最新光解水制氢半导体光催化材料的研究进展精编版
- 格式:doc
- 大小:76.50 KB
- 文档页数:23
催化光解水制氢技术的研究和应用引言随着氢能技术的不断发展,制氢技术也得到了快速的发展。
其中,光解水制氢技术能利用阳光为能源来直接产生氢,因其无需化石燃料、节能环保而备受关注。
而催化光解水制氢技术作为一种高效的技术,在应用上有着重要的作用。
本文将从催化剂的类型、制备方法、研究进展以及应用领域等方面对催化光解水制氢技术进行探讨。
催化剂的类型在催化光解水制氢技术中,催化剂是至关重要的组成部分。
常见的催化剂主要有金属催化剂、半导体光催化剂、复合催化剂等。
金属催化剂通常采用铂等金属,活性高,但成本较高,限制了其在大规模制氢应用中的推广。
因此,大量研究和开发工作也针对金属催化剂的替代品展开了。
半导体光催化剂常见的有TiO2、ZnO、CdS等。
其中TiO2是一种最广泛应用的催化剂,具有稳定性和可重复性优点,但光催化活性较低,需要加入其他催化剂进行改性。
ZnO催化性能较TiO2要高,但相应的稳定性较差。
CdS在吸收窄波长紫外线时显示出了较高的光催化活性,但由于其毒性问题,应用受到了限制。
复合催化剂是指两种或两种以上的材料进行复合制备而得到的催化剂,常见的组合有半导体光催化剂和金属催化剂的组合、生物催化剂和半导体光催化剂的组合等。
复合催化剂能够充分发挥各自的特性,提高氢的产量和选择性,因此被认为是一种有前途的制氢催化剂。
制备方法催化剂的制备方法直接决定了催化剂的性能。
现有的制备方法主要有凝胶法、溶剂热法、水热法、柠檬酸盐凝胶法、微波法等。
凝胶法是一种常见的催化剂制备方法。
它具有相对简单、易于控制形貌和结构等优点,多用于制备金属催化剂。
溶剂热法则是通过高温高压条件下,在溶剂中形成晶体而制备催化剂。
该方法所制备的催化剂结构空间尺度小,通常用于制备半导体光催化剂。
水热法是以水为反应介质,在高温高压条件下,将反应溶液转化为针状、棒状等形态的催化剂。
柠檬酸盐凝胶法将柠檬酸盐作为凝胶化剂,与金属离子形成柠檬酸盐凝胶体系,加热处理后获得所需催化剂。
光催化水分解制氢技术的研究进展随着全球能源需求的不断增长以及环境问题的日益突显,清洁能源的开发和利用成为了人类关注的焦点。
氢能作为一种清洁、高能量密度的能源媒介,备受研究者的关注。
然而,有效、经济地制备氢气仍然是一个具有挑战性的问题。
光催化水分解制氢技术作为一种可持续、环保的制氢方法,正在获得越来越多的关注和研究。
光催化水分解制氢是利用光催化材料吸收太阳能,并将其转化为化学能的过程。
实现光催化水分解制氢主要涉及两个关键步骤:水溶液中的光生载流子的产生和将光生载流子转化为氢气和氧气的催化反应。
在这个过程中,催化剂起到了至关重要的作用。
当前,以半导体材料为基础的催化剂是光催化水分解制氢技术的主要研究方向之一。
例如,二氧化钛(TiO2)是广泛研究的光催化剂之一。
然而,纯二氧化钛表现出较大的能带间隙,仅能吸收紫外光,限制了其在可见光范围内的应用。
为了拓宽光吸收范围,研究人员进行了多种改性。
例如,通过离子掺杂或负载适量的金属纳米颗粒等方法,改善材料的光催化性能。
此外,一些新型的材料催化剂也受到了广泛研究。
例如,铁基或钼基催化剂在光催化制氢研究中显示出良好的催化活性和稳定性。
这些新型催化剂不仅能够有效地利用可见光,而且其优异的光电催化性能在提高效率和抑制光生电子-空穴对的复合方面具有优势。
除了光催化剂的研究外,反应条件的优化也是光催化水分解制氢领域的重要研究方向之一。
反应的温度、光照强度、溶液酸碱度等都对催化剂的性能和氢气生成速率有着重要影响。
因此,通过合理调控这些反应条件,可以提高光催化水分解制氢的效率。
光催化水分解制氢技术的研究进展不仅依赖于催化剂的设计和合成,还需要对光催化机理进行深入研究。
实验和计算相结合的方法被广泛应用于光催化机理的研究。
通过实验手段,研究人员可以发现反应中的中间体和活性物种,并理解光催化反应过程中的能量传递。
同时,计算手段可以对催化剂的结构和性质进行模拟和预测,为催化剂的设计提供指导。
半导体光催化剂制氢研究新进展摘要:光催化剂材料的研制是光催化制氢技术的关键环节之一。
本文在简要介绍太阳能光解水制氢基本原理的基础上,重点介绍了目前国内外半导体制氢光催化剂材料研究的新进展和动态,并对其未来发展前景和趋势进行了展望。
关键词: 光催化;半导体材料;光催化剂引言太阳能作为一种最丰富的可再生能源, 具有其它能源所不可比拟的优点[1-3]。
太阳能取之不尽、用之不竭,太阳每年向地球辐照的能量大约是5.4×1024焦耳。
与核能相比,太阳能更为安全;与水能、风能相比,太阳能利用的成本较低,而且不受地理条件的限制。
全世界范围每年需要的能源相当于8×109吨煤,也就是1.09×1020焦耳的能量。
如果辐照地球上一小部分的太阳能能被利用的话,许多能源问题都可能迎刃而解。
目前,太阳能转换主要有光热转换、生物质转化、光电转换和化学转化四种形式。
太阳能直接转化为高效清洁可储存的化学能,如氢,是最理想的能源转化和存储方式。
氢是高质能比(33900卡/克)、清洁无污染、高效和可储存运输的能源载体[4-14],(如图1所示)。
氢还是重要的化工原料之一[15-29]。
虽然氢是宇宙中最富有的元素,但在地球上并没有直接可利用的氢气资源。
目前,氢主要利用水电解和重整矿物燃料制备。
水电解能耗巨大,矿物燃料重整转化效率和产量虽然都较高,但依赖于储量有限的矿物燃料,并且反应副产物二氧化碳排放到大气中导致温室效应。
利用太阳能直接从水中获得的氢气,氢气又可作为能源燃料,燃烧产物是水,它以最清洁环保的形态回到自然生态循环中,这是一种完全的可持续开发的能源利用的途径。
20世纪60年代末,日本学者Fujishima和Honda发现光照n-型半导体TiO2电极可导致水分解[30, 31],使人们认识到了利用太阳能光催化分解水制氢的可行性,利用太阳能分解水制氢或将太阳能直接转化为化学能逐渐成为能源领域的研究热点之一[32, 33]。
半导体光催化电解水制氢的研究与测试作者:刘建伟沈啸冯震徐玉强林世阳来源:《农业与技术》2012年第06期摘要:氢能源的清洁、高效、无污染、便于输运和可再生等的特点,是最理想的能源载体。
如何高效的提取和存储氢这对缓解未来能源危机有着重要意义。
本文主要对氢的收集进行探究,目的旨在了解最有效制氢的方法和提高制氢效率的途径。
采用理论分析和实验的方式,利用光解水原理,借助Perfect light光解水系统,为了比较半导体光解水制氢催化材料的性能与效果,分别以钽酸盐、铌酸盐、钛酸盐3种催化材料进行测试,并且对提高光催化性能的途径进行了研究,如光催化剂纳米化,离子掺杂,半导体复合,染料光敏化,贵金属沉积等几种方式的分析与尝试[1]。
对该制氢系统进行了多组制氢性能的测试,结果表明:该技术具有光氢转换效率高、节省常规能源、保护环境和便于氢氧分离等优点,一旦发展成熟并投入使用将带来显著的经济效益、环境效益和社会效益,并可能使能源的使用出现革命性变革。
关键词:半导体光催化;太阳能;电解水;氢气中图分类号:TQ11621文献标识码:A1引言针对以往制氢的转换效率较低,造价昂贵,常规耗能高等缺点,太阳能光解水制氢技术的迅猛发展和巨大突破,并且逐步走向实用化,最终选择太阳能光解水制氢。
其主要途径有光电化学法、均相光助络合法和半导体光催化法[2]。
经过理论分析,本实验选择半导体光催化太阳能电解水制氢技术,其是将太阳能电解水制氢技术与半导体光催化太阳能光解水制氢技术相结合的一种复合光电分解水制氢技术。
借助Perfect light光解水系统,主要针对半导体光催化太阳能电解水制氢技术中起到重要催化作用的催化材料及提高催化效率的途径进行了研究与分析,借此为进一步更深入的探索光解水制氢技术奠定了良好的基础。
