是综合题,提高综合题是提高数学成绩的根本保证。
解决好综合题,对于那些想考一等,对数学成绩期望很高的学生来说,是一条救命稻草,而他们在小何那里往往是不及格的。
对于那些二流的人来说,这是一个尝试的好地方。
一、综合题在高考中的位置与作用数学综合往往是大卷中的重点和最后一道题。
它在高考中起着重要的作用,高考的分类等级和选拔任务主要依靠这类题型来完成预设的目标。
现在的高考综合题,已经从单纯的知识叠加,转变为知识、方法、能力,尤其是创新能力的综合。
综合题是NMET数学的精华,具有知识容量大、解题方法多、能力要求高等特点,突出数学思维方法的应用,要求考生具有一定的创新意识和创新能力。
第一章集合与函数概念知识架构第一讲 集合★知识梳理一:集合的含义及其关系1.集合中的元素具有的三个性质:确定性、无序性和互异性;2.集合的3种表示方法:列举法、描述法、韦恩图;3.集合中元素与集合的关系:三:集合的基本运算①两个集合的交集:A B = {}x x A x B ∈∈且; ②两个集合的并集: AB ={}x x A x B ∈∈或;③设全集是U,集合A U ⊆,则U C A ={}x x U x A ∈∉且★重、难点突破重点:集合元素的特征、集合的三种表示方法、集合的交、并、补三种运算。
难点:正确把握集合元素的特征、进行集合的不同表示方法之间的相互转化,准确进行集合的交、并、补三种运算。
重难点: 1.集合的概念掌握集合的概念的关键是把握集合元素的三大特性,要特别注意集合中元素的互异性, 在解题过程中最易被忽视,因此要对结果进行检验; 2.集合的表示法(1)列举法要注意元素的三个特性;(2)描述法要紧紧抓住代表元素以及它所具有的性质,如{})(x f y x =、{})(x f y y =、{})(),(x f y y x =等的差别,如果对集合中代表元素认识不清,将导致求解错误:(3)Venn 图是直观展示集合的很好方法,在解决集合间元素的有关问题和集合的运算时常用Venn 图。
3.集合间的关系的几个重要结论 (1)空集是任何集合的子集,即A ⊆φ (2)任何集合都是它本身的子集,即A A ⊆(3)子集、真子集都有传递性,即若B A ⊆,C B ⊆,则C A ⊆ 4.集合的运算性质(1)交集:①A B B A =;②A A A = ;③φφ= A ;④A B A ⊆ ,B B A ⊆ ⑤B A A B A ⊆⇔= ;(2)并集:①A B B A =;②A A A = ;③A A =φ ;④A B A ⊇ ,B B A ⊇ ⑤A B A B A ⊆⇔= ; (3)交、并、补集的关系 ①φ=A C A U ;U A C A U =②)()()(B C A C B A C U U U =;)()()(B C A C B A C U U U =★热点考点题型探析考点一:集合的定义及其关系题型1:集合元素的基本特征[例1](2008年理)定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设{}{}1,2,0,2A B ==,则集合A B *的所有元素之和为( )A .0;B .2;C .3;D .6[解题思路]根据A B *的定义,让x 在A 中逐一取值,让y 在B 中逐一取值,xy 在值就是A B *的元素[解析]:正确解答本题,必需清楚集合A B *中的元素,显然,根据题中定义的集合运算知A B *={}4,2,0,故应选择D【名师指引】这类将新定义的运算引入集合的问题因为背景公平,所以成为高考的一个热点,这时要充分理解所定义的运算即可,但要特别注意集合元素的互异性。
高中数学必修一知识点总结高中数学必修一知识点总结如下:1. 坐标系:坐标系是高中数学中一个重要的概念,用于表示平面内点的坐标。
必修一中主要介绍了笛卡尔坐标系和极坐标系,并讲解了如何通过坐标系来表示点的位置和函数的表达式。
2. 函数:函数是高中数学中一个基本概念,用于表示两个变量之间的关系。
必修一中主要介绍了函数的定义、性质、分类和图像,并讲解了函数的应用,如函数图像解方程、函数图像求导等。
3. 三角函数:三角函数是高中数学中一个重要的函数族,包括正弦函数、余弦函数、正切函数、余切函数等。
必修一中主要介绍了三角函数的定义、性质、图像和应用,并讲解了三角函数在解方程和图像中的应用。
4. 平面向量:向量是高中数学中的一种重要量,可以用方向和大小来表示。
必修一中主要介绍了向量的定义、运算、性质和图像,并讲解了向量在几何和函数中的应用。
5. 立体几何:立体几何是高中数学中一个重要章节,主要介绍了三维空间中点和面的关系,以及如何通过点和面的关系来求解空间中的问题。
必修一中主要介绍了立方体、圆锥和圆柱等常见立体图形的性质和定理,并讲解了立体几何在几何和函数中的应用。
