线性规划的对偶理论及其应用
- 格式:ppt
- 大小:76.50 KB
- 文档页数:6
线性规划原问题与对偶问题的转化及其应用摘要线性规划对偶问题是运筹学中应用较广泛的一个重要分支,它是辅助人们进行科学管理的一种数学方法.线性规划对偶问题能从不同角度为管理者提供更多的科学理论依据,使管理者的决定更加合理准确.本文主要探讨了线性规划原问题与对偶问题之间的关系、线性规划原问题与对偶问题的转化以及对偶理论的应用.本文的研究主要是将复杂的线性规划原问题转化成对偶问题进行解决,简化了线性规划问题,使人们能够快速的找出线性规划问题的最优解.关键词:线性规划;原问题;对偶问题;转化LinearProgrammingistheOriginalProblemandtheTransformationoftheDualProblemandApplicationsAbstract:Linearprogramminginoperationalresearchisresearchearlier,rapiddevelopmentandw ideapplication,themethodisanimportantbranchofmature,itisoneofthescientificmanagementofa uxiliarypeoplemathematicalmethod.Canfromdifferentanglestolinearprogrammingdualproble mforpolicymakerstoprovidemorescientifictheorybasis.Thisarticlemainlyprobesintothelinearp rogrammingproblemandtherelationshipbetweenthedualproblem,linearprogrammingproblem andthetransformationofthedualproblem,theapplicationoflinearprogrammingdualproblem.Thi sarticleisthecomplexoftheoriginalproblemintoitsdualproblemtobesolved,simplifiesthelinearp rogrammingproblem,enablesustorapidlyfindtheoptimalsolutionoflinearprogrammingproble m.Keywords:linearprogramming;theoriginalproblem;thedualproblem;conversion目录4.4非对称型原问题转化为对偶问题 (10)1引言线性规划问题是运筹学里的一个重要的分支,它的应用比较广泛,因而是辅助人们进行现代科学管理的一种数学方法.随着线性规划理论的逐步深入,人们发现线性规划问题具有对偶性,即每一个线性问题都伴有另外一个线性问题的产生,两者相互配对,密切联系,反之亦然.我们把线性规划的这个特性称为对偶性.于是,我们将其中的一个问题称为原问题,另一个问题则称为它的对偶问题.对偶性不仅仅是数学上的理论问题,而且也是线性规划中实际问题的内在经济联系的必然反映.我们通过对对偶问题的深入研究,发现对偶问题能从不同角度对生产计划进行分析,从而使管理者能够间接地获得更多比较有用的信息.2文献综述2.1国内外研究现状在所查阅到的国内外参考文献[1-15]中,有不少文章是探讨了原问题转化为对偶问题的方法以及对偶性质的证明,并在对偶理论的应用方面有所研究.如郝英奇,胡运权在[1]、[10]中主要介绍了线性规划中原问题与对偶问题中的一些基本概念,探究了实际问题中的数学模型以及解.孙君曼,冯巧玲,孙慧君,李淑君等在[2]中探讨了对偶理论中互补松弛定理在各种情况下的使用方法,使学生更好地掌握互补松弛定理的含义和应用方法.胡运权,郭耀煌,殷志祥等在[3]、[5]中系统的介绍了线性规划中原始问题与对偶问题的两种形式.郭鹏,徐玖平等在[6]、[8]中用不同例子来说明了原问题转化为对偶问题的必要性.崔永新等在[9]、[15]中探讨了对偶问题的相关定理以及对偶问题的可行解和最优解之间的若干性质.李师正,王德胜在[11]中探讨了如何用计算机计算对偶问题的最优解.岳宏志,蔺小林,孙文喻等在[12]、[14]中探讨了对偶理论的证明过程,并用常见的例子来说明对偶理论的基本思想和解题方法.