2光解水制氢的原理光催化反应可以分为两类“降低能垒”和“升高能垒”反应。
光催化氧化降解有机物属于降低能垒反应,此类反应的△G<0,反应过程不可逆,这类反应中在光催化剂的作用下引发生成O2-、HO2 、OH·、和H+等活性基团。
光催化材料最新研究进展1.简介当今世界正面临着能源短缺和环境污染的严峻挑战,解决这两大问题是人类社会实现可持续发展的迫切需要。
中国既是能源短缺国,又是能源消耗大国。
近年来,伴随社会经济的快速发展,中国石油对外依存度不断攀升,已经严重影响国家经济健康发展和社会稳定,并威胁到国家能源安全。
同时,石油等化石能源的过度消耗导致污染物大量排放,加剧了环境污染,尤其是我国近年来雾霾天气的频繁出现,严重影响了人民的生活和身体健康,开发和利用太阳能是解决这一难题的有效方法之一。
我国太阳能资源十分丰富,每年可供开发利用的太阳能约 1.6X1O15W,大约是2010年中国能源消耗的500 倍。
从长远看,太阳能的有效开发与利用对优化中国能源结构具有重大意义。
然而太阳能存在能量密度低、分布不均匀、昼夜/季节变化大、不易储存等缺点。
如图 1 所示,光催化技术可以将太阳能转换为氢能。
氢能能量密度高、清洁环保、使用方便,被认为是一种理想的能源载体。
目前氢能的利用技术逐渐趋于成熟,以氢气为燃料的燃料电池已开始实用化,氢气汽车和氢气汽轮机等一些“绿色能源”产品已开始投入市场。
氢利用技术的成熟提高了对制氢技术快速发展的要求。
高效、低成本、大规模制氢技术的开发成为了氢经济”时代的迫切需求。
自20世纪70年代日本科学家利用TiO2光催化分解水产生氢气和氧气以来,光催化材料一直是国内外研究的热点之一。
光催化太阳能制氢方法是一种成本低廉、集光转换与能量存储于一体的方法,该领域的研究越来越受到各国的广泛关注。
国际上光催化材料研究竞争十分激烈。
光催化材料不仅具有分解水制氢的功能,而且具有环境净化功能。
利用光催化材料净化空气和水已成为当今世界引人注目的高新环境净化技术。
太阳能转换效率是制约光催化技术走向实用化的关键因素之一,光催化材料的光响应范围决定了太阳能转换氢能的最大理论转化效率。
光催化领域经过40余年的发展和积累,正孕育着重大突破,光催化太阳能转换效率不断提高,光催化技术正处于迈向大规模应用的关键阶段,国际竞争十分激烈。
受新冠肺炎疫情等影响,全球传统化石能源供应日趋紧张,绿色清洁新型能源的转型发展也越来越紧迫,氢能作为目前最具潜力的清洁能源,在交通、储能、建筑和分布式发电等领域都有着广阔的应用前景,是助力中国“双碳”目标和全球能源生产消费革命、构建低碳高效能源体系的重要抓手。
太阳能是全球分布最广泛均匀的清洁能源,利用太阳能分解水制氢可从源头阻断碳排放,这种绿色环保的技术将会在未来的氢能生产中占据主力位置,是解决能源危机和改善环境的最佳选择之一。
太阳能分解水制氢技术目前研究较多的主要有光催化法制氢、光热分解法制氢和光电化学法制氢,其中,光催化法制氢体系简单、催化剂来源广泛、成本较低,可有效捕获、转换和储存太阳能,被认为是现阶段最具应用发展前景的太阳能制氢技术之一。
光催化剂是光催化分解水制氢体系的核心,通过太阳光激发光催化剂价带(VB)上的电子并跃迁至导带(CB),产生光生电子及空穴,光生电子空穴对分离并迅速转移至光催化剂表面,电子与H+发生还原反应生成H2,空穴则氧化水产生O2。
然而,传统的光催化剂中的电子可能会与空穴发生表面或体相复合,导致光催化反应效率降低,且存在太阳光利用率不高等问题。
若要保证光生电子与空穴的分离效率以及光利用率,使反应尽可能地向生成H2的方向进行,寻找新型高效的光催化剂材料显得尤为重要。
其中,设计制备金属有机框架(MOFs)光催化材料催化分解水制氢是近年热门研究方向之一。
MOFs主要代表类型有:以Zn、Co等过渡金属与咪唑类有机物配位而成的ZIF系列、以Fe、Cr等过渡金属或镧系金属与芳香羧酸类配体配位而成的MIL系列,以及主要以Zr金属与对苯二甲酸配位而成的UiO系列等。
这些MOFs材料在光催化分解水制氢的相关应用研究正逐年上升,但单一MOFs光催化材料仍存在光生电子空穴对分离率较低、稳定性较差等问题,在一定程度上降低了其制氢效率的进一步提升。
美国能源科学部认为太阳能转换氢能效率达到10%以上,太阳能光催化分解水制氢才能实现初步工业化,而MOFs光催化活性离该目标还有一定差距。
光催化水分解制氢产业发展动态
光催化水分解制氢技术是一种利用太阳能将水分解成氢气和氧
气的技术。
随着全球对清洁能源的需求不断增加,光催化水分解制
氢技术正逐渐成为可持续能源领域的热门研究方向。
本文将介绍光
催化水分解制氢产业的发展动态,以及该技术在清洁能源领域的应
用前景。
首先,光催化水分解制氢技术具有巨大的潜力。
相比传统的化
石燃料,氢气是一种清洁的能源载体,燃烧产生的唯一副产品是水
蒸气,不会产生二氧化碳等温室气体,因此被视为未来能源的重要
选择。
而光催化水分解制氢技术正是利用太阳能来驱动水分解,因
此具有很高的环保性和可持续性。
其次,光催化水分解制氢技术在产业化方面也取得了一定的进展。
许多国家和地区都在加大对光催化水分解制氢技术的研发和产
业化投入,以推动清洁能源产业的发展。
在实验室规模上,已经有
不少研究机构和企业成功地开发出了高效的光催化水分解制氢催化
剂和反应器,为该技术的产业化奠定了坚实的基础。
最后,光催化水分解制氢技术在清洁能源领域的应用前景广阔。
随着技术的不断成熟和成本的不断降低,光催化水分解制氢技术将
有望成为未来清洁能源的重要来源之一。
氢气可以被用于燃料电池
发电、氢气车辆等领域,为解决能源和环境问题提供了新的可能性。
总的来说,光催化水分解制氢技术的发展动态令人振奋。
随着
全球对清洁能源的需求不断增加,光催化水分解制氢产业有望迎来
更加广阔的发展空间,为推动清洁能源产业的发展做出更大的贡献。
希望在不久的将来,光催化水分解制氢技术能够成为清洁能源产业
的重要支柱之一。
光催化水分解制氢技术光催化水分解制氢技术:实现清洁能源的潜力探索引言:随着全球能源需求的不断增长和环境问题的日益突显,寻找替代传统能源的清洁、可再生能源已成为全球关注的焦点。
氢能作为一种高效、清洁的能源选择备受瞩目,而光催化水分解制氢技术作为一种新兴的制氢方法,正逐渐展现出巨大的潜力。
1. 光催化水分解制氢技术的原理和机制光催化水分解制氢技术利用半导体光催化剂,在外界光照下,将水分解成氢气和氧气。
该技术的核心是光催化剂的光吸收和电化学反应两个过程。
当光能量与光催化剂表面发生相互作用时,电子-空穴对被激发出来。
随后,光激发的电子-空穴对会进一步参与到光生电化学反应中,从而驱动水分子的解离,生成氢气和氧气。
2. 光催化水分解制氢技术的优势和挑战(1)优势:a. 清洁和可持续:光催化水分解制氢技术不会产生二氧化碳等有害物质,在未来可能成为一种非常清洁和可持续的能源供应方式。
b. 高效能源转化:光催化水分解制氢技术的能量转化效率较高,有望成为一种高效利用太阳能资源的方法。
c. 资源丰富:水作为地球上最丰富的资源之一,光催化水分解制氢技术具有可持续发展的基础。
(2)挑战:a. 光催化剂效率和稳定性:目前,效率和稳定性仍然是光催化水分解制氢技术的瓶颈。
科学家们正在致力于开发更高效、稳定的光催化剂材料。
b. 成本高昂:目前的激发光源和光催化剂的制备相对较昂贵,限制了该技术的商业化应用和发展速度。
c. 大规模应用难题:要实现光催化水分解制氢技术的大规模应用,需要解决设备和系统的规模化问题,以及与现有能源体系的整合问题。
3. 最新研究和进展近年来,科学家们对光催化水分解制氢技术进行了广泛的研究,取得了一些重要的进展。
a. 新型催化剂材料的开发:研究人员不断探索新型催化剂材料,如二氧化钛、二硫化钼等,以提高光催化水分解制氢技术的效率和稳定性。
