高考必做20道几何证明答案
- 格式:doc
- 大小:909.50 KB
- 文档页数:16
2023年高考数学----立体几何解答题常考全归类真题练习题(含答案解析)1.(2022·天津·统考高考真题)直三棱柱111ABC A B C -中,112,,AA AB AC AA AB AC AB ===⊥⊥,D 为11A B 的中点,E 为1AA 的中点,F 为CD 的中点.(1)求证://EF 平面ABC ;(2)求直线BE 与平面1CC D 所成角的正弦值; (3)求平面1ACD 与平面1CC D 所成二面角的余弦值. 【解析】(1)证明:在直三棱柱111ABC A B C -中,1AA ⊥平面111A B C ,且AC AB ⊥,则1111AC A B ⊥以点1A 为坐标原点,1A A 、11A B 、11AC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()2,0,0A 、()2,2,0B 、()2,0,2C 、()10,0,0A 、()10,0,2B 、()10,0,2C 、()0,1,0D 、()1,0,0E 、11,,12F ⎛⎫⎪⎝⎭,则10,,12EF ⎛⎫= ⎪⎝⎭, 易知平面ABC 的一个法向量为()1,0,0m =,则0EF m ⋅=,故EF m ⊥,EF ⊄平面ABC ,故//EF 平面ABC .(2)()12,0,0C C =,()10,1,2C D =−,()1,2,0EB =,设平面1CC D 的法向量为()111,,u x y z =,则111112020u C C x u C D y z ⎧⋅==⎪⎨⋅=−=⎪⎩,取12y =,可得()0,2,1u =,4cos ,5EB u EB u EB u⋅<>==⋅. 因此,直线BE 与平面1CC D 夹角的正弦值为45.(3)()12,0,2AC =,()10,1,0A D =, 设平面1ACD 的法向量为()222,,v x y z =,则122122200v AC x z v A D y ⎧⋅=+=⎪⎨⋅==⎪⎩,取21x =,可得()1,0,1v =−,则1cos ,5u v u v u v⋅<>==−=⨯⋅因此,平面1ACD 与平面1CC D 2.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.【解析】(1)因为AD CD =,E 为AC 的中点,所以AC DE ⊥; 在ABD △和CBD △中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC的中点,所以AC BE ⊥; 又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED ,因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC EF ⊥,所以1=2AFC S AC EF ⋅△, 当EF BD ⊥时,EF 最小,即AFC △的面积最小. 因为ABD CBD ≌△△,所以2CB AB ==, 又因为60ACB ∠=︒,所以ABC 是等边三角形, 因为E 为AC 的中点,所以1AE EC ==,BE 因为AD CD ⊥,所以112DE AC ==, 在DEB 中,222DE BE BD +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz −,则()()()1,0,0,,0,0,1A B D ,所以()()1,0,1,AD AB =−=−, 设平面ABD 的一个法向量为(),,n x y z =,则00n AD x z n AB x ⎧⋅=−+=⎪⎨⋅=−+=⎪⎩,取y =()3,3,3n =, 又因为()31,0,0,4C F ⎛⎫− ⎪ ⎪⎝⎭,所以31,4CF ⎛⎫= ⎪ ⎪⎝⎭,所以cos ,21n CF n CF n CF⋅===设CF 与平面ABD 所成的角的正弦值为02πθθ⎛⎫≤≤ ⎪⎝⎭,所以4sin cos ,7nCF θ==所以CF 与平面ABD3.(2022·浙江·统考高考真题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B −−的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.【解析】(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点G 、H . ∵四边形ABCD 和EFCD 都是直角梯形,//,//,5,3,1AB DC CD EF AB DC EF ===,60BAD CDE ∠=∠=︒,由平面几何知识易知,2,90DG AH EFC DCF DCB ABC ==∠=∠=∠=∠=︒,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt EGD 和Rt DHA ,EG DH == ∵,DC CF DC CB ⊥⊥,且CF CB C ⋂=,∴DC ⊥平面,BCF BCF ∠是二面角F DC B −−的平面角,则60BCF ∠=, ∴BCF △是正三角形,由DC ⊂平面ABCD ,得平面ABCD ⊥平面BCF ,∵N 是BC 的中点,∴FN BC ⊥,又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN CD ⊥,而BC CD C ⋂=,∴FN ⊥平面ABCD ,而AD ⊂平面ABCD FN AD ∴⊥.(2)因为FN ⊥平面ABCD ,过点N 做AB 平行线NK ,所以以点N 为原点, NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N xyz −,设(3,(1,0,3)A B D E,则32M ⎛⎫ ⎪ ⎪⎝⎭,333,,,(2,23,0),(2,22BM AD DE ⎛⎫∴=−=−−=− ⎪ ⎪⎝⎭ 设平面ADE 的法向量为(,,)nx y z =由00n AD n DE ⎧⋅=⎨⋅=⎩,得20230x x z ⎧−−=⎪⎨−+=⎪⎩,取(3,n =−,设直线BM 与平面ADE 所成角为θ,∴3||sin cos ,|||3n BM n BM n BMθ⋅=〈〉====⋅4.(2022·全国·统考高考真题)如图,PO 是三棱锥−P ABC 的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B −−的正弦值. 【解析】(1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥−P ABC 的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC , 所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒, 所以ODA OAD ∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD , 又OE ⊄平面PAC ,PD ⊂平面PAC , 所以//OE 平面PAC(2)过点A 作//Az OP ,如图建立平面直角坐标系, 因为3PO =,5AP =,所以4OA =,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD,AB = 所以12AC =,所以()O,()B,()P ,()0,12,0C ,所以32E ⎛⎫ ⎪⎝⎭,则332AE ⎛⎫= ⎪⎝⎭,()43,0,0AB =,()0,12,0AC =,设平面AEB 的法向量为(),,n x y z =,则33302430n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩,令2z =,则=3y −,0x =,所以()0,3,2n =−;设平面AEC 的法向量为(),,m a b c =,则33302120m AE a bc m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令a =6c =−,0b =,所以()3,0,6m =−;所以cos ,13n m n m n m⋅−===设二面角C AE B −−的大小为θ,则43cos cos ,=13n m θ=, 所以11sin 13θ=,即二面角C AE B −−的正弦值为1113.5.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC −的体积.【解析】(1)由于AD CD =,E 是AC 的中点,所以AC DE ⊥.由于AD CDBD BD ADB CDB =⎧⎪=⎨⎪∠=∠⎩,所以ADB CDB ≅△△,所以AB CB =,故AC BD ⊥,由于DE BD D ⋂=,,DE BD Ì平面BED , 所以AC ⊥平面BED ,由于AC ⊂平面ACD ,所以平面BED ⊥平面ACD . (2)[方法一]:判别几何关系依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ===由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =. 