高考物理电学大题整理简单
- 格式:docx
- 大小:65.99 KB
- 文档页数:5
物理电学大题归纳总结电学是物理学的重要分支,研究电荷、电场、电流、电势等与电相关的现象和性质。
在学习电学的过程中,我们经常遇到一些大题,既考察了基本概念的掌握,又对知识的运用能力进行考察。
本文将对一些物理电学的大题进行归纳总结,帮助同学们更好地复习和理解相关知识。
一、电荷与电场1. 电荷守恒定律:电荷在封闭系统中守恒。
这就意味着,在一个系统中,电荷的净量始终不变。
2. 库仑定律:两个电荷之间的作用力与其电量大小成正比,与它们之间的距离的平方成反比。
3. 电场强度:电场强度是描述某一点电场的强弱和方向的物理量。
在点电荷附近,电场强度与距离的平方成反比。
二、电势与电势能1. 电势:电势是描述电场能量分布的物理量,它是单位正电荷在某点处具有的电势能。
2. 电势差:电势差是指两个点之间的电势差异,也称为电压。
电势差的计算可以利用公式ΔV = Vb - Va。
3. 电势能:电势能是指带电粒子由于存在于电场中而具有的能量。
电势能可以通过公式Ep = qV计算,其中q为电荷量,V为电势。
三、电路分析1. 基尔霍夫定律:基尔霍夫定律包括电流定律和电压定律。
电流定律指出,一个电路中的所有电流的代数和为零;电压定律指出,沿着闭合回路的各个电压之和等于零。
2. 串联电路:在串联电路中,电流在各个电阻之间相同,而电压分布在各个电阻之间。
3. 并联电路:在并联电路中,电压在各个电阻之间相同,而电流分布在各个电阻之间。
四、电流与电阻1. 电流:电流是电荷在单位时间内通过横截面的量度,单位为安培(A)。
电流的大小可以通过公式I = q/t计算,其中q为通过截面的电荷量,t为时间。
2. 电阻:电阻是电流受到阻碍的程度,单位为欧姆(Ω)。
电阻的大小可以通过公式R = V/I计算,其中V为电压,I为电流。
3. 欧姆定律:欧姆定律描述了电流、电压和电阻之间的关系,公式为V = IR,其中V为电压,I为电流,R为电阻。
五、电功与功率1. 电功:电功是电能转化为其他形式的能量的过程,可以用于描述电流通过电阻时所做的功。
选修3-1 电场、恒定电流、磁场1.(09全国1)26.(21分)如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于xy 平面向外,P 是y 轴上距原点为h 的一点,N 0为x 轴上距原点为a 的一点。
A 是一块平行于x 轴的档板,与 x 轴的距离为2h,A 的中点在y 轴上,长度略小于2a。
带电粒子与挡板碰撞前后x 方向上的分速度不变,y 方向上的分速度反向,大小不变。
质量为m ,电荷量为q (q >0)的粒子从P 点瞄准N 0点入射,最后又通过P 点。
不计重力。
求粒子入射速度的所有可能值。
【解析】设粒子的入射速度为v,第一次射出磁场的点为O N ',与板碰撞后再次进入磁场的位置为1N .粒子在磁场中运动的轨道半径为R,有mvR qB=…⑴,粒子速率不变,每次进入磁场与射出磁场位置间距离1x 保持不变有1x =2sin O O N N R θ'=…⑵,粒子射出磁场与下一次进入磁场位置间的距离2x 始终不变,与1O N N '相等.由图可以看出2x a =……⑶设粒子最终离开磁场时,与档板相碰n 次(n=0、1、2、3…).若粒子能回到P 点,由对称性,出射点的x 坐标应为-a,即()1212n x nx a +-=……⑷,由⑶⑷两式得121n x a n +=+……⑸ 若粒子与挡板发生碰撞,有124ax x ->……⑹联立⑶⑷⑹得n<3………⑺联立⑴⑵⑸得 22sin 1qB n v a m n θ+=⋅+………⑻把22sin h a hθ=+代入⑻中得22,0o qBa a h v n mh+==…………⑼xy A PO N 0h/222131qBa a h v n +==…………⑾22222qBa a h v n +==…………⑿2.(09浙江)25.(22分)如图所示,x 轴正方向水平向右,y 轴正方向竖直向上。
在xOy 平面内与y 轴平行的匀强电场,在半径为R 的圆内还有与xOy 平面垂直的匀强磁场。
