实验八 通信系统链路仿真
- 格式:pptx
- 大小:559.94 KB
- 文档页数:15
封面作者:Pan Hongliang仅供个人学习《通信系统仿真技术》实验报告实验一:SystemView操作环境的认识与操作1.实验题目:SystemView操作环境的认识与操作2.实验内容:正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)、平方分析、及其谱分析;并讨论定时窗口的设计对仿真结果的影响。
3.实验原理:在设计窗口中单击系统定时快捷功能按钮,根据仿真结果设定相关参数。
采样点数=(终止时间-起止时间)×〔采样率〕+1正玄信号S(t)=cos(wt)其平方P(t)=cos(wt)*cos(wt)=[cos(2wt)+1]/2P(t)频率是S(t)的二倍4.实验仿真:实验结论:SystemView是一个信号级的系统仿真软件,主要用于电路与通信系统的设计、仿真,是一个强有力的动态系统分析工具,能满足从数字信号处理、滤波器设计、直到复杂的通信系统等不同层次的设计、仿真要求。
实验二:学习系统参数的设定与图符的操作实验题目:学习系统参数的设定与图符的操作实验内容:将一正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)V)与高斯信号相加后观察输出波形及其频谱,由小到大改变高斯噪声的功率,重新观察输出波形及其频谱。
实验原理:高斯信号就是信号的各种幅值出现的机会满足高斯分布的信号。
当高斯信号不存在是正玄信号不失真,随着高斯信号的增加正玄信号的失真会越来越大。
实验仿真:实验结论:恒参信道的干扰信号常用高斯白噪声信号来等效。
而无线信道是一种时变的衰落信道,其衰落特性主要表现为具有多普勒功率谱特性的快衰落和具有阴影效应的慢衰落。
实验三:接收计算器的使用及滤波器的设计实验题目:接收计算器的使用及滤波器的设计实验内容:1、正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)V)、及其平方分析窗口的接收计算器的使用;(实现3个以上运算功能)。
2、单位冲激响应仿真、增益响应分析。
一、物理层仿真实验1、实验目的:初步掌握数字通信系统的仿真方法。
完成一个通信系统的搭建,并仿真得到相应的BER-Eb/No性能曲线,完成系统性能的分析。
2、实验原理通信系统仿真就是要通过计算机产生各种随机信号,并对这些信号做相应的处理以获得期望的结果,但是要求计算机产生完全随机的数据时不可能的,只能算是伪随机数。
从预测的角度看,周期数据是完全可以预测的,但当周期趋于无穷大时,可以认为该数据具有伪随机特性。
产生伪随机数的算法通常有:Wishmann-Hill算法产生均匀分布随机变量该算法是通过将3个周期相近的随机数发生器产生的数据序列进行相加,进而得到更大周期的数据序列。
定义三个随机数发生器:Xi+1=(171xi)mod(30269)Yi+1=(170yi)mod(30307)Zi+1=(172zi)mod(30323)以上三式中均需要设定一初始值(x0,y0,z0),这三个初始值一般称为种子。
产生的三个序列的周期分别是:30269、30307、30323。
将这三个序列组合相加即可得到一个周期更大的均匀分布随机序列:Ui=(Xi/30269+Yi/30307+Zi/30323)mod(1)逆变换法产生Rayleigh分布随机变量逆变换法的基本思想是:将一个不相关均匀分布的随机序列U映射到一个具有概率分布函数Fx(x)的不相关序列随机序列X,条件是要产生的随机变量的分布函数具有闭合表达式。
R=sqrt(-2σ2 ln(u))根据上式即可将均匀分布的随机变量映射为Rayleigh分布的随机变量。
根据Rayleigh分布随机变量产生Gussian分布随机变量通信系统中的噪声通常建模为白高斯噪声,其含义是功率谱是白的,信号分布是满足高斯的。
基于Rayleigh随机变量,可以方便的产生Gussian分布的随机变量。
关系如下:X=R*COS(2πu1)Y=R*SIN(2πu2)其中U1和U2分别是两个均匀分布的随机变量,产生的X和Y均为高斯随机变量。
