气动程序控制在工业自动化中应用
- 格式:doc
- 大小:26.50 KB
- 文档页数:6
气动技术的发展及应用气动技术是利用气流的动力对物体进行控制和驱动的一种技术。
它是一种广泛应用于工程领域的技术,包括飞机、汽车、船舶、机械装置等各个方面。
随着科技的不断发展,气动技术在工业自动化领域的应用也越来越广泛。
气动技术的发展可以追溯到大约2000多年前的中国,那时候人们已经开始研究气流的特性以及如何利用气流来驱动机械。
而在18世纪末19世纪初,气动技术取得了重要的突破,人们开始利用气体的压缩和扩散来驱动机械。
到了20世纪,随着工业化的发展和科学技术的进步,气动技术得到了进一步的发展。
特别是在航空工业领域,气动技术的应用突飞猛进,极大地推动了航空事业的快速发展。
气动技术的应用非常广泛,以飞机为例,气动技术在其设计、制造和运行过程中都起着至关重要的作用。
在飞机的设计过程中,气动技术可以优化飞机的机翼形状和机身结构,提高飞机的气动效应,降低飞行阻力,提高飞机的飞行性能;在飞机的制造过程中,气动技术可以用于检测和测试飞机的气动性能,确保飞机的安全和可靠性;在飞机的运行过程中,气动技术可以实现飞机的自动导航、自动起降和自动驾驶,提高飞行的安全性和舒适性。
除了飞机外,气动技术在汽车工业、船舶工业和机械装置等领域也有着广泛的应用。
在汽车工业中,气动技术可以用于改善汽车的外观设计,降低汽车的风阻,提高汽车的燃油经济性;在船舶工业中,气动技术可以用于改良船舶的航行性能,降低船舶的风阻,提高船舶的速度和稳定性;在机械装置中,气动技术可以用于实现机械装置的自动控制和驱动,提高生产效率和产品质量。
随着信息技术和计算机技术的快速发展,气动技术也得到了进一步的提升。
通过将气动技术与计算机技术相结合,可以实现更加精确和高效的控制和驱动。
例如,利用气动减震技术可以实现机器人和自动化设备的准确定位和稳定工作。
同时,通过智能控制技术,可以实现气动系统的自动调节和优化,提高系统的可靠性和控制精度。
总的来说,气动技术的发展和应用对于促进工业化和推动科技进步起着重要的作用。
机械设计基础了解机械设计中的气动控制技术机械设计基础:了解机械设计中的气动控制技术机械设计是一门综合性学科,涉及到多个领域的知识和技术。
在机械设计中,气动控制技术是非常重要的一部分。
本文将介绍气动控制技术的基本原理和应用。
一、气动控制技术的基本原理气动控制技术是利用气体流体的压力和流动进行力量和运动的控制。
它的基本原理是利用空气或其他气体的压缩和释放来实现机械的运动控制。
主要包括气源、执行器、控制阀和控制系统四个部分。
1. 气源:气源是气动系统的供应源,一般采用压缩空气或气体从空气压缩机或气瓶中获得。
气源能够提供给气动设备所需的压力和流量。
2. 执行器:执行器是气动系统的执行部件,用于将气源提供的压力能转换为力或者运动。
常见的执行器有气缸、气动阀门等。
3. 控制阀:控制阀是气动系统的控制部件,用于控制气源的流通和方向。
控制阀的开关状态可以通过电磁线圈或手动操作来实现。
4. 控制系统:控制系统是气动系统的核心部分,用于实现对气动设备的控制。
它一般由传感器、控制器、执行器和电源等组成。
二、气动控制技术的应用气动控制技术在各个领域都有广泛的应用。
下面将介绍几个常见的应用领域。
1. 工业自动化:气动控制技术在工业自动化中起着重要的作用。
它可以实现对生产线上的机械设备进行运动控制,如装配线上的元件定位和装配操作。
2. 车辆制造:气动控制技术在汽车制造和航空制造中有广泛的应用。
例如,汽车的制动系统、悬挂系统和航空器的襟翼等都是采用气动控制技术实现的。
3. 生活家居:气动控制技术在生活家居中也有很多应用。
例如,家用电器、空调和电视等设备中的按键操作和运动控制就是通过气动控制技术实现的。