高中物理电学试题及答案一、选择题(每题3分,共30分)1. 电流的国际单位是:A. 牛顿(N)B. 焦耳(J)C. 安培(A)D. 伏特(V)2. 欧姆定律的公式是:A. I = V/RB. V = IRC. R = V/ID. I = R*V3. 串联电路中,总电阻与各部分电阻的关系是:A. 总电阻等于各部分电阻之和B. 总电阻等于各部分电阻之积C. 总电阻等于各部分电阻之差D. 总电阻等于各部分电阻倒数之和4. 电容器的单位是:A. 欧姆(Ω)B. 法拉(F)C. 伏特(V)D. 安培(A)5. 一个电路中,如果电阻R1和R2并联,它们的总电阻Rt可以用以下哪个公式表示:A. Rt = R1 + R2B. Rt = R1 * R2 / (R1 + R2)C. Rt = 1 / (1/R1 + 1/R2)D. Rt = R1 / R2 + R2 / R16. 电感器的单位是:A. 欧姆(Ω)B. 亨利(H)C. 法拉(F)D. 安培(A)7. 电容器在交流电路中呈现的特性是:A. 电阻B. 电容C. 电感D. 导通8. 电感器在直流电路中呈现的特性是:A. 电阻B. 电容C. 电感D. 导通9. 电磁感应定律是由以下哪位科学家发现的:A. 牛顿B. 欧姆C. 法拉第D. 库仑10. 一个理想的变压器,其原、副线圈的电压比与什么成正比:A. 线圈的电阻比B. 线圈的匝数比C. 线圈的电流比D. 线圈的电感比答案:1. C2. B3. A4. B5. C6. B7. A8. D9. C 10. B二、填空题(每题2分,共20分)11. 电场强度的单位是______。
12. 电流的热效应是由电流的______效应引起的。
13. 电阻率的单位是______。
14. 电容器的容抗与频率的关系是______。
15. 电感器的感抗与频率的关系是______。
16. 电磁波的传播不需要______。
17. 电流的磁效应是由电流的______效应引起的。
1、导体两端的电压为12伏,5秒内电流通过导体做功24焦,这段时间内通过导体横截面的电量是多少?导体中的电流是多少?2、1分钟内通过导体R横截面的电量是12库,电流做功48焦,那么R两端的电压为多少伏?它的功率为多少瓦?3、“220V,100W”的灯泡正常工作时通过它的电流是多少?正常工作20小时,消耗几度电能?4、有一台标有“220V,4.4kW”的电动机,电枢线圈的电阻是0.5欧,若电动机正常运转5分钟,则电流做功多少?电流在线圈上产生的热量是多少?5、一个8欧的电阻R1和一个R2电阻并联,接到24伏的电路中,干路中的电流为9安,求R2的阻值和消耗的功率。
6、电阻R1和R2串联后接到电压为12伏的电源上,已知R2的阻值为12欧,R1两端的电压为3伏,则R1的阻值和R2消耗的功率各是多少?7、一个标有“6V,4W”的灯泡,接到9V的电源上,要使它正常发光应串联一个多大的电阻?这个电阻消耗的功率是多少?8、某个电阻接在4V的电路上,通过它的电流是200mA,若通过它的电流为300mA时,该导体的电阻是多少?它两端的电压是多少?9、有一只小灯泡上标有“6V,3W”有字样,它正常工作时的电流强度是多少?若它的实际功率是0.75W,则灯泡两端的电压是多少?10、“PZ220-100”的灯泡,当它两端加上121伏电压时,通过它的电流是多少?灯泡的实际功率是多少?当它正常工作10小时,消耗的电能是多少千瓦时?11、一个导体两端电压由10V变成15V时,电阻中的电流变化了0.5A,求导体电阻的大小与导体电功率的变化量。
一个导体中的电流由0.2A变成0.3A时,电阻两端的电压变化了5V,求导体电阻的大小与导体电功率的变化量。
12、有两个电阻,当它们串联时,通过的电流是1A,通电1分钟消耗的电能为2880J.当他们并联时,加上1V的电压,通电1.5分钟消耗的能力为10J,求这两个电阻的阻值。
13、已知电源电压为10V,若电路中灯泡和滑动变阻器串联,而滑动变阻器两端的电压为4V,通过它的电流为2A,求灯泡的电阻。
新高考物理真题汇编-电学计算题解析版1.(2022·新课标全国Ⅰ卷)如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外。
一带正电的粒子从静止开始经电压U 加速后,沿平行于x 轴的方向射入磁场;一段时间后,该粒子在OP 边上某点以垂直于x 轴的方向射出。
已知O 点为坐标原点,N 点在y 轴上,OP 与x 轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d ,不计重力。
求 (1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x 轴的时间。
【答案】(1)224q U m B d = (2)2π3()423Bd t U =+【解析】(1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v 。