通信系统仿真实验报告摘要:本篇文章主要介绍了针对通信系统的仿真实验,通过建立系统模型和仿真场景,对系统性能进行分析和评估,得出了一些有意义的结果并进行了详细讨论。
一、引言通信系统是指用于信息传输的各种系统,例如电话、电报、电视、互联网等。
通信系统的性能和可靠性是非常重要的,为了测试和评估系统的性能,需进行一系列的试验和仿真。
本实验主要针对某通信系统的部分功能进行了仿真和性能评估。
二、实验设计本实验中,我们以MATLAB软件为基础,使用Simulink工具箱建立了一个通信系统模型。
该模型包含了一个信源(source)、调制器(modulator)、信道、解调器(demodulator)和接收器(receiver)。
在模型中,信号流经无线信道,受到了衰落等影响。
在实验过程中,我们不断调整系统模型的参数,例如信道的衰落因子以及接收机的灵敏度等。
同时,我们还模拟了不同的噪声干扰场景和信道状况,以测试系统的鲁棒性和容错性。
三、实验结果通过实验以及仿真,我们得出了一些有意义的成果。
首先,我们发现在噪声干扰场景中,系统性能并没有明显下降,这说明了系统具有很好的鲁棒性。
其次,我们还测试了系统在不同的信道条件下的性能,例如信道的衰落和干扰情况。
测试结果表明,系统的性能明显下降,而信道干扰和衰落程度越大,系统则表现得越不稳定。
最后,我们还评估了系统的传输速率和误码率等性能指标。
通过对多组测试数据的分析和对比,我们得出了一些有价值的结论,并进行了讨论。
四、总结通过本次实验,我们充分理解了通信系统的相关知识,并掌握了MATLAB软件和Simulink工具箱的使用方法,可以进行多种仿真。
同时,我们还得出了一些有意义的结论和数据,并对其进行了分析和讨论。
这对于提高通信系统性能以及设计更加鲁棒的系统具有一定的参考价值。
第一章信号通过系统的仿真1.若x(t)=(1/(2л)1/2)e-t2/2,t∈[a,b],将x(t)进行周期拓展,信号周期为T(可任意设置),计算和描绘出期信号x(t)的幅度和相位频谱。
实验结果:(以下所示为a=-6,b=6,n=24,tol=的图形)(1)已知信号幅度谱(2)已知信号相位谱2.信号定义为x(t)= cos(2л*47t)+cos(2л*219t), 0≤t≤100, 其它假设信号以1000抽样/秒进行抽样。
用MATLAB设计一个低通Butterworth滤波器。
确定并绘出输出的功率谱和输入功率谱比较(滤波器的阶数及截频可自行确定)。
实验结果:(以下为阶数=4,截频=100Hz的图形)(1)输入信号功率谱密度(2)输出信号功率谱密度第二章随机过程仿真1.从下式的递归关系中产生一个高斯马尔可夫过程的1000个(等间距)样本的序列Xn=+ωn n=1,2,…1000,式中X0=0,ωn是一个零均值,方差为1,独立的随机变量序列。
绘出序列{ Xn,1≤n≤1000}与时序n的关系及相关函数N-mRx(m)=1/(N-m)ΣXn Xn+m m=0,1,…50 式中N=1000.n-1实验结果:(1)高斯——马尔可夫过程(2)高斯马尔可夫过程的自相关函数2.假设一个具有抽样序列{X(n)}的白噪声过程通过一个脉冲响应如下所示的线性滤波器nh(n)= ,n≥00, n<0求输出过程{Y(n)}的功率谱和自相关函数Ry(τ)。
实验结果:(1)输出的功率谱(2)输出的自相关第三章模拟调制仿真1.用MATLAB软件仿真AM调制。
被调信号为1, (t0/3)>t>0;m(t)=-2, (t0/3)≤t≤(2*t0/3);0, 其它;利用AM 调制方式调制载波。
假设t0=,fc=250hz;调制系数a=。
实验结果:1)调制信号、载波、已调信号的时域波形2)已调信号的频域波形2.被调信号为1, t0/3>t>0;m(t)=-2, t0/3<= t<2*t0/3;0, 其它;采用频率调制方案。
通信系统仿真实验报告通信系统仿真实验报告摘要:本实验旨在通过仿真实验的方式,对通信系统进行测试和分析。
通过搭建仿真环境,我们模拟了通信系统的各个组成部分,并通过实验数据对系统性能进行评估。
本报告将详细介绍实验的背景和目的、实验过程、实验结果以及对结果的分析和讨论。