222DE BE BD +=,所以DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC . 由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BF FBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅,所以AF CF =,所以EF AC ⊥, 由于12AFCSAC EF =⋅⋅,所以当EF 最短时,三角形AFC 的面积最小 过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得EF =所以13,222DF BF DF ===−=, 所以34BF BD =过F 作FH BE ⊥,垂足为H ,则//FH DE ,所以FH ⊥平面ABC ,且34FH BF DE BD ==, 所以34FH =,所以111323324F ABC ABCV SFH −=⋅⋅=⨯⨯=[方法二]:等体积转换AB BC =,60ACB ∠=︒,2AB =ABC ∴∆是边长为2的等边三角形,BE ∴=连接EFADB CDB AF CF EF ACBED EF BD ∆≅∆∴=∴⊥∴∆⊥∆在中,当时,AFC 面积最小222,,2,,BED EF AD CD AD CD AC E AC DE BE BD BE EDBE DE EF BD BD ⊥==∴+=∴⊥⋅⊥∆==为中点DE=1若在中,32113222BEFBF S BF EF ∆∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC −−−∆∴=+=⋅=6.(2022·全国·统考高考真题)在四棱锥P ABCD −中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP ====∥(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.【解析】(1)证明:在四边形ABCD 中,作DE AB ⊥于E ,CF AB ⊥于F , 因为//,1,2CD AB AD CD CB AB ====, 所以四边形ABCD 为等腰梯形, 所以12AE BF ==,故DE =BD = 所以222AD BD AB +=, 所以AD BD ⊥,因为PD ⊥平面ABCD ,BD ⊂平面ABCD , 所以PD BD ⊥, 又=PD AD D ⋂, 所以BD ⊥平面PAD , 又因为PA ⊂平面PAD , 所以BD PA ⊥;(2)如图,以点D 为原点建立空间直角坐标系,BD =则()()(1,0,0,,A B P ,则()()(1,0,3,0,3,3,AP BP DP =−=−=,设平面PAB 的法向量(),,n x y z =,则有0{30n AP x n BP ⋅=−=⋅=−=,可取()3,1,1n =, 则5cos ,5n DPn DP n DP ⋅==所以PD 与平面PAB7.(2022·北京·统考高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.【解析】(1)取AB 的中点为K ,连接,MK NK ,由三棱柱111ABC A B C -可得四边形11ABB A 为平行四边形,而11,B M MA BK KA ==,则1//MK BB ,而MK ⊄平面11BCC B ,1BB ⊂平面11BCC B ,故//MK 平面11BCC B ,而,CN NA BK KA ==,则//NK BC ,同理可得//NK 平面11BCC B ,而,,NK MK K NK MK =⊂平面MKN ,故平面//MKN 平面11BCC B ,而MN ⊂平面MKN ,故//MN 平面11BCC B ,(2)因为侧面11BCC B 为正方形,故1CB BB ⊥,而CB ⊂平面11BCC B ,平面11CBB C ⊥平面11ABB A ,平面11CBB C ⋂平面111ABB A BB =,故CB ⊥平面11ABB A ,因为//NK BC ,故NK ⊥平面11ABB A ,因为AB ⊂平面11ABB A ,故NK AB ⊥,若选①,则AB MN ⊥,而NK AB ⊥,NK MN N =,故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB MK ⊥,所以1AB BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M , 故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩,从而020x y y z +=⎧⎨+=⎩,取1z =−,则()2,2,1n =−−, 设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯. 若选②,因为//NK BC ,故NK ⊥平面11ABB A ,而KM ⊂平面MKN , 故NK KM ⊥,而11,1B M BK NK ===,故1B M NK =,而12B B MK ==,MB MN =,故1BB M MKN ≅,所以190BB M MKN ∠=∠=︒,故111A B BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M , 故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩,从而020x y y z +=⎧⎨+=⎩,取1z =−,则()2,2,1n =−−, 设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯.8.(2022·全国·统考高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C −−的正弦值. 【解析】(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h , 则111111112211433333A A BC A A ABC A ABC AB BC C C B V S h h V S A A V −−−=⋅===⋅==,解得h =所以点A 到平面1A BC (2)取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥, 又平面1A BC ⊥平面11ABB A ,平面1A BC ⋂平面111ABB A A B =, 且AE ⊂平面11ABB A ,所以⊥AE 平面1A BC , 在直三棱柱111ABC A B C -中,1BB ⊥平面ABC , 由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A , 所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE 12AA AB ==,1A B =2BC =, 则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D , 则()1,1,1BD =,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩, 可取()1,0,1m =−,设平面BDC 的一个法向量(),,n a b c =,则020n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩, 可取()0,1,1n =−r , 则11cos ,22m nm n m n ⋅===⨯⋅,所以二面角A BD C −−=本课结束。
几何证明专题一、解答题1 .如图,∠BAC 的平分线与BC 和外接圆分别相交于D 和E,延长AC 交过D 、E 、C 三点的圆于点F.(Ⅰ)求证:EA ED EF 2∙=;(Ⅱ)若3EF ,6AE ==,求AC AF ∙的值.23 .如图,已知0和M 相交于A、B两点,AD 为M 的直径,直线BD 交O 于点C,点G 为弧BD 中点,连结 AG分别交0、BD 于点E 、F,连结CE.22CEEF =4.如图,已知C、F是以AB为直径的半圆O上的两点,且CF=CB,过C作CD⊥AF交AF的延长线与点D.(1)证明:CD为圆O的切线;(2)若AD=3,AB=4,求AC的长.=, 5.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P.E为⊙O上一点,AC AE DE交AB于点F.(I)证明:DF·EF=OF·FP;(II)当AB=2BP时,证明:OF=BF.6.如图,⊙O1与⊙O2相交于点A,B,⊙O1的切线AC交⊙O2于另一点C,⊙O2的切线AD交⊙O1于另一点D,DB的延长线交⊙O2于点E.(Ⅰ)求证:AB2=BC·BD;(Ⅱ)若AB =1,AC =2,AD=2,求BE.7.已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点C B 、,APC ∠的平分线分别交AC AB 、于点E D 、.(1)证明:ADE AED ∠=∠; (2)若AP AC =,求PC PA的值.8.