6. 三角恒等变换:三角恒等变换是高中数学中的一个重点内容,用于求解三角函数的值。
必修一中主要介绍了三角恒等变换的定义、性质、公式和应用,并讲解了三角恒等变换在解方程和图像中的应用。
7. 数形结合:数形结合是高中数学中的一种重要思想,即将数学问题的抽象形式和图形形式结合起来,进行求解和分析。
必修一中主要介绍了数形结合的思想和应用,并讲解了数形结合在几何和函数中的应用。
以上是高中数学必修一的一些重要知识点,这些知识点在高考数学中占有重要地位,是考生必须掌握的内容。
此外,还需要注重练习,多做一些相关的练习题和真题,以便更好地掌握知识点。
第3课 基本初等函数基本初等函数在历年的高考中都占据重要的地位,从近几年的高考形式来看,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题.预测今后高考对本节的考查是:利用以指数函数、对数函数、幂函数为载体的复合函数来考查函数的性质.同时在它们与其它知识点交汇处命题,且难度加大.〖基点问题1〗考查指数函数例1.设偶函数()f x 满足()24(0)x f x x =-≥, 则(){}20x f x ->=( )A.{}24x x x <->或 B.{}04x x x <>或 C.{}06 x x x <>或 D.{}22x x x <->或〖基点问题2〗考查对数函数例2.若点(,)a b 在lg y x = 图像上,a ≠1,则下列点也在此图像上的是( ) A.1(,)b aB.(10,1)a b -C.10(,1)b a+ D.2(,2)a b 〖基点问题3〗考查幂函数例3.幂函数的图像经过点111((,),8P x y2212(,)()Q x y x x <是图像上不同的两点,给出以下结论:(1)()2211)(x f x x f x >; (2)()2211)(x f x x f x <;(3)()22111)(1x f x x f x >;(4)()22111)(1x f x x f x <.其中正确结论的序号是 .〖热点考向1〗二次函数[]24.()1(0),(1)0,()01()22,2,()()f x ax bx a f x f x f x x g x f x kx k =++>-=≥∈-=-例已知二次函数若且对任意实数均有成立. ()求的表达式;()当时是单调 函数,求的取值范围.〖热点考向2〗函数性质的综合考查[][]()()[][]25.()11(1)1,110()()10.(1)12(2)()21,1,11,1f x f m n m n f m f n f x f x m n f x t at x a t -=∈-+≠+>+<-+≤-+∈-∈-例已知是定义在区间,上的奇函数, 且若当、,,时有:解不等式:若对所有、 恒成立,求实数的取值范围.考点分析热点突破基点整合1.掌握基本初等函数的图象与性质,充分利用数形结合的思想处理问题.2.2()(0)f x ax bx c a=++≠的图象形状、对称、顶点坐标、开口方向等是处理二次函数问题的重要依据.3.二次函数和一元二次方程不等式是一个有机的整体,要深刻理解它们的关系,能用函数的思想来研究方程和不等式.1.若)12(21log1)(+=xxf,则)(xf的定义域为( )A. (21-,0) B. (21-,0]C. (21-,∞+) D. (0,∞+)2.函数y=的值域是( )A.[0,)+∞ B.[0,4] C.[0,4) D.(0,4)3.函数13y x=的图像是()4.给定函数①12y x=,②12log(1)y x=+,③|1|y x=-,④12xy+=,其中在区间(0,1)上单调递减的函数序号是( )A.①②B.②③C.③④D.①④5.设13log2a=,121log3b=,()0.312c=.则()A. a<b<cB. a<c<bC. b<c<aD. b<a<c6.设25a b m==,且112a b+=,则m=( )()()()()2,(2)7.32,2xf x xf x fx-+<⎧=-⎨≥⎩若,则= .{}{}()8.min,,,,()min2,2,100.().xa b c a b cf x x x xf x=+-≥用表示三个数中的最小值,设则的最大值为()()()()449.()log41142()log2,()3xxf x kx k Rkg x a a f x g xa=++∈=⋅-已知是偶函数.()求的值;()若与的图像有且只有一个交点,求实数的取值范围.实战演练3。
高考数学复习必修1第一章、集合一、基础知识(理解去记)定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
例如,通常用N ,Z ,Q ,B ,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},}0{>x x 分别表示有理数集和正实数集。