1. 引言随着信息技术的发展,通信系统在现代社会中扮演着重要的角色。
通信系统的性能对于信息传输的质量和效率起着至关重要的作用。
因此,通过仿真实验对通信系统进行测试和分析,可以帮助我们更好地了解系统的特性,优化系统设计,提高通信质量。
2. 实验背景和目的本次实验的背景是一个基于无线通信的数据传输系统。
我们的目的是通过仿真实验来评估系统的性能,并探讨不同参数对系统性能的影响。
3. 实验环境和方法我们使用MATLAB软件搭建了通信系统的仿真环境。
通过编写仿真程序,我们模拟了信号的传输、接收和解码过程。
我们对系统的关键参数进行了设定,并进行了多次实验以获得可靠的数据。
4. 实验结果通过实验,我们得到了大量的数据,包括信号传输的误码率、信噪比、传输速率等。
我们对这些数据进行了整理和分析,并绘制了相应的图表。
根据实验结果,我们可以评估系统的性能,并对系统进行改进。
5. 结果分析和讨论在对实验结果进行分析和讨论时,我们发现信号传输的误码率与信噪比呈反比关系。
当信噪比较低时,误码率较高,信号传输的可靠性较差。
此外,我们还发现传输速率与信号带宽和调制方式有关。
通过对实验数据的分析,我们可以得出一些结论,并提出一些建议以改善系统性能。
6. 结论通过本次仿真实验,我们对通信系统的性能进行了评估,并得出了一些结论和建议。
实验结果表明,在设计和优化通信系统时,我们应注重信号传输的可靠性和传输速率。
通过不断改进系统参数和算法,我们可以提高通信系统的性能,实现更高质量的数据传输。
7. 展望本次实验只是对通信系统进行了初步的仿真测试,还有许多方面有待进一步研究和探索。
《通信系统仿真技术》实验报告姓名:李傲班级:14050Z01学号: 1405024239实验一:Systemview操作环境的认识与操作1、实验目的:熟悉systemview软件的基本环境,为后续实验打下基础,熟悉基本操作,并使用其做出第一个自己的project,并截图2、实验内容:1>按照实验指导书的1.7进行练习2>正弦信号(频率为学号*10,幅度为(1+学号*0.1)V)、及其平方谱分析;并讨论定时窗口的设计对仿真结果的影响。
3、实验仿真:图1系统连结图(实验图中标注参数,并对参数设置、仿真结果进行分析)4、实验结论输出信号底部有微弱的失真,调节输入的频率的以及平方器的参数,可以改变输入信号的波形失真,对于频域而言,sin信号平方之后,其频率变为原来的二倍,这一点可有三角函数的化简公式证明实验二:滤波器使用及参数设计1、实验目的:1、学习使用SYSTEMVIEW 中的线性系统图符。
2、掌握典型FIR 滤波器参数和模拟滤波器参数的设置过程。
3、按滤波要求对典型滤波器进行参数设计。
实验原理:2、实验内容:参考实验指导书,设计出一个低通滤波器,并对仿真结果进行截图,要求在所截取的图片上用便笺的形式标注自己的姓名、学号、班级。
学号统一使用序号3、实验仿真:系统框架图输入输出信号的波形图输入输出信号的频谱图4、实验结论对于试验中低通滤波器的参数设置不太容易确定,在输入完通带宽度、截止频率和截止点的衰落系数等滤波器参数后,如果选择让SystemView 自动估计抽头,则可以选择“Elanix Auto Optimizer”项中的“Enabled”按钮,再单击“Finish”按钮退出即可。
此时,系统会自动计算出最合适的抽头数通常抽头数设置得越大,滤波器的精度就越实验三、模拟线性调制系统仿真(AM)(1学时)1、实验目的:1、学习使用SYSTEMVIEW 构建简单的仿真系统。
3、掌握模拟幅度调制的基本原理。
通信系统实验报告——基于SystemView的仿真实验班级:学号:姓名:时间:目录实验一、模拟调制系统设计分析 -------------------------3一、实验内容-------------------------------------------3二、实验要求-------------------------------------------3三、实验原理-------------------------------------------3四、实验步骤与结果-------------------------------------4五、实验心得------------------------------------------10 