曾波,叶宗文在[13]中主要从经济管理的实际问题中阐述了线性规划的基本概念,基本原理,对偶理论,灵敏度分析等.2.2国内外研究现状评价文献[1-15]分别探讨了线性规划问题中原问题转化为对偶问题的理论依据以及如何利用对偶理论去解决实际生产问题.文献中主要探讨了对称型的原问题转化为对偶问题的方法.没有全面介绍非对称型的原问题与对偶问题之间转化的具体步骤,而且文献中对原问题转化为对偶问题的步骤提及甚少,大都一带而过,对应用中存在的问题也未给出详细深入的说明.2.3提出问题在线性规划问题中,根据实际生产中具体情况的需要,我们常常要把原问题与它的对偶问题进行转换,以解决一些复杂的线性规划问题,因而对偶问题的应用较为广泛.但大部分书籍都只介绍了线性规划问题的基础知识,并没有给出原问题与对偶问题转换的具体步骤.因此本文主要探讨了线性规划原问题与对偶问题之间转化的具体步骤,体会不同类型原问题的转化过程.3预备知识首先我先简单的介绍一些关于线性规划问题中的原问题和对偶问题的一些基本的知识.3.1对称形式的原问题我们将满足下列条件的线性规划问题称之为具有对称形式的线性规划问题.这类问题的变量都具有非负约束,当目标函数求极大值时,它的约束条件都取“≤”号,当目标函数求极小值时它的约束条件均取“≥”号.因而,这类数学模型的特点是:(1)所有的决策变量都是非负的;(2)所有的约束条件都是“≤”型;(3)目标函数是最大化类型.一般形式为:线性规划原问题的对称形式的]1[⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤+++≤+++≤+++),,2,1(0.22112222212111212111n j x b x a x a x a b x a x a x a b x a x a x a t s j m n mn m m n n n n ΛΛMΛΛ(3.1) 3.2非对称形式的原问题不是所有的线性规划问题都具有对称的形式,我们将没有对称形式的线性规划问题称之为非对称形式的线性规划问题.非对称形式的线性规划问题指的是一般情况下的线性规划问题,即是目标函数值求极小或者求极大;约束条件;,或是无限制的随意的组合.例如: ⎪⎪⎩⎪⎪⎨⎧≤≥≤++=++≤++无约束321333323213123232221211313212111,0,0.x x x b x a x a x a b x a x a x a b x a x a x a t s (3.2) 3.3对偶问题的定义在运筹学中,关于对线性规划的对偶规划给出的]2[定义如下.设给定的线性规划为:⎩⎨⎧≥≤0.X b AX t s (3.2) 其中()T n x x x X ,,,21Λ=,()nm ij a A ⨯=,()T m b b b b ,,,21Λ=,()n c c c C ,,,21Λ= 因此,定义它的对偶问题为:⎩⎨⎧≥≥0.Y C YA t s (3.4) 其中()m y y y Y ,,,21Λ=是行向量.(3.4)是对偶问题,(3.3)是原问题,(3.3)与(3.4)合在一起我们就称为是一对对称形式的对偶规划问题.3.4原问题转化为对偶问题的理论依据表所示:我们根据线性规划问题中约束条件和变量的对应关系,统一归纳为下]3[1表14原问题与对偶问题的转化一对对偶的线性规划问题表示了同一个问题的两个侧面,是从两个角度对同一个研究对象提出的极值问题,两类极值的问题都具有相同的目标函数值.我们发现在很多时候求解对偶问题比原问题更加容易,为决策者提供更多的科学理论依据,因此我们常常需要把原问题转化为对偶问题.4.1原问题与对偶问题的关系一对对偶的线性规划问题具有相互对应的关系:(1)原问题中的目标函数值是max,约束条件是“≤”的形式;对偶问题的约束条件是“≥的形式.min目标函数值为,”(2)原问题的价值系数和对偶问题的右端项对应,原始问题的右端项和对偶问题的价值系数对应.(3)原问题的变量和对偶问题的约束条件对应,即,原问题中有个n变量,那么对偶问题就有个m变量.m约束条件,那么对偶问题就有个n约束条件;原问题有个(4)对偶问题的系数矩阵就是原问题的系数矩阵的转置.用矩阵表示,原问题为:则对偶问题为:需要注意的是,我们所讨论的对偶问题一定是指一对问题,而原问题和对偶问题是相对的,它们互为对偶问题,一个问题可以是原问题也可以是对偶问题.4.2对称型原问题转化为对偶问题当线性规划问题为一般形式(3.1)时,我们将根据下面的四条规则转换为它的对偶问题:(1)原问题和它的对偶问题之间的系数矩阵互为转置.