4. 医疗设备:气动控制技术在医疗设备中也有很多应用。
例如,手术机器人和医疗器械中的运动控制和操作都是通过气动控制技术实现的。
5. 汽车空调系统:汽车空调系统中的温度和湿度控制、风速调节等功能都是通过气动控制技术实现的。
三、气动控制技术的优势和挑战气动控制技术具有许多优势,也面临一些挑战。
一、引言随着科技的不断发展,气动技术在各个领域的应用越来越广泛。
从工业自动化、医疗设备到日常生活中的各种设备,气动技术都扮演着重要的角色。
为了深入了解气动技术,我参加了为期一个月的气动技术实践课程。
通过实践,我对气动技术有了更加深刻的认识,以下是我对这次实践的心得体会。
二、实践内容1. 气动原理与元件在实践过程中,我们首先学习了气动原理与元件。
了解了气体的基本性质、气动系统的组成、各种气动元件的结构与功能。
通过实验,我们掌握了气动元件的安装、调试和故障排除方法。
2. 气动系统设计接下来,我们学习了气动系统设计。
了解了气动系统设计的基本原则、方法与步骤。
通过案例分析,我们学会了如何根据实际需求选择合适的气动元件,并设计出满足要求的气动系统。
3. 气动控制系统气动控制系统是气动技术的重要组成部分。
我们学习了气动控制系统的基本原理、组成及控制策略。
通过实验,我们掌握了气动控制系统的调试与维护方法。
4. 气动技术在工业自动化中的应用最后,我们学习了气动技术在工业自动化中的应用。
了解了气动技术在物料搬运、装配、包装等领域的应用实例,以及气动技术在提高生产效率、降低成本等方面的优势。
三、实践心得1. 气动技术的广泛应用通过实践,我深刻认识到气动技术在我国各个领域的广泛应用。
从工业自动化、医疗设备到日常生活,气动技术都发挥着重要作用。
掌握气动技术,有助于我们更好地适应社会发展的需求。
2. 气动元件的重要性在实践过程中,我了解到气动元件是气动系统的核心。
一个高性能、可靠的气动元件,对于整个气动系统的稳定运行至关重要。
因此,在实际工作中,我们要注重气动元件的选择、安装和维护。
3. 气动系统设计原则在气动系统设计过程中,我们要遵循以下原则:安全性、可靠性、经济性、环保性。
只有遵循这些原则,才能设计出满足实际需求的气动系统。
4. 气动控制系统的调试与维护气动控制系统的调试与维护是保证系统稳定运行的关键。
我们要掌握气动控制系统的调试方法,及时发现并解决故障,确保气动系统正常运行。
基于PLC的气动机械手控制系统设计一、本文概述随着工业自动化技术的飞速发展,气动机械手作为实现生产自动化、提高生产效率的重要工具,在各个领域得到了广泛应用。
基于可编程逻辑控制器(PLC)的气动机械手控制系统,以其稳定可靠、易于编程和维护的特性,成为当前研究的热点之一。
本文旨在探讨基于PLC 的气动机械手控制系统的设计方法,包括系统构成、硬件选择、软件编程以及调试与优化等方面,以期为我国工业自动化领域的发展提供参考和借鉴。
本文将简要介绍气动机械手及其控制系统的基本原理和特点,为后续的设计工作奠定理论基础。
将详细阐述PLC在气动机械手控制系统中的应用优势,包括其可靠性、灵活性以及扩展性等方面的优势。
在此基础上,本文将深入探讨基于PLC的气动机械手控制系统的设计方法,包括系统架构的设计、硬件设备的选择、软件编程的实现以及系统调试与优化等方面。
本文将总结基于PLC的气动机械手控制系统的设计要点和注意事项,为相关工程实践提供指导和借鉴。
通过本文的研究,旨在为我国工业自动化领域的发展提供新的思路和方法,推动气动机械手控制系统的技术进步和应用推广。
也期望本文的研究成果能对相关领域的学者和工程师产生一定的启示和借鉴作用,共同推动工业自动化技术的发展和创新。