实验二、模拟信号的数字传输系统设计分析------------11一、实验内容------------------------------------------11二、实验要求------------------------------------------11三、实验原理------------------------------------------11四、实验步骤与结果------------------------------------12五、实验心得------------------------------------------16 实验三、数字载波通信系统设计分析------------------17一、实验内容------------------------------------------17二、实验要求------------------------------------------17三、实验原理------------------------------------------17四、实验步骤与结果------------------------------------18五、实验心得------------------------------------------27实验一:模拟调制系统设计分析一、实验内容振幅调制系统(常规AM )二、实验要求1、 根据设计要求应用软件搭建模拟调制、解调(相干)系统;2、 运行系统观察各点波形并分析频谱;3、 改变参数研究其抗噪特性。
《通信系统仿真》实验报告信息工程学院电子工程系 陈亚环 实验一 高频小信号放大器的MULTISIM 仿真实验目的:1、了解MULTISIM 的基本功能、窗口界面、元器件库及工具栏等;2、掌握MULTISIM 的基本仿真分析方法、常用仿真测试仪表等;3、掌握高频小信号放大器MULTISIM 仿真的建模过程。
实验内容及结果:(一)单频正弦波小信号放大器的MULTISIM 仿真。
1)根据图一所示高频小信号放大器电路,创建仿真电路原理图。
要求输入信号的幅度在2mV---1V 之间、频率在1MHz---20MHz 之间;图一 高频小信号放大器电路2)根据实际情况设置好电路图选项,接入虚拟仪器并设置合适的参数。
打开仿真开关,运行所设计好的电路,给出输入输出信号的波形图和频谱图。
根据初步仿真结果改变电路元器件的型号和参数,使输出信号波形无失真、幅度放大10倍以上; 仿真电路图:输入输出信号的波形图:3)由交流分析方法可以得到电路的谐振频率MHz f 1.100=。
根据波特仪测试可观察得电路的谐振频率MHz f 62.80=。
改变输入信号的频率,通过交流分析方法和波特仪观察电路谐振频率的几乎无变化。
4)、改变输入信号的幅度,用示波器观察输出电压波形,测量出输出波形不失真情况下输入信号幅度的变化范围为2mV 到25mV 。
5)、改变输入信号的频率,用示波器观察输出电压幅度的变化情况通频带B 为23MHz 矩形系数K 0.1为3.55 通频带曲线见坐标纸。
6)、改变R5(负载)的值,用示波器观察输出电压波形和峰峰值的变化情况R5-峰峰值的关系曲线见坐标纸(二)多频正弦波合成小信号放大器的MULTISIM 仿真测试及其分析。
1. 多频正弦波合成小信号放大器的MULTISIM 仿真电路图输入信号幅值及频率分别为20mv ,14MHz 、22mv ,16MHz 、25mv ,15MHz 2. 多频正弦波合成小信号放大器的输入输出波形测试通过虚拟示波器观察输入输出信号基本放大10倍且只有小部分波形失真分析其原因是输入信号的频率参数分散导致一部分频率的放大倍数较小从而导致波形的部分失真。
实验一、Systemview操作环境的认识与操作一、实验目的1、了解和熟悉Systemview软件的基本使用;2、初步学习Systemview软件的图符库,能够构建简单系统。
二、实验要求:1、PDF中1.7练习2、正弦信号(频率为学号*10,幅度为(1+学号*0.1)V)、及其平方谱分析;并讨论定时窗口的设计对仿真结果的影响。