如图,半圆O 的直径AB 的长为4,点C 平分弧AE ,过C 作AB 的垂线交AB 于D ,交AE 于F .(1)求证:AF AE CE ⋅=2;(2)若AE 是CAB ∠的角平分线,求CD 的长.9.如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于B 、C 两点,弦CD ∥AP ,AD 、BC 相交于点E ,F 为CE 上一点,且DE 2 = EF ·EC .(1)求证:CE ·EB = EF ·EP ;(2)若CE :BE = 3:2,DE = 3,EF = 2,求PA 的长.10.如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN 交⊙O于B点,若四边形BCON是平行四边形;(Ⅰ)求AM的长; (Ⅱ)求sin∠ANC.11.如图,A,B,C,D四点在同一圆O上,BC与AD的延长线交于点E,点F在BA的延长线上.(Ⅰ)若=,=,求的值;(Ⅱ)若EF2=FA·FB,证明:EF∥CD.12.如图, AB 是圆 O 的直径,以 B 为圆心的圆 B 与圆 O 的一个交点为 P .过点 A 作直线交圆 O 于点 Q ,交圆 B 干点 M , N .(1)求证: QM= QN ;(2)设圆O的半径为 2 ,圆 B 的半径为 1 ,当103AM 时,求 MN 的长.13.如图,已知⊙O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是⊙O的直径.(Ⅰ)求证:AC·BC=AD·AE;(Ⅱ)过点C作⊙O的切线交BA的延长线于点F,若AF=4,CF=6,求AC的长.14.如图,在△ABC中,∠C为钝角,点E、H是边AB上的点,点K、M分别是边AC和BC上的点,且AH =AC,EB=BC,AE=AK,BH=BM.(I)求证:E、H、M、K四点共圆;(Ⅱ)若KE - EH,CE=3,求线段KM的长.15.在△ABC中,BC边上的点D满足BD=2DC,以BD为直径作圆O恰与CA相切于点A,过点B 作BE⊥CA于点E,BE交圆D于点F.(1)求∠ABC的度数;(2)求证:BD=4EF16.在∆ABC的边AB,BC,CA上分别取D,E,F.使得DE=BE,FE=CE,又点O是△ADF的外心.(Ⅰ)证明:D,E,F,O四点共圆;(Ⅱ)证明:O在∠DEF的平分线上.17.如图,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B和两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(1)求证:AD∥EC;(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.∠M,交圆0于点D, 过D作18.如图,直线MN交圆O于A,B两点,AC是直径,AD平分CAMDE上MN于E.(I)求证: DE是圆O的切线:(II)若DE=6,AE=3,求ΔABC的面积19.如图所示,AC 为O 的直径,D 为BC 的中点,E 为BC 的中点.(Ⅰ)求证://DE AB ;(Ⅱ)求证:AC BC AD CD =2.20. 如图,过圆O 外一点P 作该圆的两条割线PAB 和PCD,分别交圆 O 于点A,B,C,D 弦AD 和BC 交于Q 点,割线PEF 经过Q 点交圆 O 于点E 、F,点M 在E F 上,且BMF BAD ∠=∠:(I)求证:PA·PB=PM·PQ(II)求证:BOD BMD ∠=∠参考答案一、解答题1.解:(Ⅰ)如图,连接CE,DF. ∵AE 平分∠BAC ∴∠BAD=∠DAC在圆内又知∠DCE=∠EFD,∠BCE=∠BAE . ∴∠EAF=∠EFD又∠AEF=∠FED, ∴ΔAEF∽ΔFED, ∴EFAE ED EF =, ∴EA ED EF ∙=2要证明角度相等,找中间角度作为桥梁. 要证明2EF ED EA =,可以把乘法变为除法,变为:EF EA EF ED ED EF EA EF==或者,于是得到“分子三角形和分母三角形”:EFA EFD EFD EFA ∆∆∆∆或者.这样就转化为三角形的相似,帮助找相似三角形.这样就可以做出辅助线,构造相似三角形.另外,做题要先度量,后计算,把图形画准确.从求证出发,向已知进行靠拢.(Ⅱ)由(Ⅰ)知2EF ED EA =∵EF=3,AE=6, ∴ED=3/2,AD=9/2 ∴AC AF=AD AE=692⨯÷=272.3. 证明:(Ⅰ)连结AB 、AC ,∵AD 为⊙M 的直径,∴∠ABD =90°,∴AC 为⊙O 的直径,∴∠CEF =∠AGD =90°. ――――2分∵G 为弧BD 中点,∴∠DAG =∠GAB =∠ECF . ――――4分∴△CEF ∽△AGD ∴GDAG EF CE =, ∴AG·EF = CE·GD ――――6分 (Ⅱ)由⑴知∠DAG =∠GAB =∠FDG ,∠G =∠G ,∴△DFG ∽△AGD , ∴DG 2=AG·GF . ――――8分 由⑴知2222AG GD CE EF =,∴22CE EF AG GF = ――――10分 4. (Ⅰ)证明:∵CF CB =,CAF CAB ∴∠=∠.6.7. (1)∵ PA是切线,AB是弦,∴ ∠BAP=∠C,又∵ ∠APD=∠CPE,∴ ∠BAP+∠APD=∠C+∠CPE,∵ ∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE,∴ ∠ADE=∠AED.(2)由(1)知∠BAP=∠C,又∵ ∠APC=∠BPA, ∴ △APC∽△BPA, ∴PC CAPA AB,∵ AC=AP, ∴ ∠APC=∠C=∠BAP,由三角形内角和定理可知,∠APC+∠C+∠CAP=180°,∵ BC 是圆O 的直径,∴ ∠BAC=90°, ∴ ∠APC+∠C+∠BAP=180°-90°=90°,∴ ∠C=∠APC=∠BAP=13×90°=30°. 在Rt△ABC 中,CA AB ∴ PC CAPA AB=. 8.9. (I)∵EC EF DE ⋅=2,∴C EDF ∠=∠,又∵C P ∠=∠,∴P EDF ∠=∠,∴EDF ∆∽PAE ∆∴EP EF ED EA ⋅=⋅又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅···5分 (II)3=BE ,29=CE ,415=BP PA 是⊙O 的切线,PC PB PA ⋅=2,4315=PA 10.解:(Ⅰ)连接BM ,则90MBN∠=︒,因为四边形BCON 是平行四边形,所以BC ∥MN ,因为AM 是O 的切线,所以MN AM ⊥,可得BC AM ⊥, 又因为C 是AM 的中点,所以BM BA =, 得45NAM ∠=︒,故2AM =.(Ⅱ)作CE AN ⊥于E 点,则2CE =,由(Ⅰ)可知CN =故sin CE ANC NC ∠==. 11.12.13.14.15.16.证明:(Ⅰ) 如图,∠DEF =180°-(180°-2∠B )-(180°-2∠C )=180°-2∠A .因此∠A 是锐角,从而ADF 的外心与顶点A 在DF 的同侧,∠DOF =2∠A =180°-∠DEF . 因此D ,E ,F ,O 四点共圆 (Ⅱ)由(Ⅰ)知,∠DEO =∠DFO =∠FDO =∠FEO , 即O 在∠DEF 的平分线上 17.证明:解:(I)∵AC 是⊙O 1的切线,∴∠BAC =∠D ,又∵∠BAC =∠E ,∴∠D =∠E ,∴AD ∥EC . 5' (II)设BP =x ,PE =y ,∵P A =6,PC =2, ∴xy =12 ①∵AD ∥EC ,∴PD PE =AP PC ,∴9+x y =62② 由①、②解得⎩⎪⎨⎪⎧x =3y =4 (∵x >0,y >0)∴DE =9+x +y =16,∵AD 是⊙O 2的切线,∴AD 2=DB ·DE =9×16,∴AD =12.10'18.解:(Ⅰ)连结OD,则OA=OD,所以∠OAD=∠ODA.因为∠EAD=∠OAD,所以∠ODA=∠EAD因为∠EAD+∠EDA=90︒,所以∠EDA+∠ODA=90︒,即DE ⊥OD. 所以DE 是圆O 的切线A C EB D O F图6(Ⅱ)因为DE 是圆O 的切线,所以DE 2=EA·EB, 即62=3(3+AB),所以AB=9 因为OD∥MN, 所以O 到MN 的距离等于D 到MN 的距离,即为6 又因为O 为AC 的中点,C 到MN 的距离等于12 故△ABC 的面积S= 12AB·BC=5419.证明:(Ⅰ)连接BD ,因为D 为BC ︵的中点,所以BD =DC . 因为E 为BC 的中点,所以DE ⊥BC . 因为AC 为圆的直径,所以∠ABC =90︒, 所以AB ∥DE(Ⅱ)因为D 为BC ︵的中点,所以∠BAD =∠DAC , 又∠BAD =∠DCB ,则∠DAC =∠DCB .又因为AD ⊥DC ,DE ⊥CE ,所以△DAC ∽△ECD .所以AC CD =ADCE,AD ·CD =AC ·CE ,2AD ·CD =AC ·2CE , 因此2AD ·CD =AC ·BC 20.