(2)原问题中变量的个数等于它的对偶问题的约束条件的个数.(3)原问题的右端常数就是对偶问题的目标函数的系数.(4)原问题的目标函数求极大时,约束条件是“≤”类型,而它的对偶问题的目标函数求极小,约束条件则为“≥”类型.形式:因此,它的对偶问题可以转变为如下的]4[例1生产计划问题云南一公司加工生产甲,乙两种产品,它的市场前景非常的好,销路也不成问题,各种制约因素主要有技术工人、设备台时和原材料供应.已知制造每吨产品的资源消耗系数、每天的资源限量和售价等参数如表2所示.问题:云南的这家公司应该怎样制定每天的生产计划,才能使它的产量得到最大?表2分析:为了建立此问题的数学模型,第一,要选定决策变量.第二,要确定问题的目标,即用来评价不同方案优劣的标准,这种目标总是决策变量的函数,称为目标函数.第三,我们把要确定达到目标时所受的限制条件,称之为约束条件.这里要决策的问题是,在现有人力、设备、矿石的限制下,如何确定产量使得产值自大?设1x 和2x 分别表示该公司A ,B 产品的数量,用z 表示产值,则每天的产值表示为2115090x x z +=,使其最大化,即2115090m ax x x z +=,称为目标函数.将制约因素表达出来,即有:人力不超过320工时,为3206821≤+x x ;设备不超过260台时有,2608621≤+x x ;原材料不超过300公斤有,30010421≤+x x 。
线性规划对偶问题线性规划是一种优化问题的数学建模方法,在实际生产和管理中广泛应用。
线性规划问题通常包括最大化或最小化一个线性目标函数的约束条件下的一组线性不等式或等式。
对于一个线性规划问题,其对偶问题是通过对原问题的目标函数和约束条件进行变换而得到的。
对偶问题有助于理解原问题的特性,并提供关于原问题的附加信息。
具体来说,对于一个原问题:最小化 C^T * X约束条件 A * X >= bX >= 0其中,C是目标函数的系数矩阵,X是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右侧向量。
对于原问题的对偶问题,其形式为:最大化 b^T * Y约束条件 A^T * Y <= CY >= 0其中,Y是对偶变量向量。
对偶问题的最优解被称为对偶可行解,对偶问题的最优解与原问题的最优解之间存在弱对偶性和强对偶性。
弱对偶性指的是对于原问题的任意可行解X和对偶问题的任意可行解Y,有C^T * X >= b^T * Y。
这意味着对于原问题的任意最优解X*和对偶问题的任意最优解Y*,有C^T * X* >=b^T * Y*。
强对偶性指的是如果原问题和对偶问题的任意一个都有有界解,那么它们必然存在一对最优解,使得C^T * X* = b^T * Y*。
对偶问题的解决可以通过使用单纯形法或内点法等优化算法来进行求解。
对偶问题对线性规划问题的求解具有重要的应用价值和理论意义。
它可以用于确定原问题的可行解的界限,还可以提供原问题的敏感性分析和稳定性分析。
总之,线性规划的对偶问题是通过对原问题的目标函数和约束条件进行变换而得到的,对偶问题为理解原问题的特性和提供附加信息提供了一种有力的工具。
优化问题中的对偶理论在数学中,优化问题是一种求解最优解的问题,而对偶理论则是用来解决优化问题中的复杂性的一种方法。
对偶理论的核心思想是将原问题转化为它的对偶问题,并在对偶问题中求解最优解。
本文将介绍优化问题中的对偶理论及其应用。
1. 对偶问题的定义对偶问题是指将一个优化问题转化为另一个优化问题的过程。
具体来说,对于一个原始问题(称为Primal Problem),我们可以通过构造一个对应的对偶问题(称为Dual Problem),来找到原始问题的最优解。
这个对应关系是双向的,即可以从原始问题得到对偶问题,也可以从对偶问题得到原始问题。
对于一个具体的优化问题,我们可以定义它的原始问题和对偶问题。
原始问题通常形式如下:Minimize f(x)subject to g_i(x) ≤ 0, i = 1, 2, ..., mh_j(x) = 0, j = 1, 2, ..., n其中,f(x)是目标函数,g_i(x)是不等式约束,h_j(x)是等式约束。
而对偶问题的形式如下:Maximize g(λ, μ)subject to λ_i ≥ 0, i = 1, 2, ..., m其中,g(λ, μ)是对偶函数,λ_i和μ_j分别是对应原始问题中不等式约束和等式约束的Lagrange乘子。