由动能定理有212qU mv =①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有 2v qvB m r=②由几何关系知d 2③ 联立①②③式得 224q Um B d=④ (2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为πtan302rs r =+︒⑤ 带电粒子从射入磁场到运动至x 轴的时间为s t v=⑥ 联立②④⑤⑥式得2π3()423Bd t U =+⑦2.(2022·新课标全国Ⅱ卷)如图,两金属板P 、Q 水平放置,间距为d 。
两金属板正中间有一水平放置的金属网G ,P 、Q 、G 的尺寸相同。
G 接地,P 、Q 的电势均为ϕ(ϕ>0)。
质量为m ,电荷量为q (q >0)的粒子自G 的左端上方距离G 为h 的位置,以速度v 0平行于纸面水平射入电场,重力忽略不计。
(1)求粒子第一次穿过G 时的动能,以及它从射入电场至此时在水平方向上的位移大小; (2)若粒子恰好从G 的下方距离G 也为h 的位置离开电场,则金属板的长度最短应为多少?【答案】(1)0mdh l v q ϕ= (2)2mdhv q ϕ【解析】(1)PG 、QG 间场强大小相等,均为E ,粒子在PG 间所受电场力F 的方向竖直向下,设粒子的加速度大小为a ,有2E dϕ=① F =qE =ma ②设粒子第一次到达G 时动能为E k ,由动能定理有2k 012qEh E mv =-③设粒子第一次到达G 时所用的时间为t ,粒子在水平方向的位移为l ,则有212h at =④ l =v 0t ⑤联立①②③④⑤式解得2k 012=2E mv qh dϕ+⑥mdhl v q ϕ= (2)设粒子穿过G 一次就从电场的右侧飞出,则金属板的长度最短,由对称性知,此时金属板的长度L 为0=22mdhL l v q ϕ= 3.(2022·新课标全国Ⅲ卷)空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点。
高中物理电学试题及答案一、选择题(25×4=100分)1、如图,A、B是两个带电量为+Q和-Q的固定的点电荷,现将另一个点电荷+q从A附近的A附近的a沿直线移到b,则下列说法中正确的是:A、电场力一直做正功B、电场力一直做负功C、电场力先做正功再做负功D、电场力先做负功再做正功2、在第1题的问题中,关于电势和电势能下列说法中正确的是:A、a点比b点的电势高,电荷+q在该点具有的电势能大B、a点比b点的电势高,电荷+q在该点具有的电势能小C、a点和b点的电势一样高,电荷+q在两点具有的电势能相等D、a点和b点电势高低的情况与电荷+q的存在与否无关3、如图所示,两个完全相同的金属小球用绝缘丝线悬挂在同一位置,当给两个小球带有不同电量的同种电荷,静止时,两小球悬线与竖直线的夹角情况是:A、两夹角相等B、电量大的夹角大C、电量小的夹角大D、无法判断4、在第3题的问题中若将两小球互相接触一下再静止时应是:A、夹角都增大,但不一定再相等B、夹角仍为原值C、夹角有增大和减小,但两夹角的和不变D、夹角都增大了相同的值5、如图所示,这是一个电容器的电路符号,则对于该电容器的正确说法是:A、是一个可变电容器B、有极性区别,使用时正负极不能接错C、电容值会随着电压、电量的变化而变化D、由于极性固定而叫固定电容6、如图所示的电路,滑动变阻器的电阻为R,其两个固定接线柱在电压恒为U的电路中,其滑片c位于变阻器的中点,M、N间接负载电阻R f=R/2,,关于R f的电压说法正确的是:A、R f的电压等于U/2B、R f的电压小于U/2C、R f的电压大于U/2D、R f的电压总小于U7、在第6题的问题中,如果将滑动变阻器b端断开,则关于R f的电压变化范围说法正确的是:A、U/2-UB、0-UC、U/3-UD、0-U/28、如图所示的电路中,当变阻器R的阻值增加时,关于通过电源的电流和路端电压说法正确的是:A、通过电源的电流I将增大B、通过电源的电流I将减小C、路端电压将增大D、路端电压将减小9、在第7题的问题中,关于通过R的电流和R两端的电压说法正确的是:A、R两端的电压将增大B、R两端的电压将减小C、通过R的电流不变D、通过R的电流减少10、关于电源的总功率和效率说法正确的是:A、总功率减少,效率提高B、总功率增加,效率增加C、总功率减少,效率降低D、总功率增加,效率不变11、磁感应强度是描述磁场的重要概念,磁场的基本性质是对电流有安培力的作用,则关于磁感应强度的大小,下列说法