定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。
规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。
如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。
便于理解:B A ⊆包含两个意思:①A 与B 相等 、②A 是B 的真子集定义3 交集,}.{B x A x x B A ∈∈=且 定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。
定义6 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定义7 空集∅是任何集合的子集,是任何非空集合的真子集。
补充知识点 对集合中元素三大性质的理解(1)确定性集合中的元素,必须是确定的.对于集合A 和元素a ,要么a A ∈,要么a A ∉,二者必居其一.比如:“所有大于100的数”组成一个集合,集合中的元素是确定的.而“较大的整数”就不能构成一个集合,因为它的对象是不确定的.再如,“较大的树”、“较高的人”等都不能构成集合.(2)互异性对于一个给定的集合,集合中的元素一定是不同的.任何两个相同的对象在同一集合中时,只能算作这个集合中的一个元素.如:由a ,2a 组成一个集合,则a 的取值不能是0或1.(3)无序性 集合中的元素的次序无先后之分.如:由123,,组成一个集合,也可以写成132,,组成一个集合,它们都表示同一个集合.帮你总结:学习集合表示方法时应注意的问题(1)注意a 与{}a 的区别.a 是集合{}a 的一个元素,而{}a 是含有一个元素a 的集合,二者的关系是{}a a ∈. (2)注意∅与{}0的区别.∅是不含任何元素的集合,而{}0是含有元素0的集合. (3)在用列举法表示集合时,一定不能犯用{实数集}或{}R 来表示实数集R 这一类错误,因为这里“大括号”已包含了“所有”的意思.用特征性质描述法表示集合时,要特别注意这个集合中的元素是什么,它应具备哪些特征性质,从而准确地理解集合的意义.例如:集合{()x y y =,中的元素是()x y ,,这个集合表示二元方程y =集,或者理解为曲线y =集合{x y =中的元素是x ,这个集合表示函数y =x 的取值范围;集合{y y =中的元素是y ,这个集合表示函数y =y 的取值范围;集合{y =中的元素只有一个(方程y =,它是用列举法表示的单元素集合.(4)常见题型方法:当集合中有n 个元素时,有2n 个子集,有2n-1个真子集,有2n-2个非空真子集。
高考数学复习——高一数学必修1各章知识点汇总第一章集合与函数概念一、集合有关概念1.常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R2.关于“属于”的概念如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a∉A3.集合的分类:(1).有限集含有有限个元素的集合(2).无限集含有无限个元素的集合(3).空集不含任何元素的集合例:{x|x2=-5}=Φ二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ⊆/B或B⊇/A2.“相等”关系:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。
即A⊆A②如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C ④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算1.交集: 记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.2.并集: 记作A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}.3.交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A ,A∪φ= A ,A∪B = B∪A. 4.全集与补集(1)补集:设S是一个集合,A是S的一个子集(即SA⊆),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作: C S A即 C S A ={x | x∈S且 x∉A}(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。