光解水制氢半导体光催化材料的研究进展
- 格式:doc
- 大小:66.00 KB
- 文档页数:22
光催化析氢综述
光催化析氢是一种利用光能促进水分子的光解反应,产生氢气的过程。
这种技术具有潜力成为一种清洁、可持续的能源生产方式,因为它可以利用太阳能作为驱动力,并且产生的氢气是一种清洁的燃料。
在光催化析氢中,通常使用半导体材料作为光催化剂。
这些半导体材料能够吸收光能,将其转化为电能,并驱动水分子的光解反应。
常见的半导体材料包括二氧化钛(TiO2)、氧化锌(ZnO)、氮化镓(GaN)等。
这些材料具有良好的光吸收性能和电子传导性能,能够有效地促进光催化析氢反应。
光催化析氢的反应机理包括以下几个步骤:光激发、电子传输、水分子吸附和催化反应。
当光照射到半导体催化剂表面时,光激发了半导体中的电子,并形成电子-空穴对。
这些电子和空穴可以通过半导体中的传导带和价带进行电子传输。
在水分子吸附到催化剂表面后,电子和空穴可以参与催化反应,将水分子分解为氢气和氧气。
尽管光催化析氢技术具有很大的潜力,但目前仍然面临一些挑战。
其中一个挑战是光催化剂的效率和稳定性。
虽然一些半导体材料表现出较高的光催化活性,但它们在实际应用中可能会受到光照条件、反应温度和水质等因素的影响。
因此,寻找高效、稳定的光催化剂仍然是一个研究热点。
另一个挑战是光催化析氢技术的规模化生产和应用。
目前,大多数研究还处于实验室阶段,尚未实现大规模的产业化应用。
因此,需要进一步研究和发展光催化析氢技术,以解决其在实际应用中的可行性和经济性问题。
光催化光解水制氢百科解释说明引言部分的内容:1.1 概述:光催化光解水制氢是一种利用太阳能将水分子分解成氢气和氧气的现代科学技术。
通过这种方法,不仅可以生产出清洁的燃料氢气,还能同时减少对环境的影响。
光催化光解水制氢被认为是一种可持续发展和环境友好的能源解决方案。
1.2 文章结构:本文主要包含五个部分:引言、光催化光解水制氢的原理与机制、光催化材料在光解水制氢中的应用、光解水制氢过程中面临的挑战和展望以及结论。
文章将从介绍概念开始,然后深入探讨光催化反应的定义与特点、光解水制氢的原理与相关反应以及选择与设计适合于该过程的光催化剂等内容。
随后,会介绍半导体材料在该领域中的应用、复合材料与异质结构设计以及催化剂修饰及载流子传输调控技术等方面。
接下来,我们将重点讨论动力学限制和提高效率的策略、资源与环境可持续性考虑以及商业化应用前景与未来发展方向。
最后,我们将总结本论文的主要研究成果,并展望未来在这一领域的研究方向。
1.3 目的:本文的目的是全面阐述光催化光解水制氢的原理、机制和应用,并分析该过程中所面临的挑战和可能的解决办法。
通过对相关文献和研究成果进行综合整理和分析,希望为读者提供一个深入了解光催化光解水制氢以及其潜在应用价值和发展前景的全面指南。
此外,本文还将探讨存在于该领域中尚未解决问题,并提出未来进一步研究该技术时可能关注的重点方向。
根据以上内容撰写了文章"1. 引言"部分,请您查看并反馈满意度。
2. 光催化光解水制氢的原理与机制2.1 光催化反应的定义与特点光催化反应是指利用光能激发物质中的电子和空穴,在固体表面或溶液中进行化学反应的过程。
相比传统的热催化反应,光催化反应具有以下几个显著特点:首先,光能可以高效提供活性能量,使得部分惰性物质也能够发生反应;其次,光催化反应在温和条件下进行,减少了对环境的热污染;此外,光催化材料具有可再生性和可调控性等优点,在节约资源和环境可持续性方面具有潜力。
光解水制氢的原理与发展前景
光解水制氢是一种利用太阳能将水分解成氢气和氧气的过程。