二、气动机械手控制系统概述气动机械手控制系统是以可编程逻辑控制器(PLC)为核心,结合气动执行元件、传感器以及相应的控制逻辑,实现对机械手的精确控制。
该系统结合了气动技术的快速响应和PLC的灵活编程特性,使得机械手的动作更加准确、迅速且易于调整。
PLC控制器:作为整个控制系统的核心,PLC负责接收和处理来自传感器的信号,根据预设的程序逻辑,控制气动执行元件的动作。
PLC 具有高度的可靠性和稳定性,能够适应各种复杂的工作环境。
气动执行元件:包括气缸、气阀和气压调节器等。
气缸是实现机械手抓取、移动等动作的主要执行机构;气阀用于控制气缸的运动方向和速度;气压调节器则用于调节气缸的工作压力,以保证机械手的稳定性和精确性。
气压传动中的气动执行器选型与应用气压传动是一种常见且广泛应用于各个领域的传动方式,其中气动执行器作为气压传动系统的核心组成部分,具有重要的作用。
本文将探讨气压传动中的气动执行器的选型原则及其应用。
一、气动执行器的选型原则气动执行器的选型是根据实际应用需求和环境条件来确定的,下面是一些选型原则供参考。
1. 载荷需求:根据工作场景中需要执行的载荷大小,确定所需的气动执行器的承载能力。
对于载荷较小的应用,可以选择气缸或手动阀等简单的执行器;而对于承载能力要求高或复杂工况下的应用,则需要选择更为高级和复杂的执行器。
2. 工作压力:确定所需的气动执行器的工作压力范围。
根据实际工作场景中的气源压力及工作要求,选择能够适应工作压力范围的气动执行器。
3. 运动速度:根据应用需求确定所需的气动执行器的运动速度。
对于一些要求高速运动的场景,需要选择相应的气动执行器来满足运动速度的要求。
4. 控制方式:根据控制要求选择合适的气动执行器。
常见的控制方式包括手动控制、自动控制和远程控制等。
根据实际工作需求选择适合的控制方式以及能够与其他设备配合工作的气动执行器。
二、气动执行器的应用气动执行器广泛应用于各个领域,下面列举几个常见的应用场景。
1. 工业自动化:气动执行器在工业领域的自动化生产线中扮演着重要角色。
例如,气缸作为气动执行器的一种形式,常用于各个生产环节中的物料输送、分拣以及机械臂的运动等。
2. 流体控制:气动执行器在流体控制系统中应用广泛。
例如,气动阀门作为气动执行器的一种形式,广泛应用于液压系统、气动系统以及管道系统中,实现对流体的控制和调节功能。
3. 机床设备:气动执行器在机床设备中也有着重要的应用。
例如,气动夹紧器用于夹持工件,气动驱动装置用于实现机床的各种运动,提高生产效率和加工精度。
4. 交通运输:气动执行器在交通运输领域中扮演着不可或缺的角色。
例如,气动制动系统和悬挂系统等都是基于气动执行器的原理进行设计和应用的。
气动元件的应用领域
气动元件可以用于各种应用领域,其中包括但不限于以下几个方面:
1. 工业自动化:气动元件可以用于各种自动化设备和生产线中,如气缸、气动阀、气源处理装置等,用于控制和驱动机械设备,实现自动化操作。
2. 机械加工:气动元件被广泛应用于机械加工设备中,如气动刀具、气动钳工夹具等,用于快速、精确地完成各种机械加工操作。
3. 空压设备:气动元件可以用于空压设备中,如空压机、气体压缩机等,用于产生和控制气体的压力和流量。
4. 流体控制:气动元件可以用于流体控制系统中,如管道、阀门、流量控制装置等,用于控制和调节流体的压力、流量和方向。
5. 航空航天:气动元件被广泛应用于航空航天领域,如飞机、导弹、火箭等,用于飞行器的控制、推进和降落等操作。
6. 汽车工业:气动元件可以应用于汽车生产线和汽车零部件中,如汽车气缸、气动制动系统等,用于提高汽车制造和驾驶过程的效率和安全性。
7. 医疗设备:气动元件可以用于医疗设备中,如呼吸机、输液
泵等,用于控制和调节气体和流体在医疗过程中的压力和流量。