2. 对偶问题的求解对于一个原始问题,我们可以通过下列步骤求解它的对偶问题:1)构造对偶函数:对偶函数是原始问题的Lagrange对偶,它定义为:g(λ, μ) = inf{ f(x) + ∑ λ_i g_i(x) + ∑ μ_j h_j(x) }其中,inf{}表示检查所有可行解的最小值。
2)求对偶问题:将对偶函数最大化,得到对偶问题的最优解。
3)寻找最优解:将对偶问题的最优解带回到原始问题中,可以获得原始问题的最优解。
这个过程可能看起来很抽象和复杂,但对偶理论的优点在于它可以将复杂的原始问题转化为相对简单的对偶问题,从而更容易求解。
线性规划的对偶原理3。
1 线性规划的对偶问题一、 对偶问题的提出换位思考家具厂的线性规划问题,该问题站在家具厂管理者的角度追求销售收入最大213050m ax x x z +=⎪⎩⎪⎨⎧≥≤+≤+0,50212034212121x x x x x x某企业家有一批待加工的订单,有意利用该家具厂的木工和油漆工资源来加工他的产品。
他 需要与家具厂谈判付给该厂每个工时的价格。
如果该企业家已对家具厂的经营情况有详细了 解,他可以构造一个数学模型来研究如何才能既让家具厂觉得有利可图,肯把资源出租给他, 又使自己付的租金最少.目标:租金最少;1y —付给木工工时的租金;2y -付给油漆工工时的租金2150120m in y y w +=所付租金应不低于家具厂利用这些资源所能得到的利益1)支付相当于生产一个桌子的木工、油漆工的租金应不低于生产一个桌子的收入 502421≥+y y2)支付相当于生产一个椅子的木工、油漆工的租金应不低于生产一个椅子的收入 30321≥+y y3)付给每种工时的租金应不小于零 0,021≥≥y y二、 原问题与对偶问题的数学模型1. 对称形式的对偶原问题和对偶问题只含有不等式约束时,一对对偶问题的模型是对称的,称为对称形式的对偶。
原问题:⎪⎩⎪⎨⎧≥≥=0min X b AX CX z对偶问题:⎪⎩⎪⎨⎧≥≤=0max Y C YA Yb w2. 非对称形式的对偶若原问题的约束条件全部是等式约束(即线性规划的标准型),即⎪⎩⎪⎨⎧≥==0min X b AX CX z则其对偶问题的数学模型为⎪⎩⎪⎨⎧≤=是自由变量Y C YA Yb w max可把原问题写成其等价的对称形式:min z =CX AX ≥b AX ≤b X ≥0即 min z =CX⎥⎦⎤⎢⎣⎡-A A X ≥⎥⎦⎤⎢⎣⎡-b bX ≥0设Y 1=(y 1,y 2,…,y m ), Y 2=(y m+1,y m+2,…,y 2m )。
线性规划问题的对偶性线性规划(Linear Programming)是数学规划的一个重要分支,用于解决一类特定的优化问题。
在线性规划问题中,我们需要在一组线性约束条件下,找到使目标函数达到最大或最小值的变量取值。
对于一般的线性规划问题,我们往往可以通过对偶性理论来找到一个等价的对偶问题,从而更好地求解原始问题。
1. 对偶问题的引入在线性规划问题中,我们通常会面临一个最大化或最小化一个线性目标函数的任务,同时需要满足一系列线性约束条件。
假设我们的线性规划问题为:最大化(或最小化):cx约束条件:Ax ≤ b其中,c是一个长度为n的向量,x是变量向量,A是一个m×n的矩阵,b是一个长度为m的向量。
对于这个线性规划问题,我们可以引入一个新的向量y作为拉格朗日乘子,引入一个新的变量w作为对偶变量。
这样,我们可以构建原始问题的拉格朗日函数:L(x, y, w) = cx + yT(Ax - b) - wT(Ax - b)其中,y和w分别是拉格朗日乘子和对偶变量。
2. 对偶问题的建立在引入拉格朗日函数之后,我们可以分别对拉格朗日乘子y和对偶变量w进行极小化和极大化,建立相应的对偶问题。
对于拉格朗日乘子y,我们可以将拉格朗日函数改写为:L(x, y) = (c + ATy)x - yTb注意到,c + ATy为常数向量,可以表示为q。
因此,我们可以得到对偶问题:最小化:qTx约束条件:ATy ≥ 0同样地,对于对偶变量w,我们可以将拉格朗日函数改写为:L(x, w) = (c - ATw)x + wTb同样,我们可以得到对偶问题:最大化:wTb约束条件:ATw ≤ c3. 对偶问题的性质通过对拉格朗日函数的极小化和极大化,我们建立了与原始问题等价的对偶问题。
