导航系统-导航基础
- 格式:ppt
- 大小:23.70 MB
- 文档页数:51
GPS复习题1.名词解释导航:通过实时地测定运载体在途中行进时的位置和速度,引导运载体沿一定航线经济而安全地到达目的地的技术。
极移:地球自转轴相对于地球体的位置不是固定的,地极点在地球表面上的位置随时间而变化的现象称为极移。
历元:在天文学和卫星定位中,与所获取数据对应的时刻也称历元。
多路径效应: 多路径效应也称多路径误差,即接收机天线除直接收到卫星发射的信号外,还可能收到经天线周围地物一次或多次反射的卫星信号。
整周模糊度:一般是未知的,通常称为整周未知数(整周待定值或整周模糊度)周跳:gps卫星信号中断时,初始整周计数发生变化的现象。
天线相位差:卫星天线几何中心与相位中心的偏差绝对定位;在地球协议坐标系中,确定观测站相对地球质心的位置。
相对定位:在地球协议坐标系中,确定观测站与地面某一参考点之间的相对位置。
整数解:将平差计算所得的整周未知数取为相近的整数,并作为已知数代入原方程,重新解算其它待定参数。
当观测误差和外界误差(或残差)对观测值影响较小时,该方法较有效,一般应用于基线较短的相对定位中。
非整数解:如果外界误差影响较大,求解的整周未知数精度较低(误差影响大于半个波长),将其凑成正数,无助于提高解的精度。
此时,不考虑整周未知数的整数性质,平差计算所得的整周未知数,不再进行凑整和重新计算。
一般用于基线较长相对定位中大地高:某点的大地高是该点到通过该点的参考椭球的法线与参考椭球面的交点间的距离。
大地高也称为椭球高,大地高一般用符号H表示。
正高:某点的正高是该点到通过该点的铅垂线与大地水准面的交点之间的距离,正高用符号Hg表示正常高:常高系统是以似大地水准面为基准的高程系统。
某点的正常高正是该点到通过该点的铅垂线与似大地水准面的交点之间的距离,正常高用Hr表示。
高程异常:似大地水准面到参考椭球面的距离,称为高程异常,记为 。
1.简答题1简述导航技术的发展历程。
推算定位-天文导航-惯性导航-无线电导航2简述导航系统的分类并举例。
车载多媒体娱乐导航系统基础知识车载多媒体娱乐导航系统基础知识1·简介车载多媒体娱乐导航系统是一种集成了多媒体播放、导航功能以及车辆信息显示等功能于一体的设备。
它能够提供丰富的娱乐内容和实时导航服务,为车主和乘客带来更加便利和愉快的出行体验。
2·硬件组成2·1 主控单元主控单元是车载多媒体娱乐导航系统的核心部件,负责处理各个功能模块之间的信息交互和控制指令。
它通常由一块高性能处理器、内存、存储器等组成。
2·2 显示屏显示屏是车载多媒体娱乐导航系统的主要输出设备,用于显示导航地图、音乐播放界面、影片等内容。
目前市场上常见的显示屏类型有液晶显示屏和触摸屏两种。
2·3 音频设备音频设备包括扬声器和放大器,用于播放音乐、语音导航等声音内容。
一些高端车载多媒体娱乐导航系统还会支持环绕声效果和噪音降低技术。
2·4 导航模块导航模块通过接收卫星信号,实现车辆位置的定位和导航功能。
它通常由GPS芯片和相关的导航软件组成。
2·5 多媒体模块多媒体模块支持各种娱乐功能,包括音乐播放、影片播放、收视电视节目等。
它通常支持多种音频和视频格式,以满足用户的不同需求。
3·功能特点3·1 导航功能车载多媒体娱乐导航系统通过导航模块提供实时的导航服务。
用户可以输入目的地信息,系统将计算最佳路线并提供具体的导航指引。
一些高级导航系统还支持实时交通信息、道路拥堵提示等功能。
3·2 娱乐功能车载多媒体娱乐导航系统提供丰富的娱乐功能,包括音乐播放、影片播放、游戏等。
用户可以通过系统的界面操作来选择喜爱的娱乐内容,并通过音频设备和显示屏进行播放。
