液压控制系统
- 格式:pdf
- 大小:102.75 KB
- 文档页数:2
液压控制系统第一章绪论1. 液压伺服控制系统:是以液压动力元件作驱动装置所组成的反馈控制系统,在这种系统中,输出量能够自动的、快速而准确的复现输入量的变化规律,对输入信号进行功率放大,是一个功放装置。
2. 液压伺服控制系统的组成:分法一:(1)输入元件:给出输入信号加于系统的输入端;(2)比较元件:给出偏差信号;(3)放大转换元件(中枢环节):将偏差信号放大、转换成液压信号。
(4)控制元件:伺服阀;(5)执行元件:液压缸和液压马达;(6)反反馈测量元件:测量系统中的输出并转换为反馈信号;(7)其他元件:伺服油源、校正装置、油箱。
分法二:执行元件、动力元件、介质、辅助元件、控制元件(伺服阀)、比较元件、伺服反馈元件。
3. 液压伺服控制系统的分类:按系统输入信号的变化规律不同分为:定值控制系统、程序控制系统、伺服控制系统。
按被控物理量的名称不同可分为:位置伺服控制系统、速度伺服控制系统、力控制系统、其它物理量的控制系统。
按液压动力元件的控制方式或液压控制元件的形式可分为:节流式控制(阀控式)系统和容积式控制(变量泵控制或变量马达控制)系统两类。
按信号传递介质的形式或信号的能量形式可分为:机械液压伺服系统、电气液压伺服系统、气动液压伺服系统。
4. 泵控与阀控系统的优缺点:阀控系统的优点是响应速度快、控制精度高、结构简单;缺点是效率低。
泵控系统的优点是效率高;缺点是响应速度慢,结构复杂,操纵变量机构所需的力较大,需要专门的操纵机构。
5. 液压伺服控制的优点:(1)液压元件的功率—重量比和力矩—惯量比大,可组成结构紧凑、体积小、重量轻、加速性好的伺服系统;(2)液压动力元件快速性好,系统响应快,由于液压动力元件的力矩—惯量比大,所以加速能力强,能快速启动、制动和反向;(3)液压伺服系统抗负载的刚度大,即输出位移受负载变化的影响小,定位准确,控制精度高。
优点:液压伺服系统体积小,重量轻,控制精度高,响应速度快。
液压控制系统的工作原理与应用液压控制系统是一种基于液体流动和压力传播的控制系统,它可以用于控制各种工业设备和机械。
随着科技的不断发展和应用环境的不断变化,液压控制系统已经成为各个领域的主要控制技术之一。
本文将从液压控制系统的基本原理、组成结构及其应用领域等多个角度进行阐述和探讨。
一、液压控制系统的基本原理液压控制系统的基本原理是将电力或人力输入系统的控制装置,这些控制装置负责产生必要的信号,通过阀门控制液压油的流量和压力,从而实现系统对机械或设备的控制。
这种控制方式的主要原理是通过液压油的流动和压力来产生工作行程和力矩,从而实现对机械或设备的控制。
液压控制系统的巨大优势在于:其由液体作为介质,能够传递大量的能量、力矩和行程,使其具有很高的工作效率和响应速度。
尤其是在一些需要远距离传动控制信号或者需要大功率传输的场合,液压控制系统是不可替代的。
二、液压控制系统的组成结构液压控制系统由多个组成部分组成,例如:控制元件、执行元件、驱动元件、液压单元等等。
其中,控制元件是指对液压油的流量和压力进行控制的部件,例如:单向阀、调节阀、溢流阀等等;执行元件是指将控制元件输入的液压压力变为机械运动或力矩的部件,例如:液压机械手臂、油缸、液压马达等等,这种元件的大小和形状与实际需要承载的负荷有关;驱动元件是将操纵杆或踏板的人力或电力信号转化为机械位移或力矩的部件,例如:油泵、马达、压力计等等。
液压单元则是一个整体,用于控制所有液压元件并进行液压油的处理,例如:液压泵、储油池、油管道、冷却器等等。
三、液压控制系统的应用领域液压控制系统的应用广泛,既包括传统的工业生产和机械制造领域,也包括机场、铁路交通、环保、市政工程、航空航天等现代化应用领域。
因为液压控制系统具有结构简单、传动效率高、使用寿命长、工作平稳等优点,所以被广泛应用于多种场合。