b. 结构优化:通过调节光催化剂材料的结构和叠层数,可以改变其吸收光谱范围和电子传输性能,以提高制氢效率。
一、实验目的1. 了解光解水制氢的基本原理和过程。
2. 掌握光解水制氢实验的操作步骤。
3. 熟悉实验设备和仪器的使用方法。
4. 分析实验结果,探讨影响光解水制氢效率的因素。
二、实验原理光解水制氢是利用太阳能将水分解为氢气和氧气的过程。
实验过程中,光催化剂在光照下吸收光能,产生电子-空穴对,电子和空穴分别迁移到催化剂表面,与水发生氧化还原反应,生成氢气和氧气。
光解水制氢的反应方程式如下:2H2O → 2H2↑ + O2↑三、实验材料与仪器1. 实验材料:(1)光催化剂:TiO2、ZnO、CdS等。
(2)电解质:NaOH、KOH等。
(3)水:纯净水或去离子水。
(4)光源:太阳光或模拟太阳光。
(5)其他:集电器、电极、气体收集装置、实验台等。
2. 实验仪器:(1)紫外-可见分光光度计(2)原子吸收光谱仪(3)氢气检测仪(4)氧气检测仪(5)pH计(6)磁力搅拌器(7)实验台四、实验步骤1. 准备实验装置,将光催化剂、电解质和水按一定比例混合,搅拌均匀。
2. 将混合液倒入电解池中,连接电极,并固定在实验台上。
3. 将光源照射到电解池上,开启磁力搅拌器,使混合液均匀受光。
4. 记录实验过程中氢气和氧气的产生速率,以及pH值的变化。
5. 实验结束后,关闭光源和搅拌器,取出电解池,清洗实验装置。
五、实验结果与分析1. 实验结果(1)氢气和氧气的产生速率与光照时间的关系:随着光照时间的增加,氢气和氧气的产生速率逐渐增加,说明光解水制氢的效率随着光照时间的延长而提高。
(2)氢气和氧气的产生速率与光催化剂的种类的关系:不同光催化剂的氢气和氧气产生速率存在差异,其中TiO2的光解水制氢效率较高。
(3)氢气和氧气的产生速率与电解质浓度的关系:随着电解质浓度的增加,氢气和氧气的产生速率逐渐增加,但过高的电解质浓度会导致光解水制氢效率下降。
2. 实验分析(1)光照时间:光照时间是影响光解水制氢效率的重要因素。
实验结果表明,光照时间越长,氢气和氧气的产生速率越高,说明光照时间对光解水制氢效率有显著影响。
光解水制氢的原理与发展前景
光解水制氢是一种利用太阳能将水分解成氢气和氧气的过程。
它基于光催化原理,通过使用光催化剂吸收太阳能,促使水分子发生光解反应,产生氢气和氧气。
光解水制氢的原理可以简单描述为:当光照射到光催化剂上时,光子的能量激发了催化剂的电子,使其跃迁到更高能级。
这些激发态的电子可以与水中的分子发生反应,将水分解成氢气和氧气。
通常情况下,需要一种辅助材料来促进反应,例如负责传递电子的电子传递剂。
光解水制氢具有许多潜在的优势和发展前景:
1. 可再生能源:光解水制氢利用太阳能作为能源,不会产生二氧化碳等温室气体,是一种环保的能源生产方法。
2. 氢气是清洁能源:制得的氢气可以用作清洁能源,燃烧时只产生水蒸气,不会产生有害气体。
它可以用于燃料电池、氢能源储存等应用领域。
3. 资源丰富:水是地球上最丰富的资源之一,光解水制氢可以利用水资源生产氢气,相比于传统的化石燃料,资源更加充足。
4. 储能技术:光解水制氢可以将太阳能转化为氢气,而氢气可以被储存并在需要时使用,解决了太阳能供应不稳定的问题。
然而,目前光解水制氢还面临一些挑战和限制,如催化剂的效率和稳定性、成本等方面。
但随着科学技术的进步和投入的研发努力,光解水制氢有望成为未来清洁能源领域的重要技术之一。
金属有机框架(MOFs)材料光解水制氢研究进展
陈斯;钱庆荣;薛珲
【期刊名称】《再生资源与循环经济》
【年(卷),期】2024(17)4
【摘要】随着全球变暖、环境污染和能源短缺等问题的日益严重,发展绿色可再生能源迫在眉睫。
通过光催化分解水制备氢气是实现更高层次可持续性的理想策略。
金属有机框架(MOFs)材料因其结构可控性、高孔隙性和独特的半导体特性,成为该领域的研究热点。
国内外学者对其用于光解水制氢进行了大量的研究,并取得了一定的进展。
系统的总结了基于MOFs材料及其复合材料的光催化剂在分解水制氢方面的应用,分析了其高效产氢的原因及可能的产氢机理,总结了MOFs基光催化剂的优势和局限,望能对开发新型高效的MOFs光催化剂提供参考。
【总页数】6页(P4-9)
【作者】陈斯;钱庆荣;薛珲
【作者单位】福建师范大学环境与资源学院、碳中和现代产业学院
【正文语种】中文
【中图分类】TQ032;F113.3
【相关文献】
1.通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能
2.金属-有机框架物(MOFs)储氢材料研究进展
3.异硫氰酸荧光素后修饰的金属有机三
元环光解水制氢4.金属有机框架(MOFs)材料用于重金属离子检测及吸附的研究进展5.钛基金属有机框架材料光催化分解水制氢的研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
新型多结纳米光催化剂的制备及在光解水制氢中的性能研究蔡良骏;严潇枭;任嗣利;刘洪霞
【期刊名称】《石油与天然气化工》
【年(卷),期】2024(53)2
【摘要】目的在纳米光催化制氢反应中,传统单p-n结催化剂受限于禁带宽度,仅能吸收太阳光谱特定区域的光子,对太阳能的利用效率不高。
为提高催化剂对太阳能的利用效率,研究制备了一种高活性的光解纯水催化剂。
方法受多结太阳能电池的启发,采用简单的浸渍法,将禁带宽度不同的半导体材料p-n结按照禁带宽度由低向高的叠加连接,制得一种新型多结纳米光催化剂,并用XRD、XPS、TEM技术对催化剂的结构进行表征。
结果多结纳米光催化剂进行光解纯水制氢反应3 h后,产氢量为15.53μmol,是传统单p-n结催化剂的93倍。
结论该结果为合成更稳定的多结纳米光催化剂,实现高效的太阳能转换提供了新的方向和思路。
【总页数】8页(P55-61)
【作者】蔡良骏;严潇枭;任嗣利;刘洪霞
【作者单位】矿冶环境污染防控江西省重点实验室;江西理工大学资源与环境工程学院;江西省环境工程职业学院
【正文语种】中文
【中图分类】O64
【相关文献】
1.可见光活性的Ru掺杂TiO_2光催化剂的制备及光解水制氢性能研究
2.Cu2(OH)2CO3-Zn0.5Cd0.5S光催化剂的制备及光解水制氢性能研究
3.新型等离子光催化剂纳米金-钛酸锌复合物的制备与光解水制氢性能
4.W18O49/C-TiO2直接Z型光催化剂的制备及光解水制氢性能
5.Ce掺杂六方相WO_3光催化剂的制备及其光解水制氢性能
因版权原因,仅展示原文概要,查看原文内容请购买。
光催化水分解制氢技术的研究进展近年来,随着全球能源危机的日益严重和环境问题的日益突出,寻找替代能源的研究变得愈发重要。
在这个背景下,光催化水分解制氢技术备受关注。
光催化水分解制氢技术是一种利用太阳能将水分解为氢气和氧气的方法,不仅能够解决能源问题,还能够减少环境污染。
本文将介绍光催化水分解制氢技术的研究进展。
首先,我们需要了解光催化水分解制氢技术的基本原理。
该技术利用光催化剂吸收太阳能,并将其转化为化学能,从而促使水的分解。
光催化剂通常是由半导体材料制成,如二氧化钛(TiO2)等。
当光照射到光催化剂表面时,光子被吸收并激发电子从价带跃迁到导带,形成电子空穴对。
电子和空穴在光催化剂表面的反应中参与水的分解,产生氢气和氧气。
然而,虽然光催化水分解制氢技术具有巨大的潜力,但目前仍面临着一些挑战。
首先,光催化剂的光吸收效率有待提高。
目前,大部分光催化剂只能吸收紫外光,而太阳光的能量主要集中在可见光区域。
因此,提高光催化剂的光吸收效率,特别是对可见光的吸收效率,是当前研究的重点之一。
其次,光催化剂的稳定性也是一个重要的问题。