证明:(Ⅰ)∵∠BAD =∠BMF ,所以A,Q,M,B 四点共圆, 所以PA PB PM PQ ⋅=⋅ (Ⅱ)∵PA PB PC PD ⋅=⋅ , ∴PC PD PM PQ ⋅=⋅ ,又 CPQ MPD ∠=∠ , 所以~CPQ MPD ∆∆, ∴PMD PCQ ∠=∠ ,则DCB FMD ∠=∠,∵BAD BCD ∠=∠,∴2BMD BMF DMF BAD ∠=∠+∠=∠, 2BOD BAD ∠=∠, 所以BMD BOD ∠=∠ 21.选修4-1几何证明选讲证明:(Ⅰ)由弦切角定理知DAB DBE ∠=∠ 由DAC DBC ∠=∠,DAC DAB ∠=∠所以DBC DBE ∠=∠, 即.CBE BD ∠平分 (Ⅱ)由(Ⅰ)可知.BH BE =ABCDE OM N所以BE AH BH AH ⋅=⋅,因为DAC DAB ∠=∠,ABE ACB ∠=∠, 所以AHC ∆∽AEB ∆,所以BEHCAE AH =,即HC AE BE AH ⋅=⋅ 即:HC AE BH AH ⋅=⋅.22.证明:(1)连结AB ,AC ,∵AD 为圆M 的直径,∴090ABD ∠=, ∴AC 为圆O 的直径, ∴CEF AGD ∠=∠, ∵DFG CFE ∠=∠,∴ECF GDF ∠=∠, ∵G 为弧BD 中点,∴DAG GDF ∠=∠, ∵ECB BAG ∠=∠,∴DAG ECF ∠=∠, ∴CEF ∆∽AGD ∆,∴CE AGEF GD=, GD CE EF AG ⋅=⋅∴(2)由(1)知DAG GDF ∠=∠,G G ∠=∠,∴D G F ∆∽AGD ∆,∴2DG AG GF =,由(1)知2222EF GD CE AG =,∴22GF EF AG CE = 23.解:(Ⅰ)∵PA 为⊙O 的切线,∴ACP PAB ∠=∠, 又P ∠P =∠∴PAB ∆∽PCA ∆.∴PCPAAC AB =(Ⅱ)∵PA 为⊙O 的切线,PBC 是过点O 的割线,∴PC PB PA ⋅=2.又∵10=PA ,5=PB ,∴20=PC ,15=BC 由(Ⅰ)知,21==PC PA AC AB ,∵BC 是⊙O 的直径, ∴90=∠CAB .∴225222==+BC AB AC , ∴AC=56· · A BCDGE F O M24.。
2023年高考数学考点复习——空间几何中的平行证明考点一、线线平行例1、如图,在四面体ABCD 中,E ,F 分别为DC ,AC 的中点,过EF 的平面与BD ,AB 分别交于点G ,H .求证://EF GH证明:因为E ,F 分别为DC ,AC 的中点,所以//AD EF ,因为AD ⊄平面EFHG ,EF ⊂平面EFHG所以//AD 平面EFHG又平面EFHG ⋂平面ABD HG =,AD ⊂平面ABD所以//AD GH ,所以//EF GH .例2、如图,在四棱锥S -ABCD 中,底面ABCD 是菱形,60BAD ∠=︒,SAB ∆为等边三角形,G 是线段SB 上的一点,且SD //平面GAC .求证:G 为SB 的中点证明:证明:如图,连接BD 交AC 于点E ,则E 为BD 的中点,连接GE ,∵//SD 平面GAC ,平面SDB 平面=GAC GE ,SD ⊂平面SBD ,∵//SD GE ,而E 为BD 的中点,∵G 为SB 的中点.例3、在正四棱锥P ABCD -中,,E F 分别是,AB AD 的中点,过直线EF 的平面α分别与侧棱,PB PD 交于点,M N ,求证://MN BD证明:证明:在ABD △中,因为E ,F 分别是,AB AD 的中点,所以EF BD ∕∕且12EF BD =, 又因为EF ⊄平面PBD ,BD ⊂平面PBD ,所以//EF 平面PBD因为EF ⊂平面,αα⋂平面PBD MN =,所以//EF MN ,所以//MN BD .跟踪练习 1、如图,四边形ABCD 和三角形ADE 所在平面互相垂直,//AB CD ,AB BC ⊥,60DAB ∠=︒,4AB AD ==,AE DE ⊥,AE DE =,平面ABE 与平面CDE 交于EF ,求证://CD EF证明:证明:因为//AB CD ,AB平面ABE ,CD ⊄平面ABE ,所以//CD 平面ABE , 因为平面ABE 平面CDE EF =,CD ⊂平面CDE ,所以//CD EF .2、在四棱锥P ﹣ABCD 中,底面ABCD 为平行四边形E ,F 分别为BC ,AD 的中点,过EF 的平面与平面PCD 交于M ,N 两点,求证://AB MN答案:证明见解析证明:∵底面ABCD 为平行四边形,E ,F 分别为BC ,AD 的中点,∵EF //CD ,∵EF //AB .EF ⊄平面PCD ,CD ⊂平面PCD ,所以//EF 平面PCD ,过EF 的平面与平面PCD 交于M ,N 两点,∵MN //EF ,∵AB //MN .3、如图,三棱锥P ABC -中,∵ABC 为正三角形,点1A 在棱PA 上,1B 、1C 分别是棱PB 、PC 的中点,直线11A B 与直线AB 交于点D ,直线11A C 与直线AC 交于点E ,求证://DE BC证明:∵1B 、1C 分别是棱PB 、PC 的中点,∵11//B C BC ,∵11B C ⊄平面BCDE ,BC ⊂平面BCDE ,∵11//B C 平面BCDE ,∵11B C ⊂平面11B C DE ,平面BCDE ⋂平面11B C DE DE =,∵11//B C DE ,则//DE BC ;4、如图,四棱锥P ABCD -的底面是边长为8的正方形,点G.E.F .H 分别是棱PB .AB .DC .PC 上共面的四点,//BC 平面GEFH.证明://GH EF证明:∵//BC 平面GEFH ,又∵BC ⊂平面PBC 且平面PBC平面GEFH GH =,∵//BC GH .又∵//BC 平面GEFH ,又∵BC ⊂平面ABCD 且平面ABCD平面GEFH EF =,∵//BC EF ,∵//EF GH .5、如图,AE ⊥平面ABCD ,//BF 平面ADE ,//CF AE ,求证://AD BC证明:依题意//CF AE ,CF ⊄平面ADE ,AE ⊂平面ADE ,∵//CF 平面ADE ,又//BF 平面ADE ,BF CF F ⋂=,∵平面//BCF 平面ADE ,∵平面BCF ⋂平面ABCD AD =,平面ADE平面ABCD BC =,∵//AD BC ;考点二、 线面平行例1、如图,正三棱柱ABC ﹣A 1B 1C 1中D 是AC 的中点,求证:B 1C ∵平面A 1BD证明:设AB 1与A 1B 相交于点P ,连接PD ,则P 为AB 1中点,∵D 为AC 中点,∵PD ∵B 1C ,又∵PD ∵平面A 1BD ,B 1C ⊄平面A 1BD ,∵B 1C ∵平面A 1BD例2、如图,在四棱锥A BCDE -中,底面BCDE 为矩形,M 为CD 中点,连接,BM CE 交于点,F G 为ABE △的重心,证明://GF 平面ABC证明:延长EG 交AB 于N ,连接CN ,因为G 为ABE △的重心,则N 为AB 的中点,且2EG GN =, 因为//CM BE ,所以2EF BE FC CM ==,所以2EF EG FC GN==,因此//GF NC , 又因为GF ⊄平面ABC ,NC ⊂平面ABC ,所以//GF 平面ABC ;例3、如图,四棱锥C ABED -中,四边形ABED 是正方形,若G ,F 分别是线段EC ,BD 的中点.(1)求证://GF 平面ABC .证明:由四边形ABED 为正方形可知,连接AE 必与BD 相交于中点F ,又G 是线段EC 的中点,故//GF AC ,GF ⊄面ABC ,AC ⊂面ABC ,//GF ∴面ABC ;跟踪练习1、如图,在直三棱柱111ABC A B C -中,底面ABC 是等边三角形,D 是AC 的中点,证明:1//AB 平面1BC D证明:直三棱柱111ABC A B C -中,设1B C 与1BC 交于点E ,连接DE ,四边形11BCC B 是矩形,则E 为1B C 的中点,因D 是AC 的中点,所以1//DE AB ,又1AB ⊄平面1BC D ,DE ⊂平面1BC D ,所以1//AB 平面1BC D . 2、《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵111ABC A B C -中,,11AA AB AC ===,M ,N 分别是1CC ,BC 的中点,点P 在线段11A B 上,若P 为11A B 的中点,求证://PN 平面11AAC C证明:证明:取11A C 的中点H ,连接PH ,HC .在堑堵111ABC A B C -中,四边形11BCC B 为平行四边形,所以11//B C BC 且11B C BC =.在111A B C △中,P ,H 分别为11A B ,11A C 的中点,所以11//PH B C 且1112PH B C =.因为N 为BC 的中点,所以12NC BC =, 从而NC PH =且//NC PH , 所以四边形PHCN 为平行四边形,于是//PN CH .