在传统的制造业领域,液压控制系统被广泛应用于挖掘机、装载机、压力机、钳子,液压机械手等各种机械设备的设计和生产中。
液压控制系统分类液压控制系统是一种利用液体传递能量和信号来实现机械运动控制的系统。
根据其工作原理和应用场景的不同,液压控制系统可以分为多种类型。
本文将对液压控制系统进行分类,并对各种类型进行详细介绍。
一、按控制方式分类1. 开关控制液压系统:开关控制液压系统是最简单的一种液压控制系统,通过手动或自动开关来控制液压元件的运动。
这种系统结构简单、成本低廉,但只能实现单一的运动形式,控制灵活性较差。
2. 比例控制液压系统:比例控制液压系统通过调节控制元件的工作量来实现对机械运动的精确控制。
常见的比例控制元件有比例阀、伺服阀等。
这种系统能够实现多种运动形式,并具有较高的控制精度和稳定性。
3. 逻辑控制液压系统:逻辑控制液压系统通过逻辑元件(如逻辑阀、逻辑门等)的组合来实现对机械运动的复杂控制。
这种系统适用于多工位、多路线的复杂生产过程,具有较高的自动化程度和控制灵活性。
二、按工作原理分类1. 传统液压控制系统:传统液压控制系统采用液压泵驱动液压油进入液压执行元件,通过控制阀来调节液压油的流量和压力以实现对机械运动的控制。
这种系统结构简单、成熟可靠,广泛应用于工程机械、冶金设备等领域。
2. 电液混合控制系统:电液混合控制系统是将电气控制和液压控制相结合的一种系统。
通过电气信号来控制液压阀的开关,进而控制液压执行元件的运动。
这种系统结构复杂,但具有响应速度快、控制精度高的优点,适用于需要频繁变换工作状态的场合。
三、按应用领域分类1. 工程机械液压系统:工程机械液压系统主要应用于挖掘机、装载机、推土机等工程机械中。
这种系统通常需要具备较大的功率和承载能力,以满足重载工况下的工作要求。
2. 冶金设备液压系统:冶金设备液压系统主要应用于冶金设备中的各种液压机械,如冷轧机、热轧机、剪切机等。
这种系统通常需要具备较高的工作速度和控制精度,以满足高效生产的要求。
3. 汽车液压系统:汽车液压系统主要应用于汽车中的制动系统、悬挂系统、转向系统等。
液压控制系统的工作原理及应用1. 液压控制系统简介液压控制系统是一种利用液体传递能量来实现控制和传动的系统。
它采用液体作为传动介质,通过液体流动产生的压力来实现控制执行元件的运动。
液压控制系统具有传动功率大、动力源稳定、传递力矩平稳等优势,广泛应用于机械、航空、汽车、冶金等领域。
2. 液压控制系统的工作原理液压控制系统的工作原理基于压力传递和力的传递两个基本原理:液体在容器中产生压力,通过管道、阀门等元件将压力传递至执行元件,从而产生力。
液体在封闭的容器内不可压缩,当一个内部施加了压力的液体容器与另一个容器相连时,压力会均匀分布到所有与之相连的容器内。
3. 液压控制系统的组成液压控制系统主要由以下几个组成部分构成:•液压动力系统:由液压泵、液压缸、液压马达等元件组成,负责产生压力、产生力并进行能量转换。
•液压控制元件:包括液控阀、压力阀、流量阀等,用于控制液体的流动和压力,实现对液压系统的控制。
•液压执行元件:例如液压缸、液压马达等,根据控制信号从液压系统中获得能量,并将其转换为机械能,完成工作任务。
•液压传动管路:用于传递液体和能量转换的管道系统,确保液体流动畅通、能量传递有效。
4. 液压控制系统的应用领域液压控制系统在工业领域有着广泛的应用,以下是其中几个典型的应用领域:4.1 工程机械领域•压路机:利用液压控制系统来实现对加重轮、刮刀等部件的控制,调整工作状态。
•起重机:利用液压控制系统进行起重等各种动作,实现对物体的起升、推拉等操作。
4.2 冶金行业•滚轧机:液压控制系统用于调节辊缝、调整辊缝开度,进而调整轧制产品的厚度和形状。
•压铸机:利用液压控制系统控制压铸机的开合及注射动作,实现对压铸产品的制作。