它基于光催化原理,通过使用光催化剂吸收太阳能,促使水分子发生光解反应,产生氢气和氧气。
光解水制氢的原理可以简单描述为:当光照射到光催化剂上时,光子的能量激发了催化剂的电子,使其跃迁到更高能级。
这些激发态的电子可以与水中的分子发生反应,将水分解成氢气和氧气。
通常情况下,需要一种辅助材料来促进反应,例如负责传递电子的电子传递剂。
光解水制氢具有许多潜在的优势和发展前景:
1. 可再生能源:光解水制氢利用太阳能作为能源,不会产生二氧化碳等温室气体,是一种环保的能源生产方法。
2. 氢气是清洁能源:制得的氢气可以用作清洁能源,燃烧时只产生水蒸气,不会产生有害气体。
它可以用于燃料电池、氢能源储存等应用领域。
3. 资源丰富:水是地球上最丰富的资源之一,光解水制氢可以利用水资源生产氢气,相比于传统的化石燃料,资源更加充足。
4. 储能技术:光解水制氢可以将太阳能转化为氢气,而氢气可以被储存并在需要时使用,解决了太阳能供应不稳定的问题。
然而,目前光解水制氢还面临一些挑战和限制,如催化剂的效率和稳定性、成本等方面。
但随着科学技术的进步和投入的研发努力,光解水制氢有望成为未来清洁能源领域的重要技术之一。
光解水制氢技术在可再生能源制备中应用前景展望引言:在世界范围内,人们越来越关注环境保护和可持续发展。
由于传统能源资源的日益枯竭和对环境的污染,可再生能源备受关注。
光解水制氢技术是其中一项前沿技术,它可以利用太阳能将水分解成氢气和氧气,是一种极具潜力的可再生能源制备技术。
本文将对光解水制氢技术的应用前景进行展望,并分析其在可再生能源制备中的重要性。
一、光解水制氢技术的原理与优势光解水制氢技术是利用太阳能作为能源,通过电解水来制备氢气。
其原理基于水的光生化学反应,通过光照射下的半导体材料产生光生载流子,然后将载流子通过特殊催化剂的作用将水分解为氢气和氧气。
相比于传统的制氢方法,光解水制氢技术具有以下优势:1. 可再生性:太阳能是不可枯竭的自然资源,因此光解水制氢技术具有可再生性,不对环境产生二氧化碳排放和其他污染物。
2. 高效性:通过优化半导体材料和催化剂的选择,光解水制氢技术可以实现高效的太阳能转化效率。
一些最新的研究工作已经取得了高达19%的光电转化效率。
3. 能量存储:氢气是一种高能量密度的燃料,光解水制氢技术可以将太阳能转化为氢气,方便存储和运输。
而且,在需要能源的地方,氢气可以通过燃烧或燃料电池产生能量,成为一个理想的可再生能源途径。
二、光解水制氢技术在可再生能源制备中的应用1. 氢能源的生产与储存光解水制氢技术可以作为可再生能源的重要组成部分,为氢能源的生产与储存提供了可行的途径。
通过利用太阳能,光解水制氢技术可以大规模生产氢气,并将其储存在槽罐或氢气储存装置中。
这为后续的能源使用提供了便利。
此外,氢气可以作为储能介质,用于高效储能系统的建设,以平衡可再生能源的间歇性产出。
2. 燃料电池的发展光解水制氢技术可以为燃料电池的发展提供燃料。
燃料电池是一种将氢气和氧气通过化学反应产生电能的设备。
光解水制氢技术可以解决燃料供应的问题,有效推动燃料电池的应用。
燃料电池具有高效、无污染、静音等特点,可以广泛应用于交通工具、电力系统和微型电子设备等领域,推动可再生能源在各个领域的应用。
ZnO纳米材料在光电解水领域的研究进展作者:刘泽冲来源:《新材料产业》 2017年第7期一、光电解水制氢简介氢是一种热值很高的清洁能源,其完全燃烧的产物——水不会给环境带来任何污染,而且放热量是相同质量汽油的2.7倍。
因而开发低能耗高效的氢气生产方法,已成为国内外众多科学家共同关注的问题。
但是,大规模、低成本的生产、储存、运输氢气已经遇到了很大困难。
目前获取氢气的方法主要是热裂解石油气,这种方法耗能高、污染大。