3·3 车辆信息显示车载多媒体娱乐导航系统还可以显示一些与车辆相关的信息,如车速、油耗、胎压等。
这些信息可以帮助用户更好地了解车辆状态,提高驾驶安全性。
4·附件本文档涉及的附件包括:●车载多媒体娱乐导航系统产品手册●多媒体模块软件更新包●导航模块地图更新文件5·法律名词及注释●GPS:全球定位系统,是一种通过卫星信号进行导航的技术。
卫星导航基础原理
卫星导航基础原理是指利用卫星定位系统来确定地面或空中目标位置的基本理论。
卫星导航系统主要包括GPS、GLONASS、北斗等系统,它们都采用了类似的基本原理。
卫星导航系统的核心是卫星定位,它通过接收地面或空中目标发出的信号以及卫星发出的信号来计算目标位置。
卫星发出的信号包含了卫星的位置和时间信息,目标接收到这些信号后可以通过计算卫星与目标之间的距离来确定目标的位置。
卫星导航系统的精度主要取决于卫星数量、卫星分布、接收机性能、信号传输和处理等因素。
在现代化的卫星导航系统中,系统会通过多个卫星和接收机同时计算目标位置,从而提高精度和准确度。
总之,卫星导航基础原理是一个重要的理论基础,它不仅支撑着现代化交通运输、航空航天、军事等领域的发展,还为我们的日常生活提供了诸如导航、定位等便利。
- 1 -。
GNSS空间定位基础知识总结一、概述1.1 GNSS是什么?GNSS全球导航卫星系统(Global Navigation Satellite System)是一种基于卫星的导航系统,能够在全球范围内为用户提供定位、导航和时间服务。
1.2 GNSS的发展历程1978年美国启动了第一颗GPS导航卫星Navstar-01。
随后欧盟、俄罗斯和我国纷纷推出自己的导航卫星系统,如欧盟的伽利略系统、俄罗斯的格洛纳斯系统、和我国的北斗系统。
1.3 GNSS的应用领域GNSS技术已经广泛应用在陆地、海洋、空中等多个领域,包括交通运输、地质勘探、农业、精准定位等多个方面。
二、GNSS的组成和原理2.1 GNSS系统包括哪些导航卫星目前世界上主要的导航卫星系统有GPS(美国)、GLONASS(俄罗斯)、Galileo(欧盟)、BeiDou(我国)等。
2.2 GNSS的信号传输原理GNSS通过卫星信号传输,接收设备接收卫星的信号,并计算出自己的位置信息。
信号传输原理包括卫星信号发射、地面接收、信号处理等环节。
2.3 GNSS定位的原理GNSS的定位原理主要包括三角测量原理、时间差测量原理和相位差测量原理。
其中三角测量原理是最基本的原理,通过三个卫星的信号来定位接收设备的位置。
三、GNSS的定位精度和影响因素3.1 GNSS的定位精度GNSS的定位精度是指接收设备测得的位置与真实位置的偏差。
影响定位精度的因素包括卫星几何分布、大气延迟、多径效应等。
3.2 影响GNSS定位的因素除了定位精度外,还有一些其他因素会影响GNSS的定位效果,如天线的安装位置、接收设备的性能、遮挡物等。
3.3 GNSS定位的提高方法为了提高GNSS的定位精度,可以采用差分定位、RTK技术、增强型定位系统等方法来提高定位精度。
四、GNSS的发展趋势4.1 新一代卫星系统的推出目前,Galileo系统和BeiDou系统正在逐步完善中,相较于GPS系统,可能会带来更多的服务和更好的性能。
北斗卫星导航系统基本知识中兴恒和卫星应用科技股份有限公司成立于2007年,专门从事北斗卫星导航系统应用的高科技股份制企业。
作为“北斗卫星”全国分理服务商之一,并同时拥有中国卫星导航定位应用管理中心颁发的“北斗导航民用服务分理许可证”和“终端设备生产许可”两项资质,国家二级保密单位。