4.3 汽车工业•制动系统:利用液压控制系统来实现汽车制动系统的离合装置、刹车装置等动作。
•悬挂系统:液压控制系统用于控制汽车悬挂系统的高低调节、硬软调节等功能。
4.4 航空航天领域•飞机襟翼/襟翼:飞机的襟翼/襟翼采用液压控制系统来实现展开和收回动作,以改变飞机的升降力和飞行速度。
液压控制系统的基本组成液压控制系统是一种利用液体传递能量和信号来实现工程机械运动和工作的系统。
它由多个组成部分组成,每个部分都起着重要的作用,共同完成系统的控制和运行。
一、液压能源部分液压能源部分主要由油箱、液压泵和液压马达组成。
油箱是用来存储液压油的容器,它具有一定的容积和进出口口。
液压泵是将机械能转换为液压能的装置,它通过旋转或往复运动产生一定压力的液体。
液压马达则是将液压能转换为机械能的装置,它通过液体的压力驱动执行机构的运动。
二、执行部分执行部分主要由液压缸和液压马达组成。
液压缸是将液压能转换为机械能的装置,它通过液体的压力推动活塞运动,从而实现线性运动。
液压马达则是将液压能转换为机械能的装置,它通过液体的压力驱动转子运动,从而实现旋转运动。
三、控制部分控制部分主要由控制阀和控制阀组成。
控制阀是用来控制液体流动的装置,它根据系统需求和操作信号来调节液体的流量和压力,从而实现对系统的控制。
控制阀组则是由多个控制阀组合而成的装置,它可以实现更复杂的控制功能,如方向控制、速度控制、压力控制等。
四、辅助部分辅助部分包括油管、滤油器、油温计、油压表等。
油管是用来连接液压元件的管道,它起到输送液压油的作用。
滤油器是用来过滤液压油中的杂质和污染物,保证系统的正常运行。
油温计和油压表则用来监测液压油的温度和压力,及时发现和解决系统故障。
以上就是液压控制系统的基本组成。
液压能源部分提供了液压能,执行部分将液压能转换为机械能,控制部分根据系统需求和操作信号来控制液体流动,辅助部分则起到连接、过滤和监测的作用。
这些部分互相配合,共同构成了一个完整的液压控制系统,实现了工程机械的运动和工作。
液压控制系统在工程机械、航空航天、冶金、石油化工等领域有广泛的应用,具有高效、可靠、灵活等优点,是现代工程技术的重要组成部分。
液压控制系统的基本组成液压控制系统是一种利用压力传递液体来实现力、运动和能量转换的控制系统。
它由多个组成部分组合而成,每个部分都有着特定的功能。
下面将对液压控制系统的基本组成进行详细介绍。
1. 液压源液压源是液压控制系统的动力来源,主要由液压泵、液压马达和液压发电机等组成。
液压泵负责将机械能转化为液压能,将液体压力提高;液压马达则将液体能量转化为机械能,实现运动;液压发电机则是通过液体能量转化为电能,为系统提供电力。
2. 液压执行元件液压执行元件是液压控制系统中负责执行特定任务的部件,主要包括液压缸和液压马达。
液压缸通过液压能将液体压力转化为线性运动,实现推拉工作;液压马达则将液体能量转化为旋转运动,实现转动工作。
3. 液压控制阀液压控制阀是液压控制系统中的核心部件,负责控制液体的流动方向、压力和流量。
常见的液压控制阀包括单向阀、溢流阀、节流阀、方向控制阀和比例控制阀等。
这些阀门能够根据系统需求进行开启、关闭或调节,从而实现对液压能的精确控制。
4. 液压储能元件液压储能元件主要包括液压蓄能器,用于存储液体能量以备系统需要时使用。
液压蓄能器能够在系统停止供液或液压源故障时继续提供能量,保证系统的稳定运行。
5. 辅助元件辅助元件是液压控制系统中的其他重要组成部分,主要包括油箱、滤清器、冷却器、管路和连接件等。
油箱用于储存液压油,并起到冷却和滤清的作用;滤清器负责过滤液压油中的杂质,保证系统的正常运行;冷却器则通过散热将液压油的温度降低,防止系统过热;管路和连接件用于连接各个液压元件,使液体能够顺畅地流动。
液压控制系统的基本组成就是以上几个部分。
通过液压源提供动力,液压执行元件实现动作,液压控制阀控制液体的流动,液压储能元件存储能量,辅助元件保证系统的正常运行。