由于光催化剂在分解水的过程中需要承受极端的条件,如高温、高压和酸碱环境等,因此光催化剂的稳定性对于实际应用至关重要。
目前,研究人员正在探索新的光催化剂材料,以提高其稳定性并延长其使用寿命。
此外,光催化水分解制氢技术的产氢效率也需要进一步提高。
目前,光催化水分解制氢技术的产氢效率较低,远远不能满足实际应用的需求。
因此,研究人员正在寻找新的光催化剂材料,优化光催化剂的结构和性能,以提高产氢效率。
在光催化水分解制氢技术的研究中,还出现了一种新的方法,即光电催化水分解制氢技术。
光电催化水分解制氢技术是将光催化和电催化相结合,通过引入外加电场来提高产氢效率。
这种技术不仅能够利用太阳能进行水的分解,还能够利用电能进行氢气的产生。
虽然光电催化水分解制氢技术在实验室中已取得了一定的进展,但其在工业化应用方面仍面临许多挑战,如电极材料的选择和电极反应的控制等。
光催化制备氢气进展报告中文摘要太阳光光催化水解制氢是解决能源和环境问题的一重要途径。
有效地实现可见光催化水解制氢技术的关键在于光催化材料的选择和光催化体系的选择。
本文介绍了光催化制氢原理,以及光催化剂在改性研究、光催化剂催化体系的研究进展和研究方向。
关键词:制氢光催化改性光催化体系 TiO21引言随着人口和经济的迅速增长,世界能源的消耗成倍增长,加速了化石燃料的枯竭,因而寻找新能源代替化石燃料已刻不容缓。
在新能源领域中,氢能已普遍被认为是一种最理想的新世纪无污染的绿色能源,这是因为氢燃烧,水是它的唯一产物.氢是自然界中最丰富的元素,它广泛地存在于水、矿物燃料和各类碳水化合物中.然而,传统的制氢方法,需要消耗巨大的常规能源,使氢能身价太高,大大限制了氢能的推广应用。
于是科学家们很快想到利用取之不尽、廉价的太阳能作为氢能形成过程中的一次能源,使氢能开发展现出更加广阔的前景.科学家们发现了以光催化材料为“媒介",能利用太阳能把水裂解为燃料电池所必需的氧和氢,科学家称这种仅用阳光和水生产出氢和氧的技术为“人类的理想技术之一”。
1.1半导体制氢原理图1所示为半导体光催化制氢反应的基本过程:半导体吸收能量等于或大于禁带宽度的光子,将发生电子由价带向导带的跃迁,这种光吸收称为本征吸收.本征吸收在价带生成空穴,在导带生成电子,这种光生电子—空穴对具有很强的还原和氧化活性,由其趋动的还原氧化反应称为光催化反应.如图1所示,光催化反应包括,光生电子还原电子受体H+和光生空穴氧化电子给体D—的电子转移反应,这两个反应分别称为光催化还原和光催化氧化.根据激发态的电子转移反应的热力学限制,光催化还原反应要求导带电位比受体的电位(H+/H2)偏负,光催化氧化反应要求价带电位比给体的电位(D/D-)偏正;换句话说,导带底能级要比受体的电位(H+/H2)能级高,价带顶能级要比给体的电位(D/D-)能级低。
在实际反应过程中,由于半导体能带弯曲及表面过电位等因素的影响,对禁带宽度的要求往往要比理论值大.也就是说,能够实现完全分解水得到氢气和氧气光催化材料的带隙必须大于1.23eV,并且导带和价带的位置相对氢标准电极电位的位置合适。
光解水制氢近几十年来,随着全球能源需求的持续增长,寻找新能源的研究越来越受到人们的关注。
氢能,它作为二次能源,具有清洁、高效、安全、可贮存、可运输等诸多优点,已普遍被人们认为是一种最理想的新世纪无污染的绿色能源,因此受到了各国的高度重视。
自1972年日本东京大学Fujishima A和Honda K两位教授首次报导TiO2单晶电极光催化分解水从而产生氢气这一现象后,揭示了利用太阳能直接分解水制氢的可能性,开辟了利用太阳能光解水制氢的研究道路。
随着电极电解水向半导体光催化分解水制氢的多相光催化(heterogeneous photocatalysis)的演变和TiO2以外的光催化剂的相继发现,兴起了以光催化方法分解水制氢(简称光解水)的研究,并在光催化剂的合成、改性等方面取得较大进展。
本文概括众多的研究论文,就该领域的最新研究进展作一综述。
1. 光解水的原理光催化反应可以分为两类“降低能垒”(down hil1)和“升高能垒”(up hil1)反应。
光催化氧化降解有机物属于降低能垒反应,此类反应的△G<0,反应过程不可逆,这类反应中在光催化剂的作用下引发生成O2-、HO2 、OH·、和H+ 等活性基团。
水分解生成H2和O2则是高能垒反应,该类反应的△G>0(△G=237 kJ/mo1),此类反应将光能转化为化学能。
要使水分解释放出氢气,热力学要求作为光催化材料的半导体材料的导带电位比氢电极电位EH+/H2稍负,而价带电位则应比氧电极电位Eo2/H2O 稍正。
光解水的原理为:光辐射在半导体上,当辐射的能量大于或相当于半导体的禁带宽度时,半导体内电子受激发从价带跃迁到导带,而空穴则留在价带,使电子和空穴发生分离,然后分别在半导体的不同位置将水还原成氢气或者将水氧化成氧气。
Khan等提出了作为光催化分解水制氢材料需要满足:高稳定性,不产生光腐蚀;价格便宜;能够满足分解水的热力学要求;能够吸收太阳光。
石墨相氮化碳(g-C3N4)光催化分解水制氢材料的研究进展刘景海;李鑫;包沙日勒敖都;唐如玲;张良;段莉梅【摘要】石墨相氮化碳(g-C3N4)具有环境友好、组成元素含量丰富、原料廉价和可规模化制备等优势,成为可见光半导体材料研究的重点。
本文从g-C3N4的掺杂、纳米尺度形貌控制、构筑多孔结构、表面异质结和组装析氧活性电催化剂等角度概述了相关的研究进展。
%Graphitic Carbon Nitride(g-C3N4)has attracted intensive research interests, due to the excellent charac-teristics of environmental-friendly, earth-abundant building elements, low-cost raw materials and large-scale pro-duction. In this review, we present the developed strategies of bulk doping, exfoliation to nanoscale, introducing po-rosity and fabricating surface junction to improve the activity,which would provide inspiration and ideas for develop-ing novel routes to advance the g-C3N4 photocatalysts.【期刊名称】《内蒙古民族大学学报(自然科学版)》【年(卷),期】2015(000)001【总页数】4页(P14-17)【关键词】光催化分解水;石墨相氮化碳;活性和稳定性;缺陷;电子传递【作者】刘景海;李鑫;包沙日勒敖都;唐如玲;张良;段莉梅【作者单位】内蒙古民族大学化学化工学院,内蒙古自治区天然产物化学与功能分子合成重点实验室,内蒙古通辽028000; 内蒙古民族大学功能材料研究所,内蒙古通辽028000;内蒙古民族大学化学化工学院,内蒙古自治区天然产物化学与功能分子合成重点实验室,内蒙古通辽028000;内蒙古民族大学化学化工学院,内蒙古自治区天然产物化学与功能分子合成重点实验室,内蒙古通辽028000;内蒙古民族大学化学化工学院,内蒙古自治区天然产物化学与功能分子合成重点实验室,内蒙古通辽028000;内蒙古民族大学化学化工学院,内蒙古自治区天然产物化学与功能分子合成重点实验室,内蒙古通辽028000;内蒙古民族大学化学化工学院,内蒙古自治区天然产物化学与功能分子合成重点实验室,内蒙古通辽028000; 内蒙古民族大学功能材料研究所,内蒙古通辽028000【正文语种】中文【中图分类】O613.711 概述本综述从发展可见光活性半导体光催化分解水制氢材料的角度,首先概括了可见光活性半导体光催化材料、分类和新兴材料.