几种求二次函数的方法
- 格式:ppt
- 大小:163.50 KB
- 文档页数:16
二次函数求解公式二次函数是一种常见的二次方程,其定义为y = ax^2 + bx + c,其中a、b、c为常数,a ≠ 0。
二次函数也被称为二次多项式函数。
求解二次函数的一般方法有图像法、配方法和根的关系。
其中,图像法可以帮助我们直观地理解二次函数的性质,配方法和根的关系则能帮助我们求解二次函数的交点、极值点等。
一、图像法使用图像法求解二次函数的步骤如下:1.绘制二次函数的图像:可以通过画出二次函数的图像来直观地了解函数的性质,比如判断开口方向、极值点等。
2.确定顶点坐标:顶点是二次函数的最高点或最低点,通过观察图像,我们可以找到顶点的坐标。
顶点坐标可以表示函数的极值点。
3.确定对称轴:对称轴是二次函数的图像关于y轴的对称轴线,通过观察图像,我们可以找到对称轴的方程。
4.确定交点坐标:交点是二次函数与x轴的交点,通过观察图像,我们可以找到交点的坐标。
交点坐标可以表示函数的根。
二、配方法使用配方法求解二次函数的步骤如下:1. 对于一般的二次函数y = ax^2 + bx + c,如果a ≠ 0,则可以通过配方法将其写成形如y = a(x + p)^2 + q的标准形式,其中p和q为待确定的常数。
2.使用配方法将二次函数展开:将二次函数展开后,与原函数进行比较,可以确定标准形式中的p和q的值。
3.根据标准形式求解顶点坐标:由于标准形式中(x+p)^2≥0,所以a(x+p)^2+q的最小值为q,当x=-p时取到。
4.根据标准形式求解根:当a>0时,a(x+p)^2+q=0的解为x=-p;当a<0时,方程无解。
三、根的关系根的关系是二次函数的一个重要性质,可以帮助我们求解二次函数的交点坐标。
根的关系有以下两种情况:1. 二次函数有两个不相等的实根:对于一般的二次函数y = ax^2 + bx + c,如果b^2 - 4ac > 0,则可以使用求根公式x = (-b ± √(b^2 - 4ac))/(2a)求解实根。
求二次函数解析式的三种基本方法四川 倪先德二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。
熟练地求出二次函数的解析式是解决二次函数问题的重要保证。
二次函数的解析式有三种基本形式:1、一般式:y=ax 2+bx+c (a ≠0)。
2、顶点式:y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点,对称轴为x=h 。
3、交点式:y=a(x -x 1)(x -x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标。
求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式: 1、若给出抛物线上任意三点,通常可设一般式。
2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。
3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式。
探究问题,典例指津:例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式. 分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c (a ≠0)。
解:设这个二次函数的解析式为y=ax 2+bx+c (a ≠0)依题意得:⎪⎩⎪⎨⎧=++-=-=+-145c b a c c b a 解这个方程组得:⎪⎩⎪⎨⎧-===432c b a∴这个二次函数的解析式为y=2x 2+3x -4。
例2、已知抛物线c bx ax y ++=2的顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式。
分析:此题给出抛物线c bx ax y ++=2的顶点坐标为)1,4(-,最好抛开题目给出的c bx ax y ++=2,重新设顶点式y=a(x -h)2+k (a ≠0),其中点(h,k)为顶点。
解:依题意,设这个二次函数的解析式为y=a(x -4)2-1 (a ≠0) 又抛物线与y 轴交于点)3,0(。
∴a(0-4)2-1=3 ∴a=41∴这个二次函数的解析式为y=41(x -4)2-1,即y=41x 2-2x+3。
二次函数解析式的8种求法河北 高顺利二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉:一、定义型:此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次.例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = .解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1由m 2–2m –1 = 2得m =-1 或m =3∴ m = 3 .二、开放型此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 .分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一)三、平移型:将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.