正确的是:A、一段通电导体,在磁场某处受的力越大,该处的磁感应强度越大B、一段通电导线在磁场某处受的力等于零,则该处的磁感应强度一定等于零C、匀强磁场中某处的磁感应强度的大小等于该处单位面积穿过的磁感线的条数D、磁感线密处,磁感应强度大,磁感线疏的地方,磁感应强度一定小12、在第11题的问题中,关于磁感应强度的方向,下列说法正确的是:A、磁感应强度的方向,就是该处电流受力的方向B、磁感应强度的方向就是该处小磁针静止是北极的受力方向C、磁感应强度的方向与该处小磁针静止是北极的受力方向垂直D、磁感应强度的方向与该处电流的流向有关13、关于安培力的说法中,正确的是:A、一小段通电导线放在磁感应强度为零的位置,它受的磁场力一定为零B、一小段通电导线在某点不受安培力的作用,则该点的磁感应强度一定为零C、一小段通电导线所受的安培力其方向一定与电流垂直D、一小段通电导线所受安培力的方向与该点磁感应强度方向及电流方向三者一定互相垂直14、磁通量是研究电磁感应的重要概念,关于磁通量的概念,以下说法正确的是:A、磁感应强度越大,穿过闭合回路的磁通量也越大B、磁感应强度越大,线圈面积越大,穿过闭合回路的磁通量也越大C、穿过线圈的磁通量为零时,磁感应强度不一定为零D、磁通量发生变化时,磁通密度也一定发生变化15、在匀强磁场中,有一个闭合金属线框如图,它可以绕轴转动,开始时金属线框与磁感线平行,下列说法正确的是:A、当金属线框平面与磁感线平行时,穿过线框的磁通量最大B、当金属线框平面与磁感线垂直时,穿过线框的磁通量最大C、当金属线框平面与磁感线垂直时,穿过线框的磁通量为零D、当金属线框平面与磁感线平行时,穿过线框的磁通量为零16、材料、粗细相同相同,长度不同的电阻丝做成ab、cd、ef三种形状的导线,分别放在电阻可忽略的光滑金属导轨上,并与导轨垂直,如图。
高考物理电学复习题集附答案一、选择题(共10题,每题2分,共20分)1. 电流是指单位时间内通过导体横截面的电荷量。
其单位是()。
A. 安培B. 秒C. 度D. 欧姆答案:A2. 静电场中,两点之间电势差的大小与两点间距离的关系为()。
A. 正相关B. 反相关C. 无关D. 非线性关系答案:B3. 两根不同长度相同直径的电阻丝,通有相同电流,它们的电阻比值与它们的长度比值之间的关系为()。
A. 正相关B. 反相关C. 无关D. 非线性关系答案:A4. 在直流电路中,若电源电动势与电阻相等,则电阻上的电阻功率等于()。
A. 电动势B. 电流C. 零D. 最大值答案:C5. 感应电流的方向遵循()。
A. 电压差的方向B. 磁场的方向C. 线圈的方向D. 摩擦力的方向答案:B6. 当光源与观察者相对静止时,由于多普勒效应造成的频率变化()。
A. 不存在B. 增大C. 减小D. 呈线性关系答案:A7. 电动势是指单位时间内电源对电荷做的功,其单位是()。
A. 瓦特B. 伏特C. 安培D. 欧姆答案:B8. 所谓“磁场”,是指场中对电荷或电流作用力的场,它体现出()特性。
A. 描述B. 叠加C. 传递D. 磁感应答案:D9. 为使电流计的量程变小,我们可以()。
A. 增大电阻B. 减小电阻C. 增加电阻纸的长度D. 减小电阻纸的长度答案:C10. 在光的折射现象中,光的速度与介质的折射率之间的关系为()。
A. 正相关B. 反相关C. 无关D. 非线性关系答案:A二、填空题(共5题,每题2分,共10分)1. 内阻为2欧姆的电源,其电动势为12伏特,通过它的电流为3安培,则其负载两端电压为()伏特。
答案:62. 对于一个电容器,若电荷量增加,其电容()。
答案:增大3. 某电抗器的电感为200毫亨利,通有的交流电频率为60赫兹,则其交流电阻为()欧姆。
答案:754. 在平行板电容器中,充电后,两极板间的电场强度为1800牛/库,极板间距离为5毫米,则该电容器的电容为()法拉。
高三期末计算题复习题1.两根平行光滑金属导轨MN 与PQ 水平放置,其间距为0.60m,磁感应强度为0、50T 的匀强磁场垂直轨道平面向下,两导轨之间连接的电阻R =5、0Ω。
在导轨上有一电阻为1、0Ω的金属棒ab ,金属棒与导轨垂直,如图13所示。
在ab 棒上施加水平拉力F 使其以10m/s 的水平速度匀速向右运动。
设金属导轨足够长。
求:(1)金属棒ab 两端的电压。
(2)拉力F 的大小。
(3)电阻R 上消耗的电功率。
1.(7分)解:(1)金属棒ab 上产生的感应电动势为BLv E ==3、0V, (1分)根据闭合电路欧姆定律,通过R 的电流 I = Rr E+= 0.50A 。