然后,介绍新型石墨相氮化碳光催化材料,重点分析了提高其光电流响应和光催化分解水制氢活性的几种调制途径,包括体相掺杂、引入多孔结构、制备纳米尺度形貌及构筑表面异质结.最后,从界面调制水氧化途径角度展望了负载析氢和析氧双催化活性位点来实现光催化分解水产氢的活性和稳定性提高的设计.2 可见光活性半导体光催化材料太阳光高效利用的半导体材料是光催化分解水制氢技术发展的关键和根本.以TiO2或SrTiO3为代表的紫外光利用的半导体材料已经取得了充分的发展〔1,2〕.但是,太阳光光谱中紫外光的成分占5%,可见光的成分占46%,其余的为红外光.所以,从高效太阳光利用的角度出发应该探索具有吸收长波段太阳光的半导体材料,其中,可见光活性的半导体材料是当前光催化半导体材料发展的重点.该类材料的发展可分为三类,第一类是掺杂的途径把半导体的光响应从紫外光区拓展到可见光区,例如,使用阴离子(N,C)和阳离子(Ti3+)参杂的TiO2〔3〕,镍(Ni)参杂的InTaO4〔4〕.第二类是通过与宽带隙的半导体形成固溶体的途径构筑可见光响应半导体,例如,GaN:ZnO形成的氧氮固溶体(Ga1-xZnx)(N1-yOy)具有可见光响应,且半导体的带隙可以通过Zn的含量来调控〔5〕.MInS2(M=Cu,Ag)与ZnS形成硫化物二元或三元固溶体,其中CuInS2-AgInS2-ZnS三元固溶体的吸收边拓展到700 nm〔6〕.第三类是新型的可见光响应的半导体材料,例如,Ag3PO4〔7〕,黑色纳米 TiO2〔8〕,氮化碳(g-C3N4)〔9〕.3 石墨相氮化碳材料及结构调制与光催化分解水制氢g-C3N4是由碳氮元素组成的杂环作为重复结构单元,具有类石墨层状聚集结构,不溶于水,化学和光化学稳定,吸收可见光(吸收边为445 nm),带隙为2.7eV且导带(CB)和价带(VB)的电化学电势热力学上可用于分解水.该材料可以通过含氮有机小分子(氰胺,二氰胺)在一定气氛下高温缩聚反应获得〔10〕.最近,笔者也发明了一种简单热解尿素的方法制备了g-C3N4,该方法在常压下反应且无须调节反应气氛〔11〕.但是,g-C3N4每层呈无定形织构,结晶度不高,层上缺陷多(domain and grain boundary),电子传递(电导性)性能差,从而导致其光电流响应和光催化分解水制氢活性很低,而通过掺杂调制、引入多孔结构、控制纳米尺度形貌以及构筑表面异质结等方法可以提高g-C3N4材料的光解水产氢活性.3.1 掺杂调制g-C3N 4导电性通过掺杂在边缘或层间引入传导单元来提高电子传递性能和光电流响应.Yuanjian Zhang等通过强酸质子化和磷(P)掺杂来提高g-C3N4导电性和光电流,表面酸化处理后g-C3N4导电性提高了近10倍〔12〕,P掺杂后电导提高了4倍〔13〕.石墨烯(graphene)与g-C3N4通过π-π相互作用插入g-C3N4层间的非共价掺杂策略也提高其导电性和光电流响应,研究结果表明,石墨烯含量低于1 wt%和0.4V偏压下,g-C3N4光电流提高了3倍〔14〕.Lizhi Zhang等〔15〕通过引入乙醇作为碳前驱体实现了g-C3N4的碳自掺杂,电化学阻抗测试结果表明碳自掺杂提高g-C3N4的导电性.3.2 引入多孔结构增加载流子传递通过多孔结构的构筑来增加与水接触界面的比表面积,从而增加光生电子到表面的传递.Xiufang Chen等〔16〕使用SBA-15作为硬模板合成了具有有序介孔结构的g-C3N4,光催化分解水产氢活性比体相材料提高了5倍.Xinchen Wang等〔17〕比较了具有不同比表面积的介孔结构g-C3N4的光催化分解水产氢活性.结果表明增加比表面积可以提高产氢活性,但不是简单的递增关系,这可能是由于大比表面积会增加g-C3N4的结构缺陷,从而不利于电子传递和光电流.Guohui Dong等〔18〕研究了多孔结构对g-C3N4光反应活性的影响,结果表明多孔结构使光电流和光还原CO2活性减小,使光氧化降解有机物活性提高.在前期的基础研究中,发现了不同分子前驱体热解制备的g-C3N4具有不同的比表面积〔19〕,由尿素热解生成的多孔g-C3N4的光催化分解水制氢活性最高,是硫脲(thiourea)热解产物的3.1倍,是双氰胺(dicyandiamide)热解产物的2.1倍.3.3 控制纳米尺度形貌来提高光电流和光催化分解水制氢能力除多孔结构外,g-C3N4纳米结构也用来增加比表面积.Gang Liu等〔20〕通过空气中高温热氧化刻蚀体相g-C3N4制备了g-C3N4纳米片,结果表明该二维(2D)纳米片的比表面积比体相提高了6倍,在-10V到10V的I-V电导测试结果表明纳米片具有半导体导电特性,而体相材料检测不到导电性.Xin-Hao Li等〔21〕使用阳极氧化铝(AAO)模板孔道的局域效应来提高g-C3N4纳米棒的聚集程度和结晶度,结果表明,结晶度提高光电流响应,使光解水产氢活性提高7倍,同时具备催化水氧化析出氧气的能力.3.4 构筑表面异质结来促进光生载流子分离在g-C3N4的表面构筑异质结可以提高光生电子-空穴的分离.Hongjian Yan等〔22〕通过P3HT与体相g-C3N4复合形成异质结来提高光解水产氢活性,结果表明,复合3wt%P3HT后g-C3N4光催化制氢活性提高了300倍.Jinshui Zhang 等〔23〕通过分步热聚合双氰胺和硫脲前驱来制备不同电子结构和聚合程度的g-C3N4异质结(CN/CNSheterojunction),结果表明该异质结提高CN的光电流和光催化分解水制氢活性.3.5 界面负载水分解电催化剂(OEC)来调控水氧化4e过程在研究中发现〔24〕,在可见光照射和无牺牲剂条件下,Pt沉积的g-C3N4(Pt-g-C3N4)能够分解水产生氢气和过氧化氢(H2O2).生成的吸附态H2O2使Pt-g-C3N4光催化分解水产氢失活,而吸附态H2O2分解后Pt-g-C3N4光催化分解水产氢的活性恢复.基于以上的发现,可以通过在g-C3N4的界面负载析氧活性电催化剂(Oxygen Evolution Catalysts,OEC)来调制水氧化动力学路径和产物,从而消除吸附态过氧化氢对光催化分解水制氢活性和稳定性的影响.Qiushi Yin等〔25〕制备了具有稳定氧气析出活性的杂多酸〔Co4(H2O)2(PW9O34)2〕10-(Co-POM)水溶性分子电催化剂,该Co-POM负载到g-C3N4已证明具有高的电催化氧气析出活性(Turnover Number,TON)〔26〕.4 观点和展望原理上,可以利用该Co-POM来调控g-C3N4与水界面反应,抑制过氧化氢生成.铂(Pt)纳米颗粒是经典的析氢电催化剂(Hydrogen Evolution Catalysts,HEC).纳米结构Mo2C〔27〕和NiMoNx〔28〕是具有高氢气析出活性的非贵金属电催化剂.因此,可以设计在g-C3N4界面负载析氢和析氧双催化活性位点来实现提高光催化分解水产氢的活性和稳定性的目的.参考文献【相关文献】〔1〕Kudo A,Miseki Y.Heterogeneous photocatalyst materials for water splitting 〔J〕,Chem Soc Rev,2009,38:253-78.〔2〕Osterloh FE.Inorganic materialsascatalystsfor photochemical splittingof water〔J〕.Chem Mater,2008,20:35-54.