例3、二次函数 253212++=χχy 的图像是由221χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的.解: 253212++=χχy = ()23212-+χ, ∴二次函数 253212++=χχy 的图像是由221χ=y 的图像先向左平移3个单位,再向下平移2个单位得到的.这两类题目多出现在选择题或是填空题目中四、一般式当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2,转化成一个三元一次方程组,以求得a ,b ,c 的值;五、顶点式若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数;六、两根式已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值.例4、根据下面的条件,求二次函数的解析式:1.图像经过(1,-4),(-1,0),(-2,5)2.图象顶点是(-2,3),且过(-1,5)3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,-29) 解:1、设二次函数的解析式为:c b a ++=χχγ2,依题意得:40542a b c a b c a b c -=++⎧⎪=-+⎨⎪=-+⎩ 解得:⎪⎩⎪⎨⎧-=-==321c b a∴322--=x x y2、设二次函数解析式为:y = a ( x – h )2 + k , 图象顶点是(-2,3)∴h =-2,k =3, 依题意得:5=a ( -1 + 2)2+3,解得:a =2∴y = 2( x +2)2 + 3=11822++x x3、设二次函数解析式为:y = a ( x – 1χ) ( x – 2χ).图像与x 轴交于(-2,0),(4,0)两点,∴1χ=-2,2χ=4依题意得:-29= a ( 1 +2) ( 1– 4) ∴a =21 ∴ y = 21 ( x +1) ( x – 4)=223212--x χ. 七、翻折型(对称性):已知一个二次函数c b a ++=χχγ2,要求其图象关于轴对称(也可以说沿轴翻折);轴对称及经过其顶点且平行于轴的直线对称,(也可以说抛物线图象绕顶点旋转180°)的图象的函数解析式,先把原函数的解析式化成y = a ( x – h )2 + k 的形式.(1)关于轴对称的两个图象的顶点关于轴对称,两个图象的开口方向相反,即互为相反数.(2)关于轴对称的两个图象的顶点关于轴对称,两个图象的形状大小不变,即相同.(3)关于经过其顶点且平行于轴的直线对称的两个函数的图象的顶点坐标不变,开口方向相反,即互为相反数.例6 已知二次函数,求满足下列条件的二次函数的解析式:(1)图象关于轴对称;(2)图象关于轴对称;(3)图象关于经过其顶点且平行于轴的直线对称.x x y x x x a y y ax a 5632+-=x x y x y x解:可转化为,据对称式可知 ①图象关于轴对称的图象的解析式为, 即:. ②图象关于轴对称的图象的解析式为:,即:;③图象关于经过其顶点且平行于轴的直线对称的图象的解析式为,即.八、数形结合数形结合式的二次函数的解析式的求法,此种情况是融代数与几何为一体,把代数问题转化为几何问题,充分运用三角函数、解直角三角形等来解决问题,只要充分运用有关几何知识求出解析式中的待定系数,以达到目的.例7、如图,已知抛物线c b y ++-=χχ271和x 轴正半轴交与A 、B 两点,AB =4,P 为抛物线上的一点,他的横坐标为-1,∠PAO =45 ,37cot =∠PBO .()1求P 点的坐标;()2求抛物线的解析式.解: 设P 的坐标为(-1,y ), ∵P 点在第三象限∴y <0,过点P 作PM ⊥X 轴于点M . 点M 的坐标为(-1,0)|BM| = |BA |+ |AM|5632+-=x x y 2)1(32+-=x y x 2)1(32---=x y 5632-+-=x x y y 2)1(32++=x y 5632++=x x y x 2)1(32+--=x y 1632++-=x x y∵∠PAO =45∴ |PM | = |AM| = |y | =-y ∵374cot =--==∠y y PM BM PBO ∴y = -3∴P 的坐标为(-1,-3)∴A 的坐标为(2,0)将点A 、点P 的坐标代如函数解析式 ⎪⎪⎩⎪⎪⎨⎧+--=-++-=c b c b 7132740 解得:87b = ; 127c =- ∴抛物线的解析式为:21812777y χχ=-+-.。
求二次函数解析式的四种方法详解二次函数是一种常见的函数形式,其解析式可以通过四种方法求得。
下面将详细介绍这四种方法。
方法一:配方法求解二次函数解析式配方法是一种常用的求解二次函数解析式的方法。
对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以通过配方法将其转化为$(px+q)^2$形式,然后利用完全平方公式求解。
1. 将二次项与常数项系数乘以2,即将原函数表示为$f(x) = a(x^2 + \frac{b}{a}x) + c$;2. 将中间项$\frac{b}{a}x$除以2,并在括号外面加上一个平方项和一个负号,即表示为$f(x) = a(x^2 + \frac{b}{a}x +(\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;3. 将括号内部的三项利用完全平方公式进行转化,即表示为$f(x) = a((x+\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;4. 化简后得到$f(x) = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$。