另外,常温常压下储存高质量密度的氢气仍非常困难。
与传统的以汽油为燃料的内燃机相比,燃料电池的价格仍过高。
尽管面临着种种挑战,氢气做为一种清洁能源,在生产、储存、应用等方面仍持续受到关注。
在产氢方面,发展低成本的材料和技术至关重要。
自从日本的Fujishima 等于1972年首次发现在近紫外光(380nm) ,金红石型二氧化钛(TiO 2 )单晶电极能使水在常温下分解为氢气(H 2 )和氧气(O 2 )以来,揭示了利用太阳能直接分解水制氢的可能性,科学家称这种仅用阳光和水生产出氢和氧的技术为“人类的理想技术之一” 。
从太阳能利用角度看,光解水制氢主要是利用太阳能中阳光辐射的紫外光和可见光部分。
目前,光解水制氢主要通过光电化学技术(Photoelectrochemistry,PEC)和光催化技术(Photocatalysis)。
光电化学制氢是通过光阳极吸收太阳能并将光能转化为电能。
光阳极通常为光半导体材料,受光激发可以产生电子-空穴对。
光阳极和对电极组成光电化学池,在电解质存在下光阳极吸光后在半导体导带上产生的电子通过外电路流向对极,水中的质子从对极上接受电子产生氢气将光半导体微粒直接悬浮在水中进行光解水反应。
半导体光催化在原理上类似于光化学电池,细小的光半导体微粒可以被看作一个个微电极悬浮在水中,像光阳极一样起作用,所不同的是它们之间没有像光电化学电池那样被隔开。
这种技术大大简化了半导体光催化分解水制氢体系,但是,光激发在同一个半导体微粒上产生的电子-空穴对极易复合,不但降低了光电转换效率,同时也影响光解水同时放氢、放氧。
光催化法制氢原理光催化法制氢是一种利用光能将水分解成氢气和氧气的方法。
光催化法制氢最常用的材料是半导体材料。
当光线照射到半导体材料表面时,光能被吸收,并激发电子从价带跃迁到导带,形成电子空穴对。
电子和空穴在半导体材料内部移动,与水分子发生反应,产生氢气和氧气。
1.光吸收:半导体材料具有能带结构,当光线照射到半导体材料表面时,光子被半导体吸收并产生光生载流子。
2.载流子分离:光生载流子主要包括电子和空穴。
在半导体材料中,由于能带结构的限制,电子会跃迁到导带而成为自由电子,空穴则留在价带中。
3.载流子迁移:在半导体材料内部,光生的电子和空穴会受到施加电场的影响而发生迁移,形成电流。
4.内外界界面反应:光生的电子和空穴迁移到半导体材料表面后,会与水分子发生反应。
空穴会参与水的氧化反应,将水分解为氧气和氢离子。
电子则参与氢离子的还原反应,生成氢气。
5.氢氧离子重组:由于反应生成的氢离子和氧离子在溶液中容易重新结合,需要加入电解质来稳定氢离子和氧离子,并阻止二次反应的发生。
6.氢气收集:生成的氢气可以通过收集装置进行收集、储存和利用。
以上就是光催化法制氢的基本原理。
通过半导体材料的光吸收、载流子分离、迁移以及与水分子的反应,实现了将光能转化为化学能的过程,从而实现了水的分解产生氢气。
光催化法制氢相对于传统的化学法制氢具有能源环境友好、无二氧化碳排放的优点。
然而,光催化法制氢在实际应用中还面临着诸多挑战,包括光催化材料的效率和稳定性、光损耗等问题。
因此,未来需要进一步研究和开发高效、稳定的光催化材料,以实现光催化法在大规模制氢中的应用。
光解水制氢之谜清洁无污染、资源储量丰富……作为一种十分理想的可再生新能源,氢气密度最小,在自然界普遍存在,发热值高,燃烧性能好,本身无毒,燃烧后的产物为水,不会产生污染物质,燃烧生成的水可继续制氢,可以反复循环使用。
世界各国对开发利用氢能都十分重视,投入了不少人力、财力、物力,并且已取得了多方面的进展。
早在第二次世界大战期间,液氢即用作A-2 火箭发动机的液体推进剂。