因为CH ⊂平面11AC CA ,PN ⊄平面11AC CA ,所以//PN 平面11AACC .3、如图,直四棱柱1111ABCD A B C D -的底面是菱形,12AA =,1AB =,E ,M ,N 分别是BC ,1BB ,1A D 的中点,证明://MN 平面ABCD证明:连接1,ME B C ,,E M 分别为1,BC BB 中点,11//2ME B C ∴; 由直四棱柱特点知:11//A D B C ,11//2ME A D ∴,又N 为1A D 中点,//ME ND ∴, ∴四边形MNDE 为平行四边形,//MN DE ∴,又DE ⊂平面ABCD ,MN ⊄平面ABCD ,//MN ∴平面ABCD ;4、如图,在四棱锥P ABCD -中,四边形ABCD 是边长为2的菱形,M 是AB 的中点,N 是PD 的中点,PA AB =,求证://MN 平面PBC证明:如图∵,取PC 的中点Q ,连接BQ ,NQ ,因为N 是PD 的中点,所以//NQ CD 且12NQ CD =.因为四边形ABCD 是菱形,M 是AB 的中点,所以//BM CD 且12BM CD =, 从而//BM NQ 且BM NQ =,所以四边形BMNQ 是平行四边形,从而//MN BQ .又MN ⊄平面PBC ,BQ ⊂平面PBC ,所以//MN 平面PBC . 5、如图,已知四边形ABCD 和BCEG 均为直角梯形,//AD BC ,//CE BG ,且2BCD BCE π∠=∠=,222BC CD CE AD BG =====,)求证://AG 平面BDE答案:证明见解析证明:证明:过G 作GN CE ⊥于N ,交BE 于M ,连接DM ,如图所示:因为BC CE ⊥,且2CE BG =,所以N 为CE 中点,所以MG MN =,MNBC DA ,12MN AD BC ==, 所以MG AD ,MG AD =,所以四边形ADMG 为平行四边形,所以AG DM ,又DM ⊂平面BDE ,AG ⊄平面BDE ,所以AG 平面BDE .6、在四棱锥P —ABCD 中,AB //CD ,过CD 的平面分别交线段P A ,PB 于M ,N ,E 在线段DP 上(M ,N ,E 不同于端点)求证:CD //平面MNE证明:证明:∵//AB CD ,AB ⊂平面ABP ,CD ⊄平面ABP ∵//CD 平面ABP又∵CD ⊂平面CDMN ,平面CDMN 平面ABP MN =∵//CD MN又∵MN ⊂平面MNE ,CD ⊄平面MNE ∵//CD 平面MNE7、如图,在多面体ABCDEF 中,矩形BDEF 所在平面与正方形ABCD 所在平面垂直,1AB =,点M 为AE 的中点,求证://BM 平面EFC证明:连接AC 交BD 于点N .连接MN .因为四边形ABCD 是正方形,所以N 为AC 的中点,由于M 为AE 的中点,所以//MN CE , 又因为MN ⊄平面CEF ,CE ⊂平面CEF ,所以//MN 平面CEF ,易知//BN EF ,BN ⊄平面CEF ,EF ⊂平面CEF ,所以//BN 平面CEF ,因为MN BN N ⋂=,BN ⊂平面BMN ,MN ⊂平面BMN ,所以平面//BMN 平面CEF .又因为BM ⊂平面BMN ,所以//BM平面EFC ;8、在四棱锥P ABCD -中,底面ABCD 为梯形,//AB CD ,22AB CD ==,若Q 为AB 的中点,求证://DQ 平面PBC证明:∵在梯形ABCD 中,//AB CD ,22AB CD ==,Q 为AB 的中点,所以//BQ CD 且BQ CD =,∵四边形BCDQ 为平行四边形,所以//DQ BC ,∵BC ⊂平面PBC ,DQ ⊄平面PBC ,所以//DQ 平面PBC .9、如图所示,四面体P ABC 中,E ,F 分别为AB ,AC 的中点,过EF 作四面体的截面EFGH 交PC 于点G ,交PB 于点H ,证明:GH /平面ABC证明:∵E ,F 分别为AB ,AC 的中点,∵EF ∵BC ,又∵EF ∵平面PBC ,BC ∵平面PBC ,∵EF ∵平面PBC ,∵EF ∵平面EFGH ,平面EFGH ∩平面PBC =GH ,∵EF ∵GH ,又∵GH ∵平面ABC ,EF ∵平面ABC ,∵GH ∵平面ABC ;10、如图所示,在三棱柱111ABC A B C -中,D 为AC 的中点,求证:1//AB 平面1BC D证明:证明:如图,连接1B C 交1BC 于O ,连接OD ,∵四边形11BCC B 是平行四边形.∵点O 为1B C 的中点.∵D 为AC 的中点,∵OD 为1AB C 的中位线,∵1//OD AB .∵OD ⊂平面1BC D ,1AB ⊄平面1BC D ,∵1//AB 平面1BC D .11、如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,PAB △为正三角形,且侧面PAB ⊥底面ABCD ,M 为PD 的中点,求证://PB 平面ACM答案:证明见解析证明:证明:连接BD ,与AC 交于O ,在PBD △中,,O M 分别为,BD PD 的中点,//BP OM ∴,BP ⊄平面,ADE OM ⊂平面CAM ,//BP ∴平面CAM ;12、如图,在三棱柱111ABC A B C -中,侧面11ABB A 是菱形,E 是棱1BB 的中点,CA CB =,F 在线段AC 上,且2AF FC =,证明:1//CB 平面1A EF答案:证明见解析证明:连接1AB 交1A E 于点G ,连接FG ,因为四边形11ABB A 为菱形,则11//AA BB 且11AA BB =, E 为1BB 的中点,则11//B E AA 且1112B E AA =,故11112B G B E AG AA ==, 所以,1B G CF AG AF=,1//CB FG ∴, 1CB ⊄平面1A EF ,FG ⊂平面1A EF ,因此,1//CB 平面1A EF ;考点三、 面面平行例1、如图所示,四棱柱1111ABCD A B C D -的侧棱与底面垂直,12,,AC AA AD DC AC BD ====交于点E ,且,E F 分别为1,AC CC的中点,2BE =,求证:平面11//B CD 平面1A BD证明:如图,连接1AD ,设11AD A D H ⋂=,则H 为1AD 的中点,而E 为AC 的中点,连接EH ,则EH为1ACD △的中位线,所以1//EH CD ,又EH ⊄平面11B CD ,1CD ⊂平面11B CD ,所以//EH 平面11B CD ,又因为侧棱与底面垂直,所以1111//,=BB DD BB DD ,所以四边形11BB D D 为平行四边形,所以11//B D BD ,BD ⊄平面11B CD ,11B D ⊂平面11B CD ,所以//BD 平面11B CD ,又BD EH E ⋂=,,BD EH ⊂平面1A BD ,所以平面11//B CD 平面1A BD .例2、如图,在三棱锥P ABC -中,PAB △是正三角形,G 是PAB △的重心,D ,E ,H 分别是PA ,BC ,PC 的中点,点F 在BC 上,且3BF FC =,求证:平面//DFH 平面PGE证明:连结BG ,因为PAB △是正三角形,G 是PAB △的重心,D 为PA 的中点,所以BG 与GD 共线,且2BG GD =,因为E 为BC 的中点,3BF FC =,所以F 是CE 的中点, 所以2BG BE CD EF==,所以//GE DF , 又GE平面PGE ,DF ⊄平面PGE ,所以//DF 平面PGE , 因为H 是PC 的中点,所以FH //PE ,因为FH ⊄平面PGE ,PE ⊂平面PGE ,所以//FH 平面PGE ,因为FH DF F ⋂=,,FH DF ⊂平面DFH ,所以平面//DFH 平面PGE ;例3、如图,在多面体ABCDEF 中,ABCD 是正方形,2//AB DE BF BF DE ==,,,M 为棱AE 的中点,求证:平面//BMD 平面EFC证明:如图,连接AC ,交BD 于点N ,∵N 为AC 的中点,连接MN ,由M 为棱AE 的中点,则//MN EC .∵MN ⊄面EFC ,EC ⊂面EFC ,∵//MN 平面EFC .∵//BF DE BF DE =,,∵四边形BDEF 为平行四边形,∵//BD EF .又BD ⊄平面EFC ,EF ⊂平面EFC ,∵//BD 平面EFC ,又MNBD N =, ∵平面//BMD 平面EFC .跟踪练习1、如图,在几何体ABCDE 中,四边形ABCD 是矩形,2AB BE EC ===,G ,F ,M 分别是线段BE ,DC ,AB 的中点,求证:平面//GMF 平面ADE证明:如图,因为AB中点为M,连接MG,∥,又G是BE的中点,可知GM AE又AE⊆平面ADE,GM⊄平面ADE,所以GM平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MF AD.又AD⊆平面ADE,MF⊄平面ADE,所以MF平面ADE.