〔3〕(a)Khan SU M,Al-shahry M,ingler Jr WB.Efficient photochemical water splitting by a chemically modified n-TiO2〔J〕.Science,2002,297:2243-2245;(b)Asahi R,Morikawa T,Ohwaki T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides〔J〕.Science,2001,293:269-271;(c)Zuo F,Wang L,Wu T.self-Depedti3+Enhanled Photocatalyit for Hgdrogen Production hndervisible light〔J〕.JAm Chem Soc,2010,132.〔4〕ZGZou,JH Ye,K Sayama,et al.Direct Splitting Of Water Under Visible Light Irradiation With An Oxide Semiconductor Photocatalyst〔J〕.Nature,2001,414:625-627.〔5〕Maeda K,Teramura K,Lu D L,et al.Photocatalyst releasing hydrogen from water-Enhancing catalytic performance holdspromisefor hydrogen production by water splittingin sunlight〔J〕.Nature,2006,440:295.〔6〕Tsuji I,Kato H,Kudo A.Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS-CuInS2-AgInS2 Solid-Solution Photocatalyst〔J〕.Angew Chem,2005,117:3631-3634.〔7〕Yi ZG,Ye JKikugawa,H NKikugawa,et al.An orthophosphate semiconductor with photooxidation properties under visible-light irradiation〔J〕.Nat Mater,2010,9:559-564. 〔8〕Chen X,Liu B,L Yu,et al.Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals〔J〕.Science,2011,331:746-750.〔9〕Wang X C,Maeda K,Thomas A,et al.A metal-free polymeric photocatalyst for hydrogen production from water under visiblelight〔J〕.Nat Mater,2009,8:76-80. 〔10〕Groenewolt M,Antonietti M.Synthesisof g-C3N4 Nanoparticles in Mesoporous Silica Host Matrices〔J〕.Adv Mater,2005,17:1789-1792.〔11〕Liu JH,Zhang T K,Wang Z C,et al.Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity〔J〕.JMater Chem,2011,21:14398-14401.〔12〕Zhang Y J,Thomas A,Antonietti M,et al.Activation of carbon nitride solids by protonation:Morphology changes,enhanced ionic conductivity,and photoconductionexperiments〔J〕.JAm Chem Soc,2009,131:50-51.〔13〕Zhang Y J,Mori T,Ye JH,et al.Phosphorus-doped carbon nitride solid:enhanced electrical conductivity and photocur-rent generation〔J〕.JAm Chem Soc,2010,132:6294-6295.〔14〕Zhang Y J,Mori T,Niu L,et al.Non-covalent doping of graphitic carbon nitride polymer with graphene:controlled electronic structureand enhanced optoelectronic conversion〔J〕.Energy EnvironSci,2011,4:4517-4521.〔15〕Dong GH,Zhao K,Zhang L Z.Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4〔J〕.Chem Commun,2012,48:6178-6180. 〔16〕Chen X F,Jun Y-S,Takanabe K,et al.Ordered mesoporous SBA-15 type graphitic carbon nitride:a semiconductor host structurefor photocatalytic hydrogen evolution with visiblelight〔J〕.Chem Mater 2009,21:4093-4095.〔17〕Wang X C,Maeda K,Chen X.F,et al.Polymer semiconductors for artificial photosynthesis:hydrogen evolution by mesoporousgraphitic carbon nitridewith visiblelight〔J〕.JAm Chem Soc,2009,131:1680-1681.〔18〕Dong G H,Zhang L Z.Porous structure dependent photoreactivity of graphitic carbon nitride under visible light〔J〕,.J Mater Chem,2012,22:1160-1166.〔19〕Zhang Y W,Liu JH,Wu G,et al.Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production〔J〕.Nanoscale,2012,4:5300-5303.〔20〕Niu P,Zhang L L,Liu G,et al.Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities〔J〕.Adv Funct Mater,2012,22:4763-4770.〔21〕Li X H,Zhang J S,Chen X F,et al.Condensed graphitic carbon nitride nanorodsby nanoconfinement:promotion of crystallinity on photocatalytic conversion〔J〕.Chem Mater,2011,23:4344-4348.