现在液氢已被广泛用作火箭和航天动力的燃料。
氢气实在是一种理想的能量来源,只是人们一直未能找到不消耗其他能源而大量制作氢气的方法。
目前,中国科学技术大学熊宇杰教授课题组的一项研究首次揭示了硅纳米线表面“光解水制氢”的机制,为其制氢性能的提高提供了新的途径。
该工作以《硅纳米线光解水制氢之谜》为题,发表于国际重要化学期刊《德国应用化学》上,并入选为该期刊的热点论文。
模拟光合作用制氢2008 年8 月6 日,美国麻省理工大学的科学家在实验室内首次再现了光合作用的过程,在整个过程中光合作用将水分解成氢和氧,并产生了可供燃烧的氢气和氧气。
该实验的意义在于光合作用产生的能量能够被人类利用,这种技术将引发一场太阳能使用的大革命,以补偿煤炭、石油等不可再生资源的消耗。
光合作用广泛存在于自然界,叶绿体收集太阳光能,将水和二氧化碳转化为有机物(葡萄糖),并释放出氧气。
但这只是最终结果,整个过程一开始是将水和二氧化碳转化为氧,自由的质子和电子。
在光合作用中产生了两个化学反应,叶绿素分子失去两个电子,水分子发生分解。
尽管光合作用在各种教科书中都得到了详尽的阐述,但是想人工实现这一过程却绝非易事,主要的问题在于缺少有效地电解水的媒介,在植物中充当这一媒介的是叶绿体。
众所周知,水能够电解成氢和氧,但整个过程毫无意义。
为了提高这一性能,化学家们提供了能促使反应在更低电压情况下分解的催化剂。
用钉和铂充当这种媒介,当然这两种金属都很昂贵。
除此之外,反应要进行还需要特定的温度条件和气压。
清洁能源“点金石”:高效光解水催化剂问世倘若有一种神奇的催化剂,能够只依靠太阳光完全分解水,生成氢气和氧气,那么人类也许可以永远摆脱能源危机的阴影。
而如今,休斯顿大学包吉明教授的团队又朝着目标前进了一大步——他们发现氧化钴纳米晶可以高效催化水在太阳光下的分解反应。
这项研究成果发表在本周的《自然-纳米技术》上。
催化光解水是一项自上世纪七十年代以来被广泛关注的领域。
包吉明团队的突破之处,在于光源由可见光而非传统的紫外光充当,而且无须消耗性材料和助催化剂,即可使水完全分解为氢气与氧气。
光能-化学能转化效率(按氢气产量计算)从过去使用人造树叶时的0.1%提升到了5%。
包吉明团队所使用的氧化钴(II)纳米晶的透射电子显微镜图像。
图片来源:Longb Liao,et al.(2013)Nature Nanotechnology.研究者通过球磨法及飞秒激光烧蚀法制备得到性质完全一致的氧化钴(II)纳米晶(CoO nanoparticles),将它们悬浮在呈中性的水里,装满烧瓶,再用一束由固态激光器发射的激光(波长为532nm)或由AM 1.5G(地表标准化太阳能)太阳模拟灯发出的光自烧瓶底部向上照射。
瓶中产生的混合气体被注射器采样,通过装有热导检测器(TCD)的气相色谱(GC)分离。
气相色谱分析结果表明,在光的照射和氧化钴纳米晶的催化下,水发生分解生成氢气和氧气。
图a:气相色谱的分析结果。
氢气(H2)和氧气(O2)的比值非常接近预期的2:1,预示水的完全分解。
此外,没有检测到明显的氮气信号,证明烧瓶气密性良好,氧气来源并非外界大气。
图b:水在约15mg氧化钴纳米晶的催化下光解产生的氢气和氧气的量。
氢气与氧气的生成源于光照,并与光照功率正相关。
图片来源:Longb Liao,et al.(2013)Nature Nanotechnology.为了证实生成的氧气中不含氧化钴纳米晶中的氧原子,实验团队又以18O标记的水为材料重复了实验,并通过质谱(MS)和残余气体分析仪(RGA)确认了氧原子来源仅为水。