(1分)电阻R 两端的电压 U =IR =2、5V 。
(1分)(2)由于ab 杆做匀速运动,拉力与磁场对电流的安培力大小相等,即F = BIL = 0、15 N (2分)(3)根据焦耳定律,电阻R 上消耗的电功率 R I P 2==1、25W (2分) 2.如图10所示,在绝缘光滑水平面上,有一个边长为L 的单匝正方形线框abcd ,在外力的作用下以恒定的速率v 向右运动进入磁感应强度为B 的有界匀强磁场NQ 图13区域。
线框被全部拉入磁场的过程中线框平面保持与磁场方向垂直,线框的ab 边始终平行于磁场的边界。
已知线框的四个边的电阻值相等,均为R 。
求: ⑴在ab 边刚进入磁场区域时,线框内的电流大小。
⑵在ab 边刚进入磁场区域时,ab 边两端的电压。
⑶在线框被拉入磁场的整个过程中,线框产生的热量。
2.(7分)(1)ab 边切割磁感线产生的电动势为E=BLv …………………(1分) 所以通过线框的电流为 I=RBLvR E 44=……………………(1分) (2)ab 边两端电压为路端电压 U ab =I ·3R ……………………(1分) 所以U ab = 3BLv/4……………………(1分)(3)线框被拉入磁场的整个过程所用时间t=L/v ……………………(1分)线框中电流产生的热量Q=I 2·4R ·t RvL B 432= ……………………(2分)3.如图16所示,两根竖直放置的足够长的光滑平行金属导轨间距l =0.50m,导轨上端接有电阻R =0、80Ω,导轨电阻忽略不计。
高考物理《电功、电功率》真题练习含答案1.[2024·江苏省五市十一校阶段联测]电阻R 的两端的电压为U 时,在t 时间内产生的热量为Q ,若在电阻R 两端加的电压为2U ,则在t 时间内产生的热量为( )A .4QB .2QC .Q 2D .Q 4答案:A解析:电阻R 的两端的电压为U 时,在t 时间内产生的热量为Q ,则Q =I 2Rt =U 2Rt ,若在电阻R 两端加的电压为2U ,则在t 时间内产生的热量为Q′=I′2Rt =(2U )2R t =4U 2R t=4Q ,A 正确.2.把6个相同的电灯接成如图甲、乙所示两电路,通过调节供电电压与变阻器R 1、R 2的阻值,使两组电灯均能正常发光,并且两电路消耗的总电功率也相同,则R 1、R 2大小满足( )A .R 2=9R 1B .R 2=6R 1C .R 2=3R 1D .R 1=R 2 答案:A解析:设每个灯泡正常发光时的电流为I ,则题图甲中总电流为3I ,题图乙中总电流为I ,要使两电路消耗的总电功率也相同,需使P R1=P R2,即(3I)2R 1=I 2R 2,故R 2=9R 1,A 正确.3.[2024·河北省张家口市张垣联盟联考]如图所示电路中电阻R 1、R 2、R 3的阻值相等,A 、B 间电压恒定.开关S 接通后和接通前电阻R 2的电功率之比( )A .12B .23C .49D .14答案:C解析:设A 、B 间电压为U ,根据题意有R 1=R 2=R 3=R ,开关S 接通前电阻R 2的电功率为P 1=(U R 1+R 2 )2R 2=U 24R ,R 2、R 3的并联电阻为R 并=R 2R 3R 2+R 3 =R 2 ,开关S 接通后电阻R 2两端的电压为U 1=U R 1+R 并 R 并=U 3 ,开关S 接通后电阻R 2的电功率为P 2=U 21R 2 =U 29R ,开关S 接通后和接通前电阻R 2的电功率之比P 2P 1 =49,C 正确.4.如图所示,一个电阻R 和一个灯泡L 串联接在电压恒为U 的电源上,电路中的电流为I.电阻两端的电压为U 1,电功率为P 1;灯泡两端的电压为U 2,电功率为P 2,则下列关系式正确的是( )A .P 1=UIB .U 2=U -IRC .P 2=U 2RD .U 1=U -IR 答案:B解析:电阻的电功率为P 1=U 1I ,故A 错误;电阻两端的电压为U 1=IR ,灯泡两端的电压为U 2=U -U 1=U -IR ,故B 正确,D 错误;灯泡的电功率为P 2=U 2I ,故C 错误. 5.电路图如图甲所示,图乙是电路中的电源的路端电压随电流变化的关系图像,滑动变阻器的最大阻值为15 Ω,定值电阻R 0=3 Ω.以下说法中正确的是( )A .电源的内阻为10 ΩB .当R =10.5 Ω时电源的输出功率最大C .当R =4.5 Ω时电源的输出功率最大D .