〔22〕Yan H J,Huang Y.Polymer composites of carbon nitride and poly(3-hexylthiophene)to achieve enhanced hydrogen production fromwater under visible light〔J〕.Chem Commun,2011,47:4168-4170.〔23〕Zhang JS,Zhang M W,Sun R Q,et al.A facile band alignment of polymeric carbon nitride semiconductors to construct isotypeheterojunctions〔J〕.Angew Chem Int Ed,2012,51:1-6.〔24〕Liu JH,Zhang YW,Lu LH,etal.Self-regenerated solar-driven photocatalytic water-splittingby ureaderived graphitic carbon nitridewith platinumnanoparticles〔J〕.Chem Commun,2012,48:8826-8828.〔25〕Yin QS,Tan JM,Claire B,et al.A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals〔J〕.Science,2010,328:342.〔26〕Wu J,Liao LW,Yan WH,et al.Polyoxometalates Immobilized in OrderedMesoporous Carbon Nitride as Highly Efficient Water Oxidation Catalysts〔J〕.Chem Sus Chem,2012,5:1207-1212.〔27〕Chen W F,Wang CH,Sosakik,et al.Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production〔J〕.Energy Environ Sci,2013,6:943-951.〔28〕Chen W F,SasakiK,Ma c,et al.Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets〔J〕.Angew Chem Int Ed,2012,51:1-6.。
半导体 SiC 光催化分解水制氢研究进展杨静静;何勇平;彭媛【摘要】简单介绍了半导体光催化分解水制氢的原理,综述了改变SiC的尺寸形貌、负载石墨烯、负载贵金属、半导体复合等方法对SiC的光催化产氢性能的影响,重点讨论了复合半导体的光催化产氢机理及SiC与其他半导体复合的研究进展,并提出前景展望。
%The basic mechanism of photocatalytic water-splitting to hydrogen over semiconductor photocatalyst was introduced.The methods to enhance hydrogen production were reviewed, including changing its morphology, loading graphene, loading noble metal, combining with semiconductors, and their effects on hydrogen production were discussed.The hydrogen-producing mechanism of compound semiconductor materials and the related research progress were focused on.The foreground was also prospected.【期刊名称】《广州化工》【年(卷),期】2015(000)007【总页数】3页(P34-36)【关键词】碳化硅SiC;光催化;氢气【作者】杨静静;何勇平;彭媛【作者单位】重庆化工职业学院环境与质量检测系,重庆 400020;中国航油集团重庆石油有限公司,重庆 401120;北京科技大学化学与生物工程学院化学系,北京 100083【正文语种】中文【中图分类】TQ426.7能源危机和环境污染是人类社会目前所面临的两大严峻问题,利用太阳能制氢是解决能源和环境问题的最有效途径之一。
2020年光解水制氢半导体光催化材料的研究进展精编版光解水制氢半导体光催化材料的研究进展田蒙奎1 ,2 ,上官文峰2 ,欧阳自远1 ,王世杰1(1. 中国科学院地球化学研究所,贵州贵阳550002 ;2. 上海交通大学机械与动力学院燃烧与环境技术研究中心,上海200030)摘要: 自从Fujishima2Honda 效应发现以来,科学研究者一直努力试图利用半导体光催化剂光分解水来获得既可储存而又清洁的学能———氢能。
近一二十年来,光催化材料的研究经历了从简单氧化物、复合氧化物、层状化合物到能响应可见光的光催化材料。
本文重点描述了这些光催化材料的结构和光催化特性,阐述了该课题的意和今后的研究方向。
关键词: 光解水;氢能;半导体光催化剂中图分号: X13 文献标识码:A文章编号:100129731 (2005) 10214892041 引言在能源危机和环境问题的双重压力下,氢能因其燃烧值高、储量丰富、无污染而成为最有希望替代现有化石能源的清洁能源,因而氢能的开发成了能源领域的研究热点。
自从Fujishima 和Honda 于1972 年发现了TiO2 光电化学能分解水产生H2 和O2 以来[1 ] ,科学研究者实现太阳能光解水制氢一直在作不懈的努力。
普遍接受的光解水制氢原理是:半导体光催化剂在能量等于或大于其禁带宽度的光辐射时,电子从最高电子占据分子轨道( HOMO ,即价带) 受激跃迁至最低电子占据分子轨道(LUMO ,即导带) ,从而在价带留下了光生空穴( h + ) ,导带中引入了光生电子(e - ) 。
光生空穴和光生电子分别具有氧化和还原能力。
要实现太阳能光解水制氢和氧,光生电子的还原能力必须能还原H2O 产生H2 ,而光生空穴的氧化能力必须能氧化H2O 产生O2 ,即半导体光催化剂的导带底要在H2O/ H2 电位( E0 = 0V ,p H = 0) 的上面(导带位置越高,电位越负,还原能力越强) ;而价带顶在O2 /H2O 电位( ENHE = + 1. 23V ,p H = 0) 的下面(价带位置越低,电位越正,氧化能力越强) 。
近一二十年来, TiO2 以外的光催化剂的相继发现,特别是能响应可见光的光催化材料的出现,使得光解水制氢研究进入了非常活跃时期。
本文就近期太阳能光解水制氢研究进展中的半导体光催化材料作一综述。
2 简单半导体氧化物,硫化物系光催化剂目前广泛研究的简单化合物半导体材料的能带结构如图1 所示:图1 部分半导体材料的能带结构示意图Fig 1 Schematic diagram of band st ructure for somesemiconductor sTiO2 光催化剂由于光照不发生光腐蚀、耐酸碱性好、化学性质稳定、对生物无毒性、来源丰富等优点而被广为利用。
具有代表性的P25 二氧化钛粉体材料几乎是现在最成功的光催化剂之一。
但TiO2 能隙大(3. 2eV) ,由此决定了其只能响应波长< 385nm 的仅占太阳辐射4 %左右的紫外光,对太阳能的利用率很低,并且只有在担载Pt 或RuO2 等情况下才有明显的制氢效果。
在TiO2 中Pt 和RuO2 等助催化剂的负载加快了光生电子和空穴向表面的迁移,有效抑制光生电子和空穴的复合,从而显著提高了光催化活性[2 ] 。
同时, TiO2 的复合体系如CdS2TiO2 、SnO22TiO2 、WO32TiO2 等也被广泛研究。