光解水制氢半导体光催化材料的研究进展田蒙奎1 ,2 ,上官文峰2 ,欧阳自远1 ,王世杰1(1. 中国科学院地球化学研究所,贵州贵阳550002 ;2. 上海交通大学机械与动力学院燃烧与环境技术研究中心,上海200030)摘要: 自从Fujishima2Honda 效应发现以来,科学研究者一直努力试图利用半导体光催化剂光分解水来获得既可储存而又清洁的学能———氢能。
近一二十年来,光催化材料的研究经历了从简单氧化物、复合氧化物、层状化合物到能响应可见光的光催化材料。
本文重点描述了这些光催化材料的结构和光催化特性,阐述了该课题的意和今后的研究方向。
关键词: 光解水;氢能;半导体光催化剂中图分号: X13 文献标识码:A文章编号:100129731 (2005) 10214892041 引言在能源危机和环境问题的双重压力下,氢能因其燃烧值高、储量丰富、无污染而成为最有希望替代现有化石能源的清洁能源,因而氢能的开发成了能源领域的研究热点。
自从Fujishima 和Honda 于1972 年发现了TiO2 光电化学能分解水产生H2 和O2 以来[1 ] ,科学研究者实现太阳能光解水制氢一直在作不懈的努力。
普遍接受的光解水制氢原理是:半导体光催化剂在能量等于或大于其禁带宽度的光辐射时,电子从最高电子占据分子轨道( HOMO ,即价带) 受激跃迁至最低电子占据分子轨道(LUMO ,即导带) ,从而在价带留下了光生空穴( h + ) , 导带中引入了光生电子(e - ) 。
光生空穴和光生电子分别具有氧化和还原能力。
要实现太阳能光解水制氢和氧,光生电子的还原能力必须能还原H2O 产生H2 ,而光生空穴的氧化能力必须能氧化H2O 产生O2 ,即半导体光催化剂的导带底要在H2O/ H2 电位( E0 = 0V ,p H = 0) 的上面(导带位置越高,电位越负,还原能力越强) ;而价带顶在O2 / H2O 电位( ENHE = + 1. 23V ,p H = 0) 的下面(价带位置越低,电位越正,氧化能力越强) 。
近一二十年来, TiO2 以外的光催化剂的相继发现,特别是能响应可见光的光催化材料的出现,使得光解水制氢研究进入了非常活跃时期。
本文就近期太阳能光解水制氢研究进展中的半导体光催化材料作一综述。
2 简单半导体氧化物,硫化物系光催化剂目前广泛研究的简单化合物半导体材料的能带结构如图1 所示:图1 部分半导体材料的能带结构示意图Fig 1 Schematic diagram of band st ructure for somesemiconductor sTiO2 光催化剂由于光照不发生光腐蚀、耐酸碱性好、化学性质稳定、对生物无毒性、来源丰富等优点而被广为利用。
具有代表性的P25 二氧化钛粉体材料几乎是现在最成功的光催化剂之一。
但TiO2 能隙大(3. 2eV) ,由此决定了其只能响应波长< 385nm 的仅占太阳辐射4 %左右的紫外光,对太阳能的利用率很低,并且只有在担载Pt 或RuO2 等情况下才有明显的制氢效果。
在TiO2 中Pt 和RuO2 等助催化剂的负载加快了光生电子和空穴向表面的迁移,有效抑制光生电子和空穴的复合,从而显著提高了光催化活性[2 ] 。
同时, TiO2 的复合体系如CdS2TiO2 、SnO22TiO2 、WO32TiO2 等也被广泛研究。
这些复合体系光催化性能不是简单的机械叠加,而是通过能级的匹配使电子空穴实现有效的分离。
通常光生电子从带隙窄、并且导带更低的半导体转移到TiO2 中的导带中,而光生空穴仍留在窄带隙的半导体中,从而实现电子空穴的分离,提高了其量子效率。
CdS 的带隙虽只有2. 4eV ,能有效的利用可见光,但由于存在如下光腐蚀,限制了其单独作为光催化剂的应用。