当R =7.5 Ω时R 消耗的功率最大 答案:C解析:根据闭合电路欧姆定律可得U =-Ir +E 可知UI 图像的纵轴截距等于电动势,则有E =20 V ,UI 图像的斜率绝对值等于内阻,则有r =⎪⎪⎪⎪ΔU ΔI =20-52 Ω=7.5 Ω,A 错误;设电路外电阻为R 外,则电源的输出功率为P =I 2R 外=(E R 外+r )2R 外=E 2R 外+r 2R 外+2r ,可知当外电阻R 外=r =7.5 Ω时,电源的输出功率最大,则有R =R 外-R 0=7.5 Ω-3 Ω=4.5 Ω,B 错误,C 正确;R 消耗的功率为P R=I 2R =(ER +R 0+r)2R =E 2R +(R 0+r )2R+2(R 0+r ),可知当R =R 0+r =10.5 Ω时,R 消耗的功率最大,D 错误.6.一台电动机线圈的电阻为0.4 Ω,当电动机正常工作时,通过线圈的电流为5 A ,则这台电动机正常工作2 s 产生的焦耳热为( )A .20 000 JB .2 000 JC .200 JD .20 J 答案:D解析:由焦耳定律可知Q =I 2rt ,代入数据可得2 s 产生的焦耳热为Q =I 2rt =20 J ,D 正确.7.(多选)如图所示为某品牌的电动车,质量为m =60 kg ,驱动电动机正常工作的额定输入电流I =6 A ,额定输入电压为45 V ,电动车电池的容量为18 000 mA ·h .电动车行驶时所受阻力大小为车所受重力的0.05;该电动车在水平地面上由静止开始以额定功率运行t =5 s 通过x =15 m 的距离,速度达到v =5 m /s ,忽略电动机转动时的摩擦,重力加速度g =10 m /s 2.下列说法正确的是( )A .电池能使电动机以额定电流运行的最长时间为120 minB .驱动电动机的输出功率为230 WC .驱动电动机的内阻为56 ΩD .电动车能达到的最大速度为8 m /s 答案:CD解析:电池能使电动机以额定电流运行的最长时间为t =q I =18 000 mA ·h6 000 mA =3 h =180min ,A 错误;由动能定理Pt -kmgs =12 mv 2,解得P =240 W ,B 错误;根据IU =P +I 2r ,解得驱动电动机的内阻为r =56 Ω,C 正确;电动车能达到的最大速度v m =Pkmg =2400.05×600m /s =8 m /s ,D 正确.。
高中物理电学复习题集附答案高中物理电学复习题集附答案一、选择题1. 电阻器可以通过改变____ 来改变电阻的大小。
A. 电源电压B. 导体材料C. 电流D. 电阻答案:B2. 当两个电阻分别为R₁和R₂的电阻器并联时,总电阻为____。
A. R₁ + R₂B. 1/(1/R₁ + 1/R₂)C. R₁ × R₂D. R₁ - R₂答案:B3. 以下哪种导体材料属于半导体?A. 铜B. 铁C. 硅D. 铝答案:C4. 单位时间内通过导体截面积的电荷量称为____。
A. 电势差B. 电流C. 电位D. 电容答案:B5. 以下哪个物理量不属于基本电学量?A. 电阻B. 电势差C. 电容D. 电感答案:D二、填空题1. 在电路中,如果电阻增大而电流保持不变,此时电源电压____。
答案:增大2. 一台电视机的功率为500W,将其接入220V的交流电源中,此时电流的大小为____A。
答案:2.273. 若两个电阻相串联,电流通过它们时____。
答案:相等4. 电阻为36Ω的电阻器通过5A的电流,计算通过该电阻器的电压为____V。
答案:1805. 在直流电路中,电势差等于____乘以电流。
答案:电阻三、计算题1. 一个电源电压为12V的电路中,串联有两个电阻分别为6Ω和8Ω,求总电阻和通过电路中的电流大小。
解析:总电阻通过公式1/(1/R₁ + 1/R₂)计算,即1/(1/6 + 1/8) = 3.43Ω。
根据欧姆定律,电流I = U/R = 12/(6+8) = 1A。
答案:总电阻为3.43Ω,电流为1A。
2. 一台电视机额定功率为800W,电压为220V,求其运行时的电流大小。
解析:根据功率公式P = U × I,可以求得电流I = P/U = 800/220 = 3.64A。
答案:电流大小为3.64A。
3. 一个电路中,三个电阻分别为2Ω、4Ω和6Ω,其并联电路的总电阻和通过总电路的电流大小分别为多少?解析:总电阻通过公式R = 1/(1/R₁ + 1/R₂ + 1/R₃)计算,即1/(1/2 + 1/4 + 1/6) = 0.96Ω。
高三期末计算题复习题1.两根平行光滑金属导轨MN 和PQ 水平放置,其间距为0.60m ,磁感应强度为的匀强磁场垂直轨道平面向下,两导轨之间连接的电阻R =Ω。