⋂=,GM⊆平面GMF,MF⊆平面GMF,又因为GM MF M所以平面GMF平面ADE2、如图,四边形ABCD是边长为BB1=DD1=2,E,F分别是AD1,AB1的中点,证明:平面BDEF∵平面CB1D1证明:证明:连接AC ,交BD 于点O ,连接OE ,则O 为AC 的中点,∵E 是1AD 的中点,1//OE CD ∴OE ⊂平面BDEF ,1CD ⊄平面BDEF ,所以1//CD 平面BDEF又F 是1AB 的中点11//EF B D ∴EF ⊂平面BDEF ,11B D ⊄平面BDEF ,所以11//B D 平面BDEF又111,CD B D ⊂平面11CB D ,1111B D CD D ⋂=, 所以平面//BDEF 平面11CB D .3、如图,已知矩形ABCD 所在的平面垂直于直角梯形ABPE 所在的平面,且EP =2BP =,1AD AE ==,AE EP ⊥,//AE BP ,F ,G 分别是BC ,BP 的中点,求证:平面//AFG 平面PEC证明:∵F ,G 分别是BC ,BP 的中点,∵FG CP ,且FG ⊄平面CPE ,则FG ∥平面CPE ,1BG PG AE ===,且//AE BP ,AE EP ⊥∵四边形AEPG 是矩形,则EP AG ∥,且AG ⊄平面CPE ,则AG平面CPE又GA GF G ⋂=,故平面//AFG 平面PEC4、如图,在四棱锥S -ABCD 中,底面ABCD 是直角梯形,AD //BC ,P ,Q 是AB ,CD 的中,点M ,N 分别是SB ,CB 的中点,求证∵平面AMN //平面SCD答案:证明见解析证明:因为M 、N 分别是SB ,CB 的中点,所以//MN SC ,MN ⊄面SCD ,SC ⊂面SCD ,所以//MN 面SCD ,又//AD CN 且AD CN =,所以ADCN 为平行四边形,所以//AN DC ,AN ⊄面SCD ,DC ⊂面SCD ,所以//AN 面SCD ,又AN MN N =,,AN MN ⊂面AMN ,所以面//AMN 面SCD ;5、如图,在三棱锥P ABC -中,PAB △是正三角形,G 是PAB △的重心,,,D E H 分别是,,PA BC PC 的中点,点F 在BC 上,且3BF FC =,求证:平面//DFH 平面PGE证明:证明:连结BG ,由题意可得BG 与GD 共线,且2BG GD =,∵E 是BC 的中点,3BF FC =,∵F 是CE 的中点,∵2BG BE GD EF==,∵//GE DF ,GE 平面PGE ;DF ⊄平面PGE ;∵//DF 平面PGE , ∵H 是PC 的中点,∵//FH PE ,PE ⊂平面PGE ,FH ⊄平面PGE ;∵//FH 平面PGE , ∵DF FH F =,DF ⊂平面DEF ,FH ⊂平面DEF ,∵平面//DFH 平面PGE ; 考点四 平行中的动点例1、直三棱柱111ABC A B C -所有棱长都为2,在AB 边上是否存在一点E ,使1//AC 平面1CEB ,若存在给出证明,若不存在,说明理由证明:存在,E 是AB 的中点,直三棱柱111ABC A B C -中,连接1BC 交1B C 于点O ,如图:则O 为1BC 中点,连接OE ,而E 为AB 的中点,则1//OE AC ,又1AC ⊄平面1CEB ,OE ⊂平面1CEB ,所以1//AC 平面1CEB ;例2、如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,90ACB ∠=︒,CA CB ==,1AA =D 是棱11A B 的中点,E 在棱1BB 上,且1AD EC ⊥,在棱BC 上是否存在点F ,满足//EF 平面1ADC ,若存在,求出BF 的值答案:存在,BF =证明:因为1AA ⊥面ABC ,故三棱柱111ABC A B C -为直三棱柱.故1AA ⊥面111A B C ,而1C D ⊂面111A B C ,故11AA C D ⊥,因为CA CB ==,故1111C A C B ==112B A =,因为D 是棱11A B 的中点,故111C D A B ⊥,因为1111AA A B A =, ∵直线1C D ⊥平面ADE ,而AD ⊂平面ADE , ∵1C D AD ⊥,又1AD EC ⊥,111C D C E C ⋂=,∵AD ⊥平面1DEC ,而DE ⊂平面1DEC ,∵AD DE ⊥,在矩形11ABB A 中,11ADA DEB ∠=∠,11AA D DB E ∠=∠,故11ADA DEB ∠,故1111AA A D DB EB =11EB =即1=3EB ,故12BE EB =. 过E 作EG DE ⊥,交AB 于G ,取AB 的中点为L ,连接,DL CL ,则1DEB EGB ∠=∠,而190DB E EBG ∠=∠=︒,故1EBG DB E , 所以11BG EB B E B D =31=,所以23BG =.在矩形11ABB A 中,因为11ADA DEB ∠=∠,故1ADA EGB ∠=∠,而1ADA DAL ∠=∠,所以EGB DAL ∠=∠,所以//AD EG ,而AD ⊂平面1ADC ,EG ⊄平面1ADC ,所以//EG 平面1ADC .在BC 上取点F ,使233BF BC ==,连GF , 因为1BL =,故23BG BL =,故//GF CL . 在矩形11ABB A 中,因为,D L 为所在棱的中点,故11//,,DL AA DL AA =而1111//,,CC AA CC AA =故11//,CC DL CC DL =,故四边形1C DLC 为平行四边形,故1//DC CL ,故1//GF DC ,而1C D ⊂平面1ADC ,FG ⊄平面1ADC ,所以//FG 平面1ADC .因为GF EG G ⋂=,故平面以//EGF 平面1ADC ,因为EF ⊂平面EGF ,故//EF 平面1ADC .例3、如图,已知AD ⊥平面ABC ,EC ⊥平面ABC ,12AB AC AD BC ===,设P 是直线BE 上的点,当点P 在何位置时,直线//DP 平面ABC ?请说明理由证明:当点P 是BE 的中点时,//DP 平面ABC .理由如下:如下图,取BC 的中点O ,连接AO 、OP 、PD ,则//OP EC 且12OP EC =,因为AD ⊥平面ABC ,EC ⊥平面ABC ,所以//AD EC . 又12AD EC =,所以//OP AD 且OP AD =, 所以四边形AOPD 是平行四边形,所以//DP AO .因为AO ⊂平面ABC ,DP ⊄平面ABC ,所以//DP 平面ABC ;跟踪练习1、在三棱锥S ABC -中,AB ⊥平面SAC ,AS SC ⊥,1AB =,AC =,E 为AB 的中点,M 为CE 的中点,在线段SB 上是否存在一点N ,使//MN 平面SAC ?若存在,指出点N 的位置并给出证明,若不存在,说明理由证明:存在点N 为SB 上的靠近S 的四等分点即14SN SB =,//MN 平面SAC , 证明如下:取AE 的中点F ,连接FN ,FM ,则//MF AC ,因为AC ⊂平面SAC ,MF ⊄平面SAC ,所以//MF 平面SAC , 因为1124AF AE AB ==,14SN SB =, 所以FN //SA ,又SA ⊂平面SAC ,FN ⊄平面SAC ,所以//FN 平面SAC ,又MF FN F =,,MF FN ⊂平面MNF ,所以平面//MNF 平面SAC ,又MN ⊂平面MNF ,所以//MN 平面SAC .2、在如图所示的五面体ABCDEF 中,∵ADF 是正三角形,四边形ABCD 为菱形,23ABC π∠=,EF //平面ABCD ,AB =2EF =2,点M 为BC 中点,在直线CD 上是否存在一点G ,使得平面EMG //平面BDF ,请说明理由证明:连接AC 交BD 于点O ,连接OM ,OF ,取CD 的中点G ,连接GM ,GE因为EF //平面ABCD ,EF ⊂平面ABEF ,平面ABEF ∩平面ABCD =AB ,所以EF //AB因为OM //AB //EF ,12OM AB EF ==,所以四边形OMEF 是平行四边形,所以OF //EM 因为EM ⊄平面BDF ,OF ⊂平面BDF ,所以EM //平面BDF因为点G 与点M 分别为CD 与BC 的中点,所以GM //BD因为GM ⊄平面BDF ,BD ⊂平面BDF ,所以GM //平面BDF而GM ∩EM =M ,平面EMG //平面BDF3、在长方体1111ABCD A B C D -中,已知AB AD =,E 为AD 的中点,)在线段11B C 上是否存在点F ,使得平面1//A AF 平面1ECC ?若存在,请加以证明,若不存在,请说明理由证明:存在,当点F 为线段11B C 的中点时,平面1//A AF 平面1ECC .证明:在长方体1111ABCD A B C D -中,11//AA CC ,11//AD B C .又因为1CC ⊂平面1ECC ,1AA ⊄平面1ECC ,所以1//AA 平面1ECC .又E 为AD 的中点,F 为11B C 的中点,所以1//AE FC ,且1AE FC =.故四边形1AEC F 为平行四边形,所以1//AF EC ,又因为1EC ⊂平面1ECC ,AF ⊄平面1ECC ,所以//AF 平面1ECC .又因为1AF AA A =,1AA ⊂平面1A AF ,AF ⊂平面1A AF ,所以平面1//A AF 平面1ECC .4、如图所示,在三棱柱ABC ﹣A 1B 1C 1中,平面ACC 1A 1∵平面ABC ,AA 1∵AC ,D ,D 1分别为AC ,A 1C 1的中点且AD =AA 1,在棱AA 1上找一点M ,使得1//D M 平面1DBC ,并说明理由答案:M 与A 重合时,1//D M 面1DBC ,理由见解析证明:当M 与A 重合时,D 1M ∵面DBC 1,理由如下:∵D 1C 1∵AD ,且D 1C 1=AD ,∵四边形D 1C 1DA 为平行四边形,∵D 1A ∵C 1D ,因为C 1D ∵面BDC 1,∵D 1M ∵面DBC 1.5、如图,在三棱锥P ABC -中,PA ⊥底面ABC ,ABC 是正三角形,E 是棱AB 的中点,如1AE =,在平面PAC 内寻找一点F 使得//BF 平面PEC ,并说明理由答案:答案见解析.