其光化学反应如下:CdS + hv----- h+ + e- (1)h+ + OH- -----1/2O2 + H+ (2)e- + H-----+ 1/2H2 (3)2h+ + CdS ------Cd2+ + S (4)因此,往往通过加入诸如Na2 SO3 、Na2 S 等牺牲剂(正孔捕捉剂) ,使得产氢反应不断进行下去。
同时,也常通过将CdS 同其它宽带隙的光催化剂复合来改变光催化剂的能带结构和稳定性[3 ] 。
3 复合氧化物3. 1 d 区具有d0 构型的复合氧化物近来,研究者把目光投向了具有半导体性质的过渡金属复合氧化物,试图寻求一些新型高效光解水制氢材料。
由于光催化现象首先发现于半导体TiO2 中,在复合金属氧化物中,人们首先对钛酸盐作了广泛的研究。
继钙钛矿型的Ca TiO3[ 4 ] 、Sr TiO3[ 5 ] 、A2 TiO13(A = Na 、K、Rb) [6 ] 、Na2 Ti3O7[7 ] 、K2 Ti4O9[ 8 ] 等光解水特性被报道,同处于d 区具有d0 电子构型的铌酸盐(Nb5 + ) 、钽酸盐( Ta5 + ) 体系也引起了一些研究者的兴趣。
其中A4Nb6O17 (A = K、Rb) [9 ] 、Sr2Nb2O7[ 10 ] 、A TaO3 ( A = Na 、K) 、MTa2O6 ( M = Ca 、Sr 、Ba ) 、Sr2 Ta2O7[11 ] 以及A2La2 Ti3O9 ( A = K、Rb 、Cs ) [ 12 ] 、ALaNb2O7 (A = K、Rb 、Cs) [13 ] 、RbLn Ta2O7 (Ln = La 、Pr 、Nd 、Sm) [14 ] 四元复合物等表现出光解水活性。
这些复合氧化物的结构特点是由TaO6 、NbO6 、TiO6 八面体以共棱或共角等形式构成了层板,而碱金属离子、碱土金属离子等穿插在层间的钙钛矿型和类钙钛矿型结构。
在ABO3 这种三元类钙钛矿型的复合物中,A位阳离子相对于B 位来说其对光催化性能的影响比较小,因为导带和价带分别由Bd 电子轨道和O2p 电子轨道决定。
而在RbLn Ta2O7 (Ln = La 、Pr 、Nd、Sm) 等四元复合物中,Ln 系元素未占据和部分占据的4f 电子轨道与O2p 和Ta5d 电子轨道的杂化对价带和导带都有影响,从而影响其光催化性能[15 ] 。
部分铌酸盐、钽酸盐、钛酸盐的制氢活性如表1 、2 所示[13~15 ] 。
表1 部分铌酸盐的光解水产氢活性Table 1 Photocatalytic activity for H2 evolution of va2rious niobates催化剂活性(μmol/ h)Ha2没有担载担载Pt (0. 1wt %)O2bKLaNb2O7 28 54 46RbLaNb2O7 60 90 2CsLaNb2O7 12 28 3KCa2Nb3O10 14 100 8RbCa2Nb3O10 3 26 16CsCa2Nb3O10 2 10 10KSr2Nb3O10 10 110 30KCa2NaNb4O13 5 280 39测试条件:催化剂1. 0g ;450W 高压汞灯;aMeOH 50ml + 300ml H2O ;b0. 01mol/ L AgNO3 aq. 350ml 。
在钛酸盐中,K2 TiO13 、Na2 Ti6O13 以及Ba Ti4O9 等属于网状结构,其表面有凹凸不平,均匀分布的纳米级“雀巢”[16~18 ] 。
Zou 等[19 ] 合成了一系列新的光催化材料Bi2 XNbO7 (X = Al 、Ga 、In 、Y、稀土元素和Fe) 、Bi2MO4 (M = Nb5 + 、Ta5 + ) , InMO4 (M = Nb5 + 、Ta5 + , V5 + ) ,并且考察了其晶型结构、电子结构及其光解水制氢活性。