8. 环境保护:气动元件可以应用于环境保护设备中,如烟气处理装置、水处理装置等,用于控制和处理废气和废水的流动和浓度。
总之,气动元件可以在各个领域中发挥重要的作用,提高生产效率、控制流体和气体的压力和流量,实现自动化操作和精确控制。
气动基本回路气动常用回路气动基本回路是指通过气动元件和管路构成的气动系统中的基本回路。
气动常用回路是指在工业自动化控制系统中经常使用的一些气动回路。
本文将介绍气动基本回路和气动常用回路的一些概念和应用。
气动基本回路主要包括气源回路、执行回路和控制回路。
气源回路是指气动系统中提供压缩空气的部分,通常包括压缩空气发生器、气源处理装置和储气设备。
执行回路是指通过气动执行元件来实现机械运动的部分,通常包括气缸和气动执行阀等。
控制回路是指用来控制执行元件的控制系统,通常包括开关、传感器和控制阀等。
气动常用回路包括单向气缸回路、双向气缸回路、速度控制回路、位置控制回路、压力控制回路等。
单向气缸回路是指通过一个气缸来实现单个工作机构的运动控制,常用于一些简单的工作场合。
双向气缸回路是指通过两个气缸来实现工作机构的正反转运动控制,常用于一些需要双向运动的工作场合。
速度控制回路是通过调节气缸的进气量来实现对气缸运动速度的控制,常用于一些对速度要求较高的工作场合。
位置控制回路是通过使用位置传感器来检测工作机构的位置,并通过控制阀来调节气缸的进气量,从而实现对工作机构位置的控制。
压力控制回路是通过使用压力传感器来检测气缸的压力,并通过控制阀来调节气缸的进气量,从而实现对气缸压力的控制。
气动基本回路和气动常用回路在工业自动化控制系统中具有广泛的应用。
其优点包括响应速度快、动力强、结构简单、成本低廉等。
因此,在许多工业领域中,气动系统被广泛应用于各种自动化生产线、机械设备和工艺控制系统中。
气动基本回路和气动常用回路是工业自动化控制系统中常用的回路类型。
通过对气源回路、执行回路和控制回路的合理设计和配置,可以实现对工作机构的运动控制、速度控制、位置控制和压力控制等功能。
气动系统具有快速响应、动力强大、结构简单、成本低廉等优点,因此在工业领域中具有广泛的应用前景。
液压或气动技术在工业中的应用液压或气动技术是工业中普遍使用的一种主要技术,它是借助气体或液体作为传递力量的媒介,将机电能量通过传动元件转换成机械能或其他形式的能量来实现各种工作的方式。
它的应用非常广泛,几乎存在于各个工业领域中,如机床制造业、汽车制造业、建筑业、化工业、冶金业以及食品加工业等。
在机床制造业中,液压和气动技术是必不可少的,它们被广泛地应用于各种机床中,例如铣床、钻床、车床、镗床等。
这些机床中的各种传动系统,如进给机构、主轴箱、电子手柄等,都需要液压或气动技术来提供动力,使它们能够进行复杂的加工操作。
液压和气动控制系统是这些机床的核心部件之一,能够实现高精度的加工操作,使机床具有高效、稳定、精确的性能。
在汽车制造业中,液压和气动技术同样非常重要,它们被应用到了各种汽车的传动系统、制动系统、转向系统以及悬挂系统中。
例如,在制动系统中,液压技术被用于制动踏板、制动盘和制动鼓之间的传动系统,通过传递液压力,实现汽车的制动操作;在悬挂系统中,气动技术被用于气悬挂的系统中,通过传递气压力,实现汽车底盘和车身之间的减震和支撑操作。
在建筑业中,液压和气动技术的应用也十分广泛。
例如在混凝土泵车中,液压系统被用于驱动混凝土泵的各种动作,例如输送、混合和泵送等。
在行车吊、塔吊等大型起重机中,液压技术也被广泛应用,使起重机能够进行高效、稳定和安全的起重操作。
在化工、冶金、食品加工等领域中,液压和气动技术同样发挥了重要作用。
例如在化工工艺中,液压和气动技术被用于控制各种化学反应过程,使化学反应能够在合适的温度、压力和速度下进行。