证明:延长AC 至点G ,使得AC CG =,延长AP 至点H ,使得AP PH =,连接GH ,在直线GH 上任取一点F ,则点F 满足BF ∥平面PEC .理由如下: E 是线段AB 的中点,C 是线段AG 的中点,CE ∴是ABG 的中位线,∴BG CE ∥,BG ∴∥平面PEC .同理HG平面PEC , 又BG HG G =,∴平面BHG平面PEC , BF ⊂平面BHG ,BF ∴∥平面PEC .(注:若此题点F 直接取H 或G ,理由充分,给6分)6、已知四棱柱1111ABCD A B C D -的底面是边长为2的菱形,且BC BD =,1DD ⊥平面ABCD ,11AA =,BE CD ⊥于点E ,试问在线段11A B 上是否存在一点F ,使得//AF 平面1BEC ?若存在,求出点F 的位置;若不存在,请说明理由;证明:当F 为线段11A B 的中点时,//AF 平面1BEC .下面给出证明:取AB 的中点G ,连接EG ,1B G ,则1//FB AG ,且1FB AG =,所以四边形1AGB F 为平行四边形,所以1//AF B G .因为BC BD =,BE CD ⊥,所以E 为CD 的中点,又G 为AB 的中点,//AB CD ,AB CD =,所以//BG CE ,且BG CE =, 所以四边形BCEG 为平行四边形,所以//EG BC ,且EG BC =,又11//BC B C ,11BC B C =, 所以11//EG B C ,且11EG B C =,所以四边形11EGB C 为平行四边形, 所以11//B G C E ,所以1//AF C E ,又AF ⊄平面1BEC ,1C E ⊂平面1BEC ,所以//AF 平面1BEC ,7、在正三棱柱111ABC A B C -中,已知12,3AB AA ==,M ,N 分别为AB ,BC 的中点,P 为线段1CC 上一点.平面1ABC 与平面ANP 的交线为l ,是否存在点P 使得1//C M 平面ANP ?若存在,请指出点P 的位置并证明;若不存在,请说明理由证明:当2CP =时,1//C P 平面ANP证明如下:连接CM 交AN 于点G ,连接GP ,因为12CG CP GM PC ==,所以1//C M GP 又∵GP ⊂平面ANP ,1C M ⊄平面ANP ∵1C M 平面ANP。
高考几何证明试题及参考答案高考几何证明题一∠B=2∠DCN证明:∵CN⊥CM,∴∠2+∠3=90°,∴∠1+∠4=90°;又∠1=∠2,∴∠3=∠4,∴∠BCD=2∠DCN;∵AB//DE,∴∠B=∠BCD;于是∠B=2∠DCN。
11输入内容已经达到长度限制∠B=2∠DCN证明:∵CN⊥CM,∴∠2+∠3=90°,∴∠1+∠4=90°;又∠1=∠2,∴∠3=∠4,∴∠BCD=2∠DCN;∵AB//DE,∴∠B=∠BCD;于是∠B=2∠DCN。
高考几何证明题二空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。
如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。
这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。
以下用向量法求解的简单常识:1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得或对空间一定点O有2、对空间任一点O和不共线的三点A,B,C,若: (其中x+y+z=1),则四点P、A、B、C共面.3、利用向量证a‖b,就是分别在a,b上取向量(k∈R).4、利用向量证在线a⊥b,就是分别在a,b上取向量 .5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题.6、利用向量求距离就是转化成求向量的模问题: .7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的'坐标.高考几何证明题三空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。
四点共面证明题20道
一、解答题
1.(23-24高二上·陕西咸阳·期中)如图,在直四棱柱1111ABCD A B C D -中,AB CD ,AB AD ⊥,1224AA AB AD CD ====,E ,F ,G 分别为棱1DD ,11A D ,1BB 的中点,建立如图所示的空间直角坐标系.
(1)求CG EF ⋅ 的值;
(2)证明:C ,E ,F ,G 四点共面.
2.(2024高二·全国·专题练习)已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,求证:
(1)E,F,G,H四点共面;
BD平面EFGH.
(2)//
3.(2024高一下·全国·专题练习)如图所示,在空间四面体ABCD中,E、F分别是AB、
AD的中点,G、H分别是BC、CD上的点,且
1
3
CG BC
=,1
3
CH DC
=.求证:E、F、
G、H四点共面;
4.(23-24高二上·云南大理·期中)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且112,2DE ED BF FB ==.
(1)证明:1,,,A E F C 四点共面;
(2)若12,3AB AD AA AD ==,求二面角1A EF A --的正弦值.。
几何证明专题一、解答题1 .如图,∠BAC 的平分线与BC 和外接圆分别相交于D 和E,延长AC 交过D 、E 、C 三点的圆于点F.(Ⅰ)求证:EA ED EF 2∙=;(Ⅱ)若3EF ,6AE ==,求AC AF ∙的值.23 .如图,已知0和M 相交于A、B两点,AD 为M 的直径,直线BD 交O 于点C,点G 为弧BD 中点,连结 AG分别交0、BD 于点E 、F,连结CE.22CEEF =4.如图,已知C、F是以AB为直径的半圆O上的两点,且CF=CB,过C作CD⊥AF交AF的延长线与点D.(1)证明:CD为圆O的切线;(2)若AD=3,AB=4,求AC的长.=, 5.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P.E为⊙O上一点,AC AE DE交AB于点F.(I)证明:DF·EF=OF·FP;(II)当AB=2BP时,证明:OF=BF.6.如图,⊙O1与⊙O2相交于点A,B,⊙O1的切线AC交⊙O2于另一点C,⊙O2的切线AD交⊙O1于另一点D,DB的延长线交⊙O2于点E.(Ⅰ)求证:AB2=BC·BD;(Ⅱ)若AB =1,AC =2,AD=2,求BE.7.已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点C B 、,APC ∠的平分线分别交AC AB 、于点E D 、.(1)证明:ADE AED ∠=∠; (2)若AP AC =,求PC PA的值.8.如图,半圆O 的直径AB 的长为4,点C 平分弧AE ,过C 作AB 的垂线交AB 于D ,交AE 于F .(1)求证:AF AE CE ⋅=2;(2)若AE 是CAB ∠的角平分线,求CD 的长.9.如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于B 、C 两点,弦CD ∥AP ,AD 、BC 相交于点E ,F 为CE 上一点,且DE 2 = EF ·EC .(1)求证:CE ·EB = EF ·EP ;(2)若CE :BE = 3:2,DE = 3,EF = 2,求PA 的长.10.如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN 交⊙O于B点,若四边形BCON是平行四边形;(Ⅰ)求AM的长; (Ⅱ)求sin∠ANC.11.如图,A,B,C,D四点在同一圆O上,BC与AD的延长线交于点E,点F在BA的延长线上.(Ⅰ)若=,=,求的值;(Ⅱ)若EF2=FA·FB,证明:EF∥CD.12.如图, AB 是圆 O 的直径,以 B 为圆心的圆 B 与圆 O 的一个交点为 P .过点 A 作直线交圆 O 于点 Q ,交圆 B 干点 M , N .(1)求证: QM= QN ;(2)设圆O的半径为 2 ,圆 B 的半径为 1 ,当103AM 时,求 MN 的长.13.如图,已知⊙O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是⊙O的直径.(Ⅰ)求证:AC·BC=AD·AE;(Ⅱ)过点C作⊙O的切线交BA的延长线于点F,若AF=4,CF=6,求AC的长.14.如图,在△ABC中,∠C为钝角,点E、H是边AB上的点,点K、M分别是边AC和BC上的点,且AH =AC,EB=BC,AE=AK,BH=BM.(I)求证:E、H、M、K四点共圆;(Ⅱ)若KE - EH,CE=3,求线段KM的长.15.在△ABC中,BC边上的点D满足BD=2DC,以BD为直径作圆O恰与CA相切于点A,过点B 作BE⊥CA于点E,BE交圆D于点F.