培训目的:了解北斗卫星监控的技术优势,掌握北斗卫星监控的应用领域,以便市场部寻找客户群,与客户群进行有效沟通。
一、北斗卫星导航系统系统由空间端、地面端和用户端三部分组成,空间端包括5颗静止轨道卫星和30颗非静止轨道卫星,地面端包括主控站、注入站和监测站等若干个地面站,用户端由北斗用户终端以及与美国GPS、俄罗斯GLONASS、欧洲GALILEO等其他卫星导航系统兼容的终端组成。
北斗卫星导航系统主要有四大功能:(1)快速定位,为服务区域内的用户提供全天候、实时定位服务,定位精度与GPS相当;(2)短报文通信,一次可传送多达120个汉字的信息;(3)精密授时,精度达20纳秒。
(4)系统容纳的最大用户数:540000户/小时。
GPS系统由空间部分、地面控制系统、用户设备三部分组成,GPS的空间部分是由24颗工作卫星组成,地面控制系统由监测站(MonitorStation)、主控制站(MasterMonitorStation)、地面天线(GroundAntenna)所组成,用户设备部分即GPS信号接收机。
北斗卫星导航系统自身特点:(1)“北斗”具有定位和通信双重作用,具备的短信通讯功能就是GPS所不具备的。
(2)“北斗”"定位精度20米左右。
(3)“北斗”终端价格已经趋于GPS终端价格。
(4)采用接收终端不需铺设地面基站。
(5)灾难中心的船只一秒钟就可以发出信息。
二、北斗产品三、北斗卫星导航系统优势介绍北斗导航优于GPS系统之处,在于“北斗”同时具有定位和通信功能,不需要依靠其他通讯网络的支持,就能够实现自有通信体系全天候、全时空、全覆盖的通信服务。
第1章绪论1.1导航的发展简史1.1.1导航的基本概念导航是一门研究导航原理和导航技术装置的学科。
导航系统是确定航行体的位置方向,并引导其按预定航线航行的整套设备(包括航行体上的、空间的、地面上的设备)。
一架飞机从一个机场起飞,希望准确的飞到另外一个机场就必须依靠导航、制导技术。
导航,即引导航行的意思,也就是正确的引导航行体沿预定的航线,以要求的精度,在指定的时间内将航行体引导至目的地。
由此可知除了知道起始点和目标位置之外,还要知道航向体的位置、速度、姿态等导航参数。
其中最主要的是知道航行体的位置。
1.1.2导航系统的发展在古代,我们的祖先一直利用天上的星星进行导航,在古石器时代,为了狩猎方便,人们利用简单的恒星导航方法,这就是最早的天文导航方法。
后来,随着技术的不断发展和人们对事物认知的发展,人们利用导航传感器来导航,最早是我们祖先发明的指南针。
现有的导航传感器包括六分仪、磁罗盘、无线电罗盘、空速表、气压高度表、惯性传感器、雷达、星体跟踪器、信号接收机等。
以航空领域为例,从20世纪20年代开始飞机出现了仪表导航系统。
30年代出现了无线电导航系统,即依靠飞机上的信标接收机和无线电罗盘来获得地面导航台的信息已进行导航。
40年代开始研制甚高频导航系统。
1954年,惯性导航系统在飞机上试飞成功,从而开创了惯导时代。
50年代出现了天文导航系统和多普勒导航系统。
1957年世界上第一颗卫星发射成功以后,利用卫星进行导航、定位的研究工作被提上了议事日程,并着手建立海事卫星系统用于导航定位。
随着1967年海事卫星系统经美国政府批准对其广播星历解密并提供民用,由此显示出卫星定位的巨大潜力。
60年代开始使用远程无线电罗兰-C导航系统,同时还有塔康导航系统、远程奥米伽导航系统以及自动天文导航系统。
60年代后,无线电导航得到进一步发展,并与人造卫星导航相结合。
70年代以后,全球定位导航系统得到进一步发展和应用。
在此过程中,为了发挥不同导航系统的优点,互为补充,出现了各种组合导航系统,它们主要以惯性导航系统为基准。