其中,$(x+\frac{b}{2a})^2$是一个完全平方项,可以展开得到$x^2 + bx + \frac{b^2}{4a^2}$。
所以上述表达式可以进一步简化为:$f(x) = ax^2 + bx + c = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$这就是二次函数的配方法解析式。
方法二:因式分解法求解二次函数解析式对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以使用因式分解法对其解析式进行求解。
1.如果二次函数可以因式分解为$(x-x_1)(x-x_2)$的形式,其中$x_1$和$x_2$是函数的根,则此二次函数的解析式形式为$f(x)=a(x-x_1)(x-x_2)$;2.将一般形式的二次函数进行因式分解,即将二次项系数a与常数项c进行合适的分解,得到$(x-x_1)(x-x_2)$的形式。
十种二次函数解析式求解方法二次函数是一个形如y = ax^2 + bx + c的函数,其中a、b和c是实数且a不为0。
解析式是一种表示函数的方式,它可以用来求解函数的性质和方程的解。
下面是十种二次函数解析式求解方法:1. 一般式:二次函数的一般式为y = ax^2 + bx + c。
通过将函数写成一般式,可以快速识别出a、b和c的值,进而求解一些重要的性质,如顶点、轴对称线、开口方向等。
2.标准式:二次函数的标准式为y=a(x-h)^2+k,其中(h,k)为顶点的坐标。
通过将一般式转化为标准式,可以直观地找出顶点的坐标及与x轴的交点。
3.因式分解:有时候,二次函数的解析式可以通过因式分解的方式得到。
例如,对于函数y=x^2-5x+6,我们可以将其因式分解为y=(x-2)(x-3),从而得到x=2和x=3是方程的解。
4.完全平方:如果二次函数的解析式可以表示为一个完全平方的形式,那么我们可以通过提取出完全平方的方式得到方程的解。
例如,对于函数y=x^2-4x+4,我们可以将其写成y=(x-2)^2的形式,从而得到x=2是方程的解。
5. 配方法:对于一般的二次方程ax^2 + bx + c = 0,我们可以通过配方法将其转化为一个完全平方的形式。
通过配方法,我们可以找到一个常数k使得ax^2 + bx + c = a(x + p)^2 + k,从而得到方程的解析式。
6.求导方法:通过对二次函数求导,我们可以得到函数的导数。
导数可以帮助我们找到函数的最值点和切线,进而求解其他问题。
7.顶点公式:二次函数的顶点公式为(h,k),其中h=-b/(2a),k=f(h)。
通过顶点公式,我们可以快速找到二次函数的顶点,进而求解一些重要的性质。
8. 零点公式:二次函数的零点公式为x = (-b ± √(b^2 -4ac))/(2a)。
通过零点公式,我们可以求解二次函数的零点或解方程。
9. 判别式:二次函数的判别式为Δ = b^2 - 4ac。
十种二次函数解析式求解方法〈一〉三点式。
1, 已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点,求抛物线的解析式。
2, 已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。
〈二〉顶点式。
1, 已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。
2, 已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。
〈三〉交点式。
1, 已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。
2, 已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21a(x-2a)(x-b)的解析式。
〈四〉定点式。
1, 在直角坐标系中,不论a 取何值,抛物线2225212-+-+-=a x a x y 经过x 轴上一定点Q ,直线2)2(+-=x a y 经过点Q,求抛物线的解析式。
2, 抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。
3, 抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。
〈五〉平移式。
1, 把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解析式。
2, 抛物线32-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式.〈六〉距离式。
1, 抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。
2, 已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物线的解析式。
〈七〉对称轴式。
1、 抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2倍,求抛物线的解析式。
二次函数的解析式三种方法二次函数是一种常见的函数类型,在数学学习中,学生们需要对其进行深入的了解和掌握,以便于解决与二次函数相关的问题。