对偶问题不仅仅是一个等价的数学表达形式,而且具有许多重要的性质。
首先,根据对偶问题的建立,我们可以得知对偶问题的目标函数是原始问题的一个下界。
也就是说,对于任意可行解x和对偶变量w和y,有如下不等式成立:cx ≥ qTx ≥ wTb其次,若原始问题的最优解存在且有限,那么对偶问题的最优解也存在且有限,并且两者的目标函数值相等。
线性规划问题的对偶理论及应用线性规划问题的对偶理论及其应用线性规划是一种优化问题,它要求我们在给定的限制条件下,最大化或最小化目标函数。
这个问题在数学、经济学和管理学中有重要的应用。
线性规划问题的对偶理论是一种有用的工具,它可以帮助我们解决一些复杂的问题。
一、线性规划问题线性规划问题的一般形式为:\begin{aligned} \max_{\boldsymbol{x}} \ & \boldsymbol{c}^{T} \boldsymbol{x} \\ \text {s.t. } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\ & \boldsymbol{x} \geq \boldsymbol{0}\end{aligned}其中,$\boldsymbol{x}$ 是一个 $n$ 维列向量,$\boldsymbol{c}$ 是一个 $n$ 维列向量,$\boldsymbol{A}$ 是一个$m \times n$ 的矩阵,$\boldsymbol{b}$ 是一个 $m$ 维列向量。
我们要求出一个满足所有限制条件的 $\boldsymbol{x}$,使得目标函数 $\boldsymbol{c}^{T} \boldsymbol{x}$ 最大(或最小)。
二、线性规划问题的对偶理论线性规划问题的对偶理论是一个重要的工具,它可以将原问题转化为一个对偶问题,从而得到一些有用的信息。
对于一个线性规划问题,我们可以构造它的对偶问题如下:\begin{aligned} \min_{\boldsymbol{y}} \ & \boldsymbol{b}^{T} \boldsymbol{y} \\ \text {s.t. } & \boldsymbol{A}^{T} \boldsymbol{y} \geq \boldsymbol{c} \\ & \boldsymbol{y} \geq \boldsymbol{0}\end{aligned}其中,$\boldsymbol{y}$ 是一个 $m$ 维列向量。
对偶问题的原理及应用1. 前言对偶问题是优化领域中一种重要的问题转化和求解方法,它通过转化原始问题为对偶问题,进而解决原始问题或者获得问题的一些有用信息。
本文将介绍对偶问题的原理以及其在优化问题中的应用。
2. 对偶问题的原理对偶问题是数学规划中一类常用的问题转化方法,它通过对原始问题进行变换,得到一个与原始问题等价的新问题。
对偶问题从不同的角度来看待原始问题,从而为求解或优化原始问题提供了一种新的视角。
对于一个标准形式的原始优化问题,其数学表示可以写成:minimize c^T xsubject to Ax <= bx >= 0其中,x是优化变量,c是目标函数的系数向量,A是约束矩阵,b是约束向量。
对偶问题则可以表示为:maximize b^T ysubject to A^T y <= cy >= 0其中,y是对偶变量。
对偶问题的目标函数与原始问题的约束函数形式相似,而对偶问题的约束函数则与原始问题的目标函数形式相似。
3. 对偶问题的应用对偶问题在优化领域中的应用非常广泛,下面将介绍对偶问题在线性规划、凸优化和机器学习等领域的具体应用。
3.1 线性规划线性规划是对偶问题应用最为广泛的领域之一。
在线性规划中,对偶问题能够提供原始问题的下界,并且可以通过对偶问题的求解得到原始问题的最优解。
此外,在有些情况下,原始问题与对偶问题之间存在强对偶性,即原始问题与对偶问题的最优解相等。
3.2 凸优化对偶问题在凸优化中也有很多应用。
凸优化问题具有许多良好的性质,其中之一就是对偶问题的存在性和强对偶性。
通过对偶问题的求解,可以获得凸优化问题的最优解,并且可以通过对偶变量的解释来获得关于原始问题的一些有用信息。
3.3 机器学习对偶问题在机器学习中也有广泛的应用。
例如,在支持向量机(SVM)中,对偶问题的求解可以将原始问题转化为一个更简单的形式,从而提高求解效率。
此外,对偶问题还可以提供关于支持向量和间隔的有用信息,从而帮助理解和解释模型的性质。