尽管这些催化剂有着不同的晶型结构,但它们都有一个共同的TaO6 或者NbO6 八面体,并且其能带结构的导带由Ta 、Nb 或V 的d 电子轨道决定, 价带由O2p 电子轨道决定。
晶体结构中的M —O —M 的键角和键长是影响半导体光催化剂光物理和光催化性能的重要因素。
其相对于TiO2 光催化活性较低的原因是用通常的高温固相法合成的催化剂的比表面积很小( < 1m2 / g) ,而P25 的比表面在50m2 / g 左右。
表2 部分钽酸盐和钛酸盐的光催化制氢活性Table 2 Photocatalytic activity for H2 evolution of va2rious tantates and titanates催化剂活性(μmol/ h)H2 O2催化剂活性(μmol/ h)H2 O2LiTaO3 6 2 CuTa2O6 11 4Na TaO3 4 1 ZnTa2O6 7 0KTaO3 29 30 PbTa2O6 3 0BaTa2O6 33 15 La TaO4 6. 9 2. 5Sr Ta2O6 52 18 Sr TiO3 微量0Cr TaO4 2 0 Na2 Ti6O13 微量0MnTa2O6 0. 2 0 K2 Ti6O13 微量0Co Ta2O6 11 4 Ba Ti4O19 微量0测试条件:催化剂1. 0g 分散于350ml 蒸馏水中;400W 高压汞灯内部照射。
3. 2 p 区具有d10 构型的复合氧化物从电子结构来看,处于d 区的具有d0 电子构型的复合物由于其全空的d 层电子轨道有利于电子从O2p轨道跃迁至由d 电子轨道确定的导带能级。
对于d 层电子轨道全充满的p 区复合氧化物的光催化活性也引起了人们的研究兴趣。
Sato 等[20 ,21 ] 考察了铟酸盐( In3 + ) 、锡酸盐( Sn4 + ) 、锑酸盐( Sb5 + ) 、锗酸盐( Ge4 + ) 、镓酸盐( Ga3 + ) 等一系列p 区具有d10 构型的复合氧化物(MIn2O4 (M = Ca 、Sr ) 、Na InO2 、La InO3 、Sr2 SnO4 、M2 Sb2O7 (M = Ca 、Sr ) 、CaSb2O6 、NaSbO3 、Zn2 GeO4 、ZnGa2O4 等) ,揭示了这些复合物在表面负载RuO2 后在紫外光下的光解水制氢活性, 其中Ca2 Sb2O7 、Sr2 Sb2O7 和NaSbO3 在紫外光辐射下,可以实现纯水的完全分解。
该区的部分光催化剂的制氢活性如表3[20 ,21 ] 所示。
表3 部分p 区具有d10 电子构型的半导体光催化剂的光催化产氢活性Table 3 Photocatalytic activity for H2 evolution ofsome p hotocatalys in p block wit h d10 config2uration催化剂活性(μmol/ h)H2 O2催化剂活性(μmol/ h)H2 O2NaSbO3 1. 8 0. 9 NaInO2 0. 9 0. 4CaSb2O6 1. 5 0. 3 CaIn2O4 13 5. 5Ca2 Sb2O7 2. 4 1. 1 Sr In2O4 3. 8 1. 9Sr2 Sb2O7 7. 9 3. 1 BaIn2O4 微量0ZnGa2O4 9. 0 3. 5 Zn2 GeO4 21 10测试条件:催化剂1g 300ml 蒸馏水中;200W Hg2Xe 灯(248~643nm) 内部照射;担载1 %(质量分数) RuO2 。