这些复合体系光催化性能不是简单的机械叠加,而是通过能级的匹配使电子空穴实现有效的分离。
通常光生电子从带隙窄、并且导带更低的半导体转移到TiO2 中的导带中,而光生空穴仍留在窄带隙的半导体中,从而实现电子空穴的分离,提高了其量子效率。
CdS 的带隙虽只有2. 4eV ,能有效的利用可见光,但由于存在如下光腐蚀,限制了其单独作为光催化剂的应用。
其光化学反应如下:CdS + hv----- h+ + e- (1)h+ + OH- -----1/2O2 + H+ (2)e- + H-----+ 1/2H2 (3)2h+ + CdS ------Cd2+ + S (4)因此,往往通过加入诸如Na2 SO3 、Na2 S 等牺牲剂(正孔捕捉剂) ,使得产氢反应不断进行下去。
同时,也常通过将CdS 同其它宽带隙的光催化剂复合来改变光催化剂的能带结构和稳定性[3 ] 。
3 复合氧化物3. 1 d 区具有d0 构型的复合氧化物近来,研究者把目光投向了具有半导体性质的过渡金属复合氧化物,试图寻求一些新型高效光解水制氢材料。
由于光催化现象首先发现于半导体TiO2 中,在复合金属氧化物中,人们首先对钛酸盐作了广泛的研究。
继钙钛矿型的Ca TiO3[ 4 ] 、Sr TiO3[ 5 ] 、A2 TiO13(A =Na 、K、Rb) [6 ] 、Na2 Ti3O7[7 ] 、K2 Ti4O9[ 8 ] 等光解水特性被报道,同处于d 区具有d0 电子构型的铌酸盐(Nb5 + ) 、钽酸盐( Ta5 + ) 体系也引起了一些研究者的兴趣。
其中A4Nb6O17 (A = K、Rb)[9 ] 、Sr2Nb2O7[ 10 ] 、A TaO3 ( A = Na 、K) 、MTa2O6 ( M =Ca 、Sr 、Ba ) 、Sr2 Ta2O7[11 ] 以及A2La2 Ti3O9 ( A = K、Rb 、Cs ) [ 12 ] 、ALaNb2O7 (A = K、Rb 、Cs) [13 ] 、RbLn Ta2O7 (Ln = La 、Pr 、Nd 、Sm) [14 ] 四元复合物等表现出光解水活性。
这些复合氧化物的结构特点是由TaO6 、NbO6 、TiO6 八面体以共棱或共角等形式构成了层板,而碱金属离子、碱土金属离子等穿插在层间的钙钛矿型和类钙钛矿型结构。
在ABO3 这种三元类钙钛矿型的复合物中,A位阳离子相对于B 位来说其对光催化性能的影响比较小,因为导带和价带分别由Bd 电子轨道和O2p 电子轨道决定。
而在RbLn Ta2O7 (Ln = La 、Pr 、Nd、Sm) 等四元复合物中,Ln 系元素未占据和部分占据的4f 电子轨道与O2p 和Ta5d 电子轨道的杂化对价带和导带都有影响,从而影响其光催化性能[15 ] 。
部分铌酸盐、钽酸盐、钛酸盐的制氢活性如表1 、2 所示[13~15 ] 。
表1 部分铌酸盐的光解水产氢活性Table 1 Photocatalytic activity for H2 evolution of va2rious niobates催化剂活性(μmol/ h)Ha2没有担载担载Pt (0. 1wt %)O2bKLaNb2O7 28 54 46RbLaNb2O7 60 90 2CsLaNb2O7 12 28 3KCa2Nb3O10 14 100 8RbCa2Nb3O10 3 26 16CsCa2Nb3O10 2 10 10KSr2Nb3O10 10 110 30KCa2NaNb4O13 5 280 39测试条件:催化剂1. 0g ;450W 高压汞灯;aMeOH 50ml +300ml H2O ;b0. 01mol/ L AgNO3 aq. 350ml 。
在钛酸盐中,K2 TiO13 、Na2 Ti6O13 以及Ba Ti4O9 等属于网状结构,其表面有凹凸不平,均匀分布的纳米级“雀巢”[16~18 ] 。
Zou 等[19 ] 合成了一系列新的光催化材料Bi2 XNbO7 (X = Al 、Ga 、In 、Y、稀土元素和Fe) 、Bi2 MO4 (M = Nb5 + 、Ta5 + ) , InMO4 (M = Nb5 + 、Ta5 + ,V5 + ) ,并且考察了其晶型结构、电子结构及其光解水制氢活性。
尽管这些催化剂有着不同的晶型结构,但它们都有一个共同的TaO6 或者NbO6 八面体,并且其能带结构的导带由Ta 、Nb 或V 的d 电子轨道决定,价带由O2p 电子轨道决定。
晶体结构中的M —O —M的键角和键长是影响半导体光催化剂光物理和光催化性能的重要因素。
其相对于TiO2 光催化活性较低的原因是用通常的高温固相法合成的催化剂的比表面积很小( < 1m2 / g) ,而P25 的比表面在50m2 / g 左右。
表2 部分钽酸盐和钛酸盐的光催化制氢活性Table 2 Photocatalytic activity for H2 evolution of va2rious tantates and titanates催化剂活性(μmol/ h)H2 O2催化剂活性(μmol/ h)H2 O2LiTaO3 6 2 CuTa2O6 11 4Na TaO3 4 1 ZnTa2O6 7 0KTaO3 29 30 PbTa2O6 3 0BaTa2O6 33 15 La TaO4 6. 9 2. 5Sr Ta2O6 52 18 Sr TiO3 微量0Cr TaO4 2 0 Na2 Ti6O13 微量0MnTa2O6 0. 2 0 K2 Ti6O13 微量0Co Ta2O6 11 4 Ba Ti4O19 微量0测试条件:催化剂1. 0g 分散于350ml 蒸馏水中;400W 高压汞灯内部照射。
3. 2 p 区具有d10 构型的复合氧化物从电子结构来看,处于d 区的具有d0 电子构型的复合物由于其全空的d 层电子轨道有利于电子从O2p轨道跃迁至由d 电子轨道确定的导带能级。
对于d 层电子轨道全充满的p 区复合氧化物的光催化活性也引起了人们的研究兴趣。
Sato 等[20 ,21 ] 考察了铟酸盐( In3 + ) 、锡酸盐( Sn4 + ) 、锑酸盐( Sb5 + ) 、锗酸盐( Ge4 + ) 、镓酸盐( Ga3 + ) 等一系列p 区具有d10 构型的复合氧化物(MIn2O4 (M = Ca 、Sr ) 、Na InO2 、La InO3 、Sr2 SnO4 、M2 Sb2O7 (M = Ca 、Sr ) 、CaSb2O6 、NaSbO3 、Zn2 GeO4 、ZnGa2O4 等) ,揭示了这些复合物在表面负载RuO2 后在紫外光下的光解水制氢活性, 其中Ca2 Sb2O7 、Sr2 Sb2O7 和NaSbO3 在紫外光辐射下,可以实现纯水的完全分解。
该区的部分光催化剂的制氢活性如表3[20 ,21 ] 所示。
表3 部分p 区具有d10 电子构型的半导体光催化剂的光催化产氢活性Table 3 Photocatalytic activity for H2 evolution ofsome p hotocatalys in p block wit h d10 config2uration催化剂活性(μmol/ h)H2 O2催化剂活性(μmol/ h)H2 O2NaSbO3 1. 8 0. 9 NaInO2 0. 9 0. 4CaSb2O6 1. 5 0. 3 CaIn2O4 13 5. 5Ca2 Sb2O7 2. 4 1. 1 Sr In2O4 3. 8 1. 9Sr2 Sb2O7 7. 9 3. 1 BaIn2O4 微量0ZnGa2O4 9. 0 3. 5 Zn2 GeO4 21 10测试条件:催化剂1g 300ml 蒸馏水中;200W Hg2Xe 灯(248~643nm) 内部照射;担载1 %(质量分数) RuO2 。