这些部分相互配合,共同完成液压控制系统的功能。
液压控制系统的基本组成是多个部分的组合,每个部分都有着特定的功能。
了解和掌握液压控制系统的基本组成,对于正确使用和维护液压系统具有重要意义。
液压控制系统是以电机提供动力基础,使用液压泵将机械能转化为压力,推动液压油。
通过控制各种阀门改变液压油的流向,从而推动液压缸做出不同行程、不同方向的动作,完成各种设备不同的动作需要
液压控制系统的优点:
1、可以在运行过程中实现大范围的无机调速。
2、在同等输出功率下,液压传动装置的体积小、重量轻、运动惯量小、动态性能好。
3、采用液压传动可实现无间隙传动,运动平稳。
4、便于实现自动工作循环和自动过载保护。
5、由于一般采用油作为传动介质,因此 液压元件有自我润滑作用,有较长的使用寿命。
6、液压元件都是标准化、系列化的产品,便于设计、制造和推广应用。
液压控制系统的缺点:
1、损失大、效率低、发热大。
2、不能得到定比传动。
3、当采用油作为传动介质时还需要注意防火问题。
4、液压元件加工精度要求高,造价高。
5、液压系统的故障比较难查找,对操作人员的技术水平要求高。
编辑本段
液压系统噪声控制的实例
以WLYl00型液压挖掘机的液压系统为例,对其可能产生噪声的原因、排除方法介绍如下。
1.柱塞泵或马达的噪声
(1)吸空现象是造成液压泵噪声过高的主要原因之一。
当油液中混入空气后,易在其高压区形成气穴现象,并以压力波的形式传播,造成油液振荡,导致系统产生气蚀噪声。
其主要原因有:
①液压泵的滤油器、进油管堵塞或油液粘度过高,均可造成泵进油口处真空度过高,使空气渗入。
②液压泵、先导泵轴端油封损坏,或进油管密封不良,造成空气进入o
②油箱油位过低,使液压泵进油管直接吸空。
当液压泵工作中出现较高噪声时,应首先对上述部位进行检查,发
现问题及时处理。
(2)液压泵内部元件过度磨损,如柱塞泵的缸体与配流盘、柱塞与柱塞孔等配合件的磨损、拉伤, 使液压泵内泄漏严重,当液压泵输出高压、小流量油液时将产生流量脉动,引发较高噪声。
此时可适当加大先导系统变量机构的偏角,以改善内泄漏对泵输出流量的 影响。
液压泵的伺服阀阀芯、控制流量的活塞也会因局部磨损、拉伤,使活塞在移动过程中脉动,造成液压泵输出流量和压力的波动,从而在泵出口处产生较大振动 和噪声。
此时可对磨损、拉伤严重的元件进行刷镀研配或更换处理。
(3)液压泵配流盘也是易引发噪声的重要元件之一。
配流盘在使用中因表面磨损或油泥沉积在卸荷 槽开启处,都会使卸荷槽变短而改变卸荷位置,产生困油现象,继而引发较高噪声。
在正常修配过程中,经平磨修复的配流盘也会出现卸荷槽变短的后果,此时如不 及时将其适当修长,也将产生较大噪声。
在装配过程中,配流盘的大卸荷槽一定要装在泵的高压腔,并且其尖角方向与缸体的旋向须相对,否则也将给系统带来较大 噪声。
2。
溢流阀的噪声
溢流阀易产生高频噪声,主要是先导阀性能不稳定所致,即为先导阀前腔压力高频振荡引起空气振动而产生的噪声。
其主要原因有:
(1)油液中混入空气,在先导阀前腔内形成气穴现象而引发高频噪声。
此时,应及时排尽空气并防止外界空气重新进入。
(2)针阀在使用过程中因频繁开启而过度磨损,使针阀锥面与阀座不能密合,造成先导流量不稳定、产生压力波动而引发噪声,此时应及时修理或更换。
(3)先导阀因弹簧疲劳变形造成其调压功能不稳定,使得压力波动大而引发噪声,此时应更换弹簧。
3.液压缸的噪声
(1)油液中混有空气或液压缸中空气未完全排尽,在高压作用下产生气穴现象而引发较大噪声。
此时,须及时排尽空气。
(2)缸头油封过紧或活塞杆弯曲,在运动过程中也会因别劲而产生噪声。
此时,须及时更换油封或校直活塞杆。
4.管路噪声
管路死弯过多或固定卡子松脱也能产生振动和噪声。
因此,在管路布置上应尽量避免死弯,对松脱的卡子须及时拧紧。