在导轨上有一电阻为Ω的金属棒ab ,金属棒与导轨垂直,如图13所示。
在ab 棒上施加水平拉力F 使其以10m/s 的水平速度匀速向右运动。
设金属导轨足够长。
求:(1)金属棒ab 两端的电压。
(2)拉力F 的大小。
(3)电阻R 上消耗的电功率。
1.(7分)解:(1)金属棒ab 上产生的感应电动势为BLv E ==,(1分)根据闭合电路欧姆定律,通过R 的电流I =Rr E+=0.50A 。
(1分)电阻R 两端的电压U =IR =。
(1分)(2)由于ab 杆做匀速运动,拉力和磁场对电流的安培力大小相等,即F =BIL =(2分)(3)根据焦耳定律,电阻R 上消耗的电功率R I P 2==(2分)2.如图10所示,在绝缘光滑水平面上,有一个边长为L 的单匝正方形线框abcd ,在外力的作用下以恒定的速率v 向右运动进入磁感应强度为B 的有界匀强磁场区域。
线框被全部拉入磁场的过程中线框平面保持与磁场方向垂直,线框的ab 边始终平行于磁场的边界。
已知线框的四个边的电阻值相等,均为R 。
求:⑴在ab 边刚进入磁场区域时,线框内的电流大小。
⑵在ab 边刚进入磁场区域时,ab 边两端的电压。
⑶在线框被拉入磁场的整个过程中,线框产生的热量。
2.(7分)(1)ab 边切割磁感线产生的电动势为E=BLv …………………(1分) 所以通过线框的电流为I=RBLvR E 44=……………………(1分)(2)ab 边两端电压为路端电压U ab =I ·3R ……………………(1分) 所以U ab =3BLv/4……………………(1分)(3)线框被拉入磁场的整个过程所用时间t=L/v ……………………(1分)线框中电流产生的热量Q=I 2·4R ·t RvL B 432=……………………(2分)3.如图16所示,两根竖直放置的足够长的光滑平行金属导轨间距l =0.50m ,导轨上端接有电阻R =Ω,导轨电阻忽略不计。
导轨下部的匀强磁场区有虚线所示的水平上边界,磁感应强度B =,方向垂直于金属导轨平面向外。
电阻r =Ω的金属杆MN ,从静止开始沿着金属导轨下落,下落一定高度后以v =2.5m/s图10N M P Q图13M的速度进入匀强磁场中,金属杆下落过程中始终与导轨垂直且接触良好。
已知重力加速度g =10m/s 2,不计空气阻力。
(1)求金属杆刚进入磁场时通过电阻R 的电流大小; (2)求金属杆刚进入磁场时,M 、N 两端的电压;(3)若金属杆刚进入磁场区域时恰能匀速运动,则在匀速下落过程中每秒钟有多少重力势能转化为电能? 3.(7分)解:(1)金属杆进入磁场切割磁感线产生的电动势E=Blv ,(1分)根据闭合电路欧姆定律,通过电阻R 的电流大小I =rR E+=0.5A (2分)(2)M 、N 两端电压为路端电压,则U MN =IR =(2分) (3)每秒钟重力势能转化为电能E =I 2(R+r )t =(2分)4.如图14所示,两平行金属导轨间的距离L =0.40m ,金属导轨所在的平面与水平面夹角θ=37o ,在导轨所在平面内,分布着磁感应强度B =、方向垂直遇导轨所在平面的匀强磁场。
金属导轨的一端接有电动势E=、内阻r =Ω的直流电源。
现把一个质量m =0.040kg 的导体棒ab 放在金属导轨上,导体棒恰好静止。
导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接触的两点间的电阻R 0=Ω,金属导轨电阻不计,g 取10m/s 2。
已知sin37o=,cos37o=,求: (1)通过导体棒的电流;(2)导体棒受到的安培力大小; (3)导体棒受到的摩擦力。
4.(1)导体棒、金属导轨和直流电源构成闭合电路,根据闭合电路欧姆定律有:I =rR E +=1.5A …………2分 (2)导体棒受到的安培力: F 安=BIL =…………2分(3)导体棒所受重力沿斜面向下的分力F 1=mg sin37o=由于F 1小于安培力,故导体棒受沿斜面向下的摩擦力f …………1分 根据共点力平衡条件mg sin37o+f =F 安…………1分解得:f =…………1分5.在水平面上平行放置着两根长度均为L 的金属导轨MN 和PQ ,导轨间距为d ,导轨和电路的连接如图16所示。
在导轨的MP 端放置着一根金属棒,与导轨垂直且接触良好。
空间中存在竖直向上方向的匀强磁场,磁感应强度为B 。
将开关S 1闭合S 2断开,电压表和电流表的示数分别为U 1和I 1,金属棒仍处于静止状态;再将S 2闭合,电压表和电流表的示数分别为U 2和I 2,金属棒在导轨上由静止开始运动,运动过程中金属棒始终与导轨垂直。