三、实验仿真四、实验结论输出信号底部有微弱的失真,调节输入的频率的以及平方器的参数,可以改变输入信号的波形失真,对于频域而言,sin信号平方之后,其频率变为原来的二倍,这一点可有三角函数的化简公式证明实验二、滤波器使用及参数设计一、实验目的1、学习使用SYSTEMVIEW中的线性系统图符。
2、掌握典型FIR滤波器参数和模拟滤波器参数的设置过程。
3、按滤波要求对典型滤波器进行参数设计。
二、实验要求:学习滤波器的设计1、设计一种FIR型带通滤波器,带通滤波器的带通范围为150H Z-200Hz,下边带截止频率为120H Z。
上边带截止频率为230H Z。
截止点相对于滤波器带通区的归一化增益为-60dB。
2、设计一种模拟低通滤波器,低通滤波器的通带范围为学号*10。
三、实验仿真四、实验结论对于试验中低通滤波器的参数设置不太容易确定,在输入完通带宽度、截止频率和截止点的衰落系数等滤波器参数后,如果选择让SystemView 自动估计抽头,则可以选择“Elanix Auto Optimizer ”项中的“Enabled ”按钮,再单击“Finish ”按钮退出即可。
此时,系统会自动计算出最合适的抽头数通常抽头数设置得越大,滤波器的精度就越大。
实验三、模拟线性调制系统仿真(AM)一、实验目的1、学习使用SYSTEMVIEW构建简单的仿真系统。
2、掌握模拟幅度调制的基本原理。
3、掌握常规调幅、DSB的解调方法。
4、掌握AM信号调制指数的定义。
二、实验要求1、完成PDF中4.1节的AM调幅仿真(要求调制信号频率为学号*10),改变调制度,并观察输出波形(已调波)的变化;观察其输出频谱2、设计滤波器,完成AM系统的解调;观察其输出频谱;三、实验仿真四、实验结论高斯白噪声的功率谱是均匀分布的,作为一种噪声,仿真的时候加上高斯白噪声其结果频谱宽但是除了输出信号的频谱功率大些,其他的比较微弱,低通滤波器对高斯白噪声的影响并不是很大,在实际中,所有的通信系统中都不可避免的引入高斯白噪声。
河南农业大学课程设计任务书课程名称matlab调幅广播系统的仿真设计院(系) 机电工程学院专业班级 09电信一班姓名孙玉学号 0904101017指导教师季宝杰目录1、引言 (3)1.1课程设计应达到的目的 (3)1.2 课程设计题目及要求 (3)2、调频广播系统的模型及仿真环境 (4)2.1 MA TLAB及SIMULINK建模环境简介 (4)2.2 调幅广播系统介绍 (4)2.3 模型参数指标 (4)2.3 仿真参数设计 (5)3、系统的建立与仿真 (6)3.1 仿真参数设置 (6)3.2 系统中仿真模块参数的设置 (6)3.3 SCOPE端的最终波形图 (7)3.4 调幅的包络检波和相干解调性能仿真比较 (8)3.5脚本程序 (9)4、总结与体会 (10)5、主要参考文献 (11)1 引言1.1 设计目的及任务要求1.课程设计应达到的目的(1)掌握使用Matlab语言及其工具箱进行基本信号分析与处理的方法。
(2)用matlab和simulink设计一个通信系统,加深对通信原理基本原理和matlab应用技术的理解;学习使用计算机建立通信系统仿真模型的基本方法及基本技能,学会利用仿真的手段对于实用通信系统的基本理论、基本算法进行实际验证;(3)提高和挖掘学生将所学知识与实际应用相结合的能力,学习现有流行通信系统仿真软件MA TLAB的基本使用方法,学会使用这些软件解决实际系统出现的问题;(4)培养学生的合作精神和独立分析问题和解决问题的能力;通过系统仿真加深对通信课程理论的理解。
(5)用MA TLAB完成调幅广播系统的仿真,提高学生科技论文的写作水平。
1.2 课程设计题目调幅广播系统的仿真设计设计任务:1.采用接收滤波器Analog Filter Design模块,在同一示波器上观察调幅信号在未加入噪声和加入噪声后经过滤波器后的波形。
采用另外两个相同的接收滤波器模块,分别对纯信号和纯噪声滤波,利用统计模块计算输出信号功率和噪声功率,继而计算输出信噪比,用Disply显示结果。