本文将介绍三种求解二次函数的解析式的方法,包括公式法、顶点法和描点法。
每种方法的步骤和注意事项都将被详细介绍。
一、公式法公式法是一种求解二次函数解析式的基本方法。
二次函数的标准形式可以表示为 y = ax²+bx+c,其中 a、b、c 都是实数常数,而 x 是自变量。
一个常见的二次函数的例子为y = x²。
1. 求取 a、b、c 的值在使用公式法求解二次函数的解析式之前,需要先计算出二次函数中的 a、b、c 值。
通常情况下,这些值可以从已知的条件中直接得到。
如果已知二次函数经过点 (2,4) 和 (−1,3),则可以根据这些坐标计算出 a、b、c的值。
可以得到两个方程:4 = a(2)²+b(2)+c3 = a(−1)²+b(−1)+c然后,可以将这些方程化简为:4 = 4a+2b+c3 = a−b+c接下来,可以使用代数法或消元法来求解 a、b、c 的值。
可以将第二个方程中的 a解出来,然后带入第一个方程中,得到:a = 2b−14 = 8b−4+2b+cc = −8b+8可以得到二次函数的解析式为:y = (2b−1)x²+bx+8−8b2. 使用公式法求解二次函数一旦确定了二次函数中的 a、b、c 值,可以使用公式法求解二次函数的解析式。
具体而言,可以使用以下公式:x = (-b ± √(b²-4ac))/(2a)这个公式可以得到二次函数的解析式中的两个根。
如果二次函数的解析式没有实数根,则说明这个二次函数不存在。
在上面的例子中,可以将 a、b、c 的值带入到公式中,得到:x = (-b ± √(b²-4ac))/(2a)x = (-b ± √(b²-4(2b−1)(8−8b)))/(2(2b−1))根据这个公式,可以得到二次函数的解析式的两个实数根,也就是二次函数与 x 轴相交的点。
二次函数解析式的几种求法一次函数是形如y=ax+b的函数,其中a和b为常数,且a≠0。
而二次函数是形如y=ax^2+bx+c的函数,其中a,b和c为常数,且a≠0。
解析式是用来表示函数关系的公式,可以将二次函数的解析式分为以下几种求法:1.根据已知的顶点和过顶点的直线方程求解。
二次函数的标准形式是y=a(x-h)^2+k,其中(h,k)为顶点的坐标。
如果已知顶点的坐标和过该顶点的一条直线的方程,可以将方程代入二次函数的标准形式,确定a的值。
这样就可以得到二次函数的解析式。
2.根据已知的两个点求解。
如果已知二次函数过两个点,可以利用这两个点的坐标,构建并解方程组。
假设已知点的坐标分别是(x1,y1)和(x2,y2),代入二次函数的标准形式得到两个方程,然后解方程组求解出a,b和c。
这样就可以得到二次函数的解析式。
3.根据已知的轴对称性质求解。
二次函数的图像一般是一个开口向上或向下的抛物线。
如果已知抛物线的轴对称轴和顶点的坐标,可以利用这些信息确定二次函数的解析式。
根据轴对称性质,可得到二次函数的解析式。
4.根据已知的根求解。
二次函数的解析式与其根的关系密切,如果已知二次函数的根,可以根据根的性质得到二次函数的解析式。
设二次函数的根为x1和x2,则根据因式定理,二次函数可表示为y=a(x-x1)(x-x2)的形式。
将已知的根代入该式,可以得到二次函数的解析式。
5. 根据已知的导数求解。
二次函数的导数是一次函数,可以根据已知的导数求解二次函数的解析式。
设二次函数的导数为y'=2ax+b,将一次函数的表达式与二次函数的标准形式进行比较,可以得到a和b的值。
然后,代入二次函数的标准形式,可以得到二次函数的解析式。
以上是求解二次函数解析式的几种方法,每种方法都有其适用的情况和优劣势。
具体选择哪种方法需要根据具体的题目和已知条件来决定。
谈谈二次函数解析式的几种求法二次函数是初中数学非常重要的知识点,也是中考的必考内容。
本人在多年的教学中体会较多,现就二次函数的解析式的几种求法,谈谈几点看法。
二次函数的解析式的求法有很多种,但常见的也就以下几种。
(一)三点式即已知抛物线的三点坐标,求其解析式例如:一抛物线经过点(-1,-1)(0,2)(1,1)求这个函数的解析式。
解法如下:我们知道,二次函数的一般形式为y=ax²+bx+c,只需把上述三点代入y=ax²+bx+c即可解:设所求的二次函数的解析式为y=ax²+bx+c,把点(-1,-1)(0,2)(1,1)代入得 a-b+c=-1 a=2c=-2 b=1a+b+c=1 ,解得 c=-2即所求的二次函数的解析式为y=2x²+x-2(二)顶点式我们知道二次函数经过配方可得y=a(x-h)²+k的形式。
例:已知二次函数的顶点为(-1,-2)且经过点(1,10),求这个函数的表达式?解法如下:解:设所求抛物线为y=a (x+1)²-2, 再把(1,10)代入上式求得c=3.所以所求二次函数的解析式为y=3(x+1)²-2 即 y=3x ²+6x+1(三)交点式我们知道二次函数y=ax ²+bx+c 与x 轴的两交点的横坐标亦即是方程ax ²+bx+c=0的两个根,利用这种关系,也能够求出一些二次函数的解析式。
例如:某二次函数与x 轴的两交点为(3,0)(1,0)且经过点(0,3)求这个二次函数的解析式。
解:设所求的二次函数的表达式为y=a (x-3)(x-1),把(0,3) 代人上式得a=1, ∴所求函数的解析式为y=(x-3)(x-1), 即y=x ²-4x+3(四)平移法例:平移二次函数y=2x ²的图像是它经过点(-1,1)(2,3)两点,求这时函数对应的二次函数的解析式?我们知道,平移二次函数的图像时,a 的值是不变的,所以,只要确定b 、c 的值就能够了。