设金属棒的质量为m ,金属棒与导轨之间的动摩擦因数为μ。
忽略导轨的电阻以及金属棒运动过程中产生的感应电动势,重力加速度为g 。
求: (1)金属棒到达NQ 端时的速度大小;(2)金属棒在导轨上运动的过程中,电流在金属棒中产生的热量。
图145.(8分)解:(1)当通过金属棒的电流为I 2时,金属棒在导轨上做匀加速运动,设加速度为a ,根据牛顿第二定律,ma mg BlI =-μ2,(1分)设金属棒到达NQ 端时的速度为v ,根据运动学公式,aL v 22=,(1分) 由以上两式解得:mLmg BdI v )(22μ-=。
(2分)(2)当金属棒静止不动时,金属棒的电阻11I U r =,设金属棒在导轨上运动的时间为t ,电流在金属棒中产生的热量为Q ,根据焦耳定律,rt I Q 22=,(2分) 根据运动学公式,t vL 2=,将(1)的结果代入,解得(1分)mgBdI LmI U I Q μ-=211222。
(1分)6.如图15(甲)所示,一固定的矩形导体线圈水平放置,线圈的两端接一只小灯泡,在线圈所在空间内均匀分布着与线圈平面垂直的磁场。
已知线圈的匝数n =100匝,电阻r=Ω,所围成矩形的面积S=0.040m 2,小灯泡的电阻R=Ω,磁场的磁感应强度随时间按如图15(乙)所示的规律变化,线圈中产生的感应电动势的瞬时值的表达式为e =t TT S nB m )2cos(2ππ,其中B m 为磁感应强度的最大值,T 为磁场变化的周期。
不计灯丝电阻随温度的变化,求:(1)线圈中产生感应电动势的最大值。
(2)小灯泡消耗的电功率。
(3)在磁感应强度变化0~T /4的时间内,通过小灯泡的电荷量。
6.(8分)解:(1)因为线圈中产生的感应电流变化的周期与磁场变化的周期相同,所以由图象可知,线圈中产生交变电流的周期为T=×10-2s 。
所以线圈中感应电动势的最大值为E=2πnB m S/T =(2分)(2)根据欧姆定律,电路中电流的最大值为I m =rR E +m=0.80A 通过小灯泡电流的有效值为I =I m /2=0.402A ,(1分) 灯泡消耗的电功率为P=I 2R =(2分)(3)在磁感应强度变化1/4周期内,线圈中感应电动势的平均值E =nS tB∆∆ 通过灯泡的平均电流tr R BnS r R E I ∆+∆=+=)((1分) 图15(甲)-2s 图15(乙)通过灯泡的电荷量Q =rR BnS t I +∆=∆=×10-3C 。
(2分) 9.如图19所示,在以O 为圆心,半径为R 的圆形区域内,有一个水平方向的匀强磁场,磁场的磁感应强度大小为B ,方向垂直纸面向外。
竖直平行正对放置的两金属板A 、K 连在电压可调的电路中。
S 1、S 2为A 、K 板上的两个小孔,且S 1、S 2和O 在同一直线上,另有一水平放置的足够大的荧光屏D ,O 点到荧光屏的距离h 。
比荷(电荷量与质量之比)为k 的带正电的粒子由S 1进入电场后,通过S 2射向磁场中心,通过磁场后落到荧光屏D 上。
粒子进入电场的初速度及其所受重力均可忽略不计。
(1)请分段描述粒子自S 1到荧光屏D 的运动情况。
(2)求粒子垂直打到荧光屏上P 点时速度的大小;(3)调节滑片P ,使粒子打在荧光屏上Q 点,PQ =33h (如图19所示),求此时A 、K 两极板间的电压。
9.(1)粒子在电场中自S 1至S 2做匀加速直线运动;自S 2至进入磁场前做匀速直线运动;进入磁场后做匀速圆周运动;离开磁场至荧光屏做匀速直线运动。
…………2分说明:说出粒子在电场中做匀加速直线运动,离开电场作匀速运动,给1分;说出粒子在匀强磁场中做匀速圆周运动,离开磁场后作匀速直线运动,给1分。
(2)设粒子的质量为m ,电荷量为q ,垂直打在荧光屏上的P 点时的速度为v 1,粒子垂直打在荧光屏上,说明粒子在磁场中的运动是四分之一圆周,运动半径r 1=R …………1分 根据牛顿第二定律Bqv 1=211v m r ,依题意:k=q/m …………1分解得:v 1=BkR …………1分(3)设粒子在磁场中运动轨道半径为r 2,偏转角为2,粒子射出磁场时的方向与竖直方向夹角为α,粒子打到Q 点时的轨迹如图所示,由几何关系可知tan α=33=h pQ ,α=30°,θ=30° tan θ=2r R解得:r 2=3R …………1分设此时A 、K 两极板间的电压为U ,设粒子离开S 2时的速度为v 2,根据牛顿第二定律Bqv 2=222v m r …………1分D图19x根据动能定理有qU=2221mv …………1分解得:U=2223R kB …………1分。