通信系统仿真实验任务书一、实验地点一校教三楼310二、实验时间上午为8:00-11:30 ;下午为2:30-5:30三、实验要求与注意事项1、建议购买校印实验指导书《通信系统仿真实验》,并在图书馆借阅相关书籍。
2、做实验前预习好相关实验内容和通信原理课程知识,业余时间多练习实验内容。
3、实验结束一周内提交实验报告,格式参阅相关模板,避免抄袭。
四、实验内容1、基本实验部分:下面四个板块中,每个板块至少抽取一个实验,每组由三个学生组成,总共抽取4个实验,进行误码率测试、频谱分析等性能分析。
2、系统设计部分:以自己所选择的4个基本实验为主要基本模块,添加其它必要模块设计一个简易通信系统,并选择合适通信参数,对该系统进行必要说明。
(此部分供学有余力学生选作,以加分形式计入成绩)3、自由选题部分:自己课前查阅资料,调研好一个较复杂典型通信系统,如扩频通信系统、无线局域网、卫星通信系统等,利用SystemV ue工具进行设计实现,可以对相关标准参数进行适当简化。
(此部分供有想法的学生自由选择,选作此部分可以不做前面基础实验和系统设计,直接以此部分记成绩)基本实验板块一:模拟调制部分1-1.设计一个超外差收音机仿真模型如图所示。
图1 超外差收音机模型在基于SystemV ue中,如图所示,为了节省仿真时间,不按实际的540-1700kHz的频谱覆盖范围和455kHz中频频率设计,而采用20kHz作为中频频率。
另外利用30kHz、40kHz、50kHz三个载波频率的发射信号(模拟三个电台)。
模拟调制信号的带宽为5kHz,并设希望接收的频率为第二个电台的频率40kHz,收音机使用高边调谐,则本振LO应为40+20=60kHz,且存在一个镜像干扰频率为40+2*20=80kHz。
搭建电路如下:图2 AM超外差收音机仿真模型要求:(1)记录混频器整个混频输入前的频谱图与混频输出后的频谱图。
(2)正确理解收音机工作原理,阐述混频的工作过程。
通信原理仿真实验指导书XXXXXXXXX 编著XXXXXXXXX通信工程系2011年11月目录实验一AM信号的调制与解调 (2)实验二DSB-SC信号的调制与解调 (6)实验三SSB信号的调制与解调 (9)实验四FM信号的调制与解调 (13)实验五PM信号的调制与解调 (17)实验六PCM的调制与解调实验 (17)实验七数字基带传输实验 (32)实验八基于system view软件的2ASK调制仿真 (40)实验九基于system view软件的2ASK解调仿真 (45)实验十基于system view软件的2FSK调制仿真 (50)实验十一基于system view软件的2FSK解调仿真 (54)实验十二基于system view软件的2PSK调制与解调仿真 (58)实验十三基于system view软件的2DPSK调制与解调仿真 (63)实验一 AM 信号的调制与解调一、实验目的1、掌握AM 信号调制与解调的原理。
2、了解AM 信号调制和解调的时域表达式和频域表达式的推导。
3、知道AM 信号的特点。
二、实验器材装有System View 软件的电脑一台。
三、实验要求1、能够熟练使用System View 软件。
2、会利用软件搭建各种仿真系统。
3、能设计系统中的一些关键参数,以及一些器件的设计。
4、对搭建的系统进行波形仿真。
5、能分析仿真结果,并得出仿真结论。
四、实验原理和内容常规双边带调制就是标准幅度调制,它用调制信号去控制高频载波的振幅,使已调波的振幅按照调制信号的振幅规律线性变化。
对于常规的双边带幅度调制系统,其时域表达式为)cos()]([0c c AM t t f A S θω++=其中0A 为外加的直流分量。
)(t f 为调制信号,可以是已知的确定信号,也可以是随机的信号,但是通常认为其数学期望认为c ω和c θ分别是载波信号的频率和初始相位。
其调制器模型如图所示。
五、 实验步骤x (0c1、根据上面的原理图,可以在System View系统平台中建立普通双边带调制系统模型。
大连海洋大学自编教材现代通信系统仿真技术实验指导书李春晖主编王化群审大连海洋大学二○一○年目录实验一均匀PCM (1)实验二非均匀PCM (4)实验三开关信号仿真 (8)实验四多幅度信号仿真 (10)实验五 PAM仿真 (12)实验六正交信号仿真 (15)实验七 FSK信号 (19)实验八二进制FSK仿真 (22)实验一 均匀PCM一、实验目的脉冲编码调制(PCM )用于在数字传输媒体上传送模拟信号,在 PCM 中,首先对模拟信号以高于其带宽两倍的奈奎斯特率进行采样,然后对所得样本进行量化。