(1)求∠ABC的度数;(2)求证:BD=4EF16.在∆ABC的边AB,BC,CA上分别取D,E,F.使得DE=BE,FE=CE,又点O是△ADF的外心.(Ⅰ)证明:D,E,F,O四点共圆;(Ⅱ)证明:O在∠DEF的平分线上.17.如图,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B和两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(1)求证:AD∥EC;(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.∠M,交圆0于点D, 过D作18.如图,直线MN交圆O于A,B两点,AC是直径,AD平分CAMDE上MN于E.(I)求证: DE是圆O的切线:(II)若DE=6,AE=3,求ΔABC的面积19.如图所示,AC 为O 的直径,D 为BC 的中点,E 为BC 的中点.(Ⅰ)求证://DE AB ;(Ⅱ)求证:AC BC AD CD =2.20. 如图,过圆O 外一点P 作该圆的两条割线PAB 和PCD,分别交圆 O 于点A,B,C,D 弦AD 和BC 交于Q 点,割线PEF 经过Q 点交圆 O 于点E 、F,点M 在E F 上,且BMF BAD ∠=∠:(I)求证:PA·PB=PM·PQ(II)求证:BOD BMD ∠=∠参考答案一、解答题1.解:(Ⅰ)如图,连接CE,DF. ∵AE 平分∠BAC ∴∠BAD=∠DAC在圆内又知∠DCE=∠EFD,∠BCE=∠BAE . ∴∠EAF=∠EFD又∠AEF=∠FED, ∴ΔAEF∽ΔFED, ∴EFAE ED EF =, ∴EA ED EF ∙=2要证明角度相等,找中间角度作为桥梁. 要证明2EF ED EA =,可以把乘法变为除法,变为:EF EA EF ED ED EF EA EF==或者,于是得到“分子三角形和分母三角形”:EFA EFD EFD EFA ∆∆∆∆或者.这样就转化为三角形的相似,帮助找相似三角形.这样就可以做出辅助线,构造相似三角形.另外,做题要先度量,后计算,把图形画准确.从求证出发,向已知进行靠拢.(Ⅱ)由(Ⅰ)知2EF ED EA =∵EF=3,AE=6, ∴ED=3/2,AD=9/2 ∴AC AF=AD AE=692⨯÷=272.3. 证明:(Ⅰ)连结AB 、AC ,∵AD 为⊙M 的直径,∴∠ABD =90°,∴AC 为⊙O 的直径,∴∠CEF =∠AGD =90°. ――――2分∵G 为弧BD 中点,∴∠DAG =∠GAB =∠ECF . ――――4分∴△CEF ∽△AGD ∴GDAG EF CE =, ∴AG·EF = CE·GD ――――6分 (Ⅱ)由⑴知∠DAG =∠GAB =∠FDG ,∠G =∠G ,∴△DFG ∽△AGD , ∴DG 2=AG·GF . ――――8分 由⑴知2222AG GD CE EF =,∴22CE EF AG GF = ――――10分 4. (Ⅰ)证明:∵CF CB =,CAF CAB ∴∠=∠.6.7. (1)∵ PA是切线,AB是弦,∴ ∠BAP=∠C,又∵ ∠APD=∠CPE,∴ ∠BAP+∠APD=∠C+∠CPE,∵ ∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE,∴ ∠ADE=∠AED.(2)由(1)知∠BAP=∠C,又∵ ∠APC=∠BPA, ∴ △APC∽△BPA, ∴PC CAPA AB,∵ AC=AP, ∴ ∠APC=∠C=∠BAP,由三角形内角和定理可知,∠APC+∠C+∠CAP=180°,∵ BC 是圆O 的直径,∴ ∠BAC=90°, ∴ ∠APC+∠C+∠BAP=180°-90°=90°,∴ ∠C=∠APC=∠BAP=13×90°=30°. 在Rt△ABC 中,CA AB ∴ PC CAPA AB=. 8.9. (I)∵EC EF DE ⋅=2,∴C EDF ∠=∠,又∵C P ∠=∠,∴P EDF ∠=∠,∴EDF ∆∽PAE ∆∴EP EF ED EA ⋅=⋅又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅···5分 (II)3=BE ,29=CE ,415=BP PA 是⊙O 的切线,PC PB PA ⋅=2,4315=PA 10.解:(Ⅰ)连接BM ,则90MBN∠=︒,因为四边形BCON 是平行四边形,所以BC ∥MN ,因为AM 是O 的切线,所以MN AM ⊥,可得BC AM ⊥, 又因为C 是AM 的中点,所以BM BA =, 得45NAM ∠=︒,故2AM =.(Ⅱ)作CE AN ⊥于E 点,则2CE =,由(Ⅰ)可知CN =故sin CE ANC NC ∠==. 11.12.13.14.15.16.证明:(Ⅰ) 如图,∠DEF =180°-(180°-2∠B )-(180°-2∠C )=180°-2∠A .因此∠A 是锐角,从而ADF 的外心与顶点A 在DF 的同侧,∠DOF =2∠A =180°-∠DEF . 因此D ,E ,F ,O 四点共圆 (Ⅱ)由(Ⅰ)知,∠DEO =∠DFO =∠FDO =∠FEO , 即O 在∠DEF 的平分线上 17.证明:解:(I)∵AC 是⊙O 1的切线,∴∠BAC =∠D ,又∵∠BAC =∠E ,∴∠D =∠E ,∴AD ∥EC . 5' (II)设BP =x ,PE =y ,∵P A =6,PC =2, ∴xy =12 ①∵AD ∥EC ,∴PD PE =AP PC ,∴9+x y =62② 由①、②解得⎩⎪⎨⎪⎧x =3y =4 (∵x >0,y >0)∴DE =9+x +y =16,∵AD 是⊙O 2的切线,∴AD 2=DB ·DE =9×16,∴AD =12.10'18.解:(Ⅰ)连结OD,则OA=OD,所以∠OAD=∠ODA.因为∠EAD=∠OAD,所以∠ODA=∠EAD因为∠EAD+∠EDA=90︒,所以∠EDA+∠ODA=90︒,即DE ⊥OD. 所以DE 是圆O 的切线A C EB D O F图6(Ⅱ)因为DE 是圆O 的切线,所以DE 2=EA·EB, 即62=3(3+AB),所以AB=9 因为OD∥MN, 所以O 到MN 的距离等于D 到MN 的距离,即为6 又因为O 为AC 的中点,C 到MN 的距离等于12 故△ABC 的面积S= 12AB·BC=5419.证明:(Ⅰ)连接BD ,因为D 为BC ︵的中点,所以BD =DC . 因为E 为BC 的中点,所以DE ⊥BC . 因为AC 为圆的直径,所以∠ABC =90︒, 所以AB ∥DE(Ⅱ)因为D 为BC ︵的中点,所以∠BAD =∠DAC , 又∠BAD =∠DCB ,则∠DAC =∠DCB .又因为AD ⊥DC ,DE ⊥CE ,所以△DAC ∽△ECD .所以AC CD =ADCE,AD ·CD =AC ·CE ,2AD ·CD =AC ·2CE , 因此2AD ·CD =AC ·BC 20.证明:(Ⅰ)∵∠BAD =∠BMF ,所以A,Q,M,B 四点共圆, 所以PA PB PM PQ ⋅=⋅ (Ⅱ)∵PA PB PC PD ⋅=⋅ , ∴PC PD PM PQ ⋅=⋅ ,又 CPQ MPD ∠=∠ , 所以~CPQ MPD ∆∆, ∴PMD PCQ ∠=∠ ,则DCB FMD ∠=∠,∵BAD BCD ∠=∠,∴2BMD BMF DMF BAD ∠=∠+∠=∠, 2BOD BAD ∠=∠, 所以BMD BOD ∠=∠ 21.选修4-1几何证明选讲证明:(Ⅰ)由弦切角定理知DAB DBE ∠=∠ 由DAC DBC ∠=∠,DAC DAB ∠=∠所以DBC DBE ∠=∠, 即.CBE BD ∠平分 (Ⅱ)由(Ⅰ)可知.BH BE =ABCDE OM N所以BE AH BH AH ⋅=⋅,因为DAC DAB ∠=∠,ABE ACB ∠=∠, 所以AHC ∆∽AEB ∆,所以BEHCAE AH =,即HC AE BE AH ⋅=⋅ 即:HC AE BH AH ⋅=⋅.22.证明:(1)连结AB ,AC ,∵AD 为圆M 的直径,∴090ABD ∠=, ∴AC 为圆O 的直径, ∴CEF AGD ∠=∠, ∵DFG CFE ∠=∠,∴ECF GDF ∠=∠, ∵G 为弧BD 中点,∴DAG GDF ∠=∠, ∵ECB BAG ∠=∠,∴DAG ECF ∠=∠, ∴CEF ∆∽AGD ∆,∴CE AGEF GD=, GD CE EF AG ⋅=⋅∴(2)由(1)知DAG GDF ∠=∠,G G ∠=∠,∴D G F ∆∽AGD ∆,∴2DG AG GF =,由(1)知2222EF GD CE AG =,∴22GF EF AG CE = 23.解:(Ⅰ)∵PA 为⊙O 的切线,∴ACP PAB ∠=∠, 又P ∠P =∠∴PAB ∆∽PCA ∆.∴PCPAAC AB =(Ⅱ)∵PA 为⊙O 的切线,PBC 是过点O 的割线,∴PC PB PA ⋅=2.又∵10=PA ,5=PB ,∴20=PC ,15=BC 由(Ⅰ)知,21==PC PA AC AB ,∵BC 是⊙O 的直径, ∴90=∠CAB .∴225222==+BC AB AC , ∴AC=56· · A BCDGE F O M24.。