采用不同量化级别生成的 PCM 编码会影响接收器重建模拟信号的质量。
此程序设计练习将有助于观察和分析 PCM 不同量化级别的量化噪声(也称量化误差,定义为输入值与量化值之间的差),使学生对 PCM 有更深入的理解。
二、实验原理在均匀 PCM 中,长度为 2x 的区间[]max max ,x x -+被划分为 N 个相等的子区间,每个子区间长度为max 2x N ∆=。
如果 N 足够大,那么在每一个子区间内输入的密度函数就能认为是均匀的,产生的失真为212D =∆(这里不加证明)。
如果 N 是 2 的幂次,即 2N υ=,那么就要求用比特来表示每个量化电平。
这就意味着,如果模拟信号的带宽为 W ,采样又是在奈奎斯特采样频率下完成的,则传输 PCM 信号所要求的带宽至少是W υ(实际1.5W υ比较接近实际)。
此时失真由下式给出:222max max 212334x x D N υ∆===⨯ (1.1) 如果模拟信号的功率表示为2X ,则信号/量化噪声的比(SQNR )由下式给出:222222max max 33434X X SQNR N X x x υυ==⨯=⨯ (1.2) 式中X 表示归一化输入,定义为:maxX X x =(1.3) 以分贝计量的 SQNR 为:24.86dB SQNR X υ≈++ (1.4)量化以后,用υ比特对这些已量化的电平中的每一个进行编码,编码方法通常使用自然二进制码(NBC ),最低电平映射为全 0 序列,最高电平映射为全 1 序列,其余全部电平按已量化值的递增次序映射。
通信系统实验报告——基于SystemView的仿真实验班级:学号:姓名:时间:目录实验一、模拟调制系统设计分析 -------------------------3一、实验内容-------------------------------------------3二、实验要求-------------------------------------------3三、实验原理-------------------------------------------3四、实验步骤与结果-------------------------------------4五、实验心得------------------------------------------10实验二、模拟信号的数字传输系统设计分析------------11一、实验内容------------------------------------------11二、实验要求------------------------------------------11三、实验原理------------------------------------------11四、实验步骤与结果------------------------------------12五、实验心得------------------------------------------16实验三、数字载波通信系统设计分析------------------17一、实验内容------------------------------------------17二、实验要求------------------------------------------17三、实验原理------------------------------------------17四、实验步骤与结果------------------------------------18五、实验心得------------------------------------------27实验一:模拟调制系统设计分析一、实验内容振幅调制系统(常规AM )二、实验要求1、 根据设计要求应用软件搭建模拟调制、解调(相干)系统;2、 运行系统观察各点波形并分析频谱;3、 改变参数研究其抗噪特性。