在食品加工行业中,气动技术被用于食品包装机械的运作中,通过控制袋口的开启和关闭来实现食品包装的自动化操作。
在总体上,液压和气动技术已成为工业发展中不可或缺的一部分,几乎有任何领域都有其应用。
液压和气动技术具有高效、稳定、安全、精确等优点,因此在未来的工业发展中,液压和气动技术的应用将会越来越普遍化,同时随着科技创新和工艺改进,它们的应用也将更加广泛和深入。
气动程序控制在工业自动化中的应用探究摘要:气动程序控制在那些有特殊要求的食品加工、化工、化纤以及军工等行业当中具有尤为突出的应用价值,其不仅兼顾了plc控制的优势,而且还独具系统控制简捷快速、介质工作清爽干净、系统造价经济、设备便于维护保养等特点;尤其难能可贵的是,气动程序控制对于那些在粉尘污染严重以及易燃、易爆等恶劣生产环境中工作的设备而言,也是特别地适用;另外,气动程序控制还有一个关键的特性,那就是安全、可靠性极高。
本文针对气动程序控制在工业自动化中的应用要求以及应用设计进行了浅要的分析
和探讨,同时着重介绍了一种简单直接、易学可行的气动程序控制回路的设计方法——圆环法,并结合实例阐述了圆环法在工业自动化中气动程序控制上的应用。
关键词:气动程序控制;工业自动化;应用
一、引言
气动程序控制在工业自动化的应用当中,属于自动控制的典型方式之一,其不仅兼顾了plc控制的优势,而且还独具系统控制简捷快速、介质工作清爽干净、系统造价经济、设备便于维护保养等特点。
尤其难能可贵的是,气动程序控制对于那些在粉尘污染严重以及易燃、易爆等恶劣生产环境中工作的设备而言,也是特别地适用。
另外,气动程序控制还有一个关键的特性,那就是安全、可靠性极高。
与此同时,对于气动程序控制在工业自动化系统的应用当中来说,在全气动性质的多缸行程程序所控制的回路设计中,通
常遇到的最为普遍而又困难的问题就是对于障碍信号的排查和消除。
在过去针对此类问题,通常采用的气动程序控制回路的设计方法一般有两种,一是根据信号——操作(即x—d)的状态图来找出障碍信号并将其排除,二是根据卡诺图来进行障碍信号的排查和消除。
然而这两种障碍信号排除方法都比较复杂,因而不易为人学习、掌握。
本文针对气动程序控制在工业自动化中的应用要求以及应用设计进行了浅要的分析和探讨,同时着重介绍了一种简单直接、易学可行的气动程序控制回路的设计方法——圆环法,并结合实例阐述了圆环法在工业自动化中气动程序控制上的应用。
二、气动程序控制在工业自动化中的应用要求
气动程序控制在工业自动化的应用中,被控设备是用于给弹体自动填装高能炸药的。
设备具有储料装置、定量送料装置、定位装置、夹紧装置和振动装置等部分组成,上述装置均由双作用气缸驱动,设备位于自动输送线上。
当输送线运送的弹体到达装药位置时,其操作程序分为以下几步:第一,夹紧装置手爪操作,夹紧弹体;第二定位装置下降,送药漏斗对准弹口;第三定量送料装置投料;第四振动装置振动,敲击送药漏斗侧壁,以使药粉不粘积在漏斗内壁。
投料完毕,振动停止,定位装置上升,夹紧装置手爪松开,弹体随输送线运走,一个工作程序完毕(详见图1:步进模块结构示意图)。
具体操作流程是:弹到装药位→夹爪夹紧→定位缸降→投料 (振动) →停料(停振)→定位缸升→夹爪松开→弹走(与之相对应的气动原理图详见图2:气动原理图,其经过简化的操作流程
表示为:a0a1b1c1(d1)c0(d0)b0a0)。
因为设备是用于填装高能炸药,对系统的安全性要求特别高。
以往相关设备的控制系统采用电控方式,虽然所有的电器元件都采用防爆式的,达到防爆等级,但由于工作环境的恶劣,炸药粉尘中的金属粉末散落在电用接近开关表面,经一定时间的积聚,开关表面被覆盖,如没有及时清理,接近开关就会在没有感应到被测物体时发出被测信号,从而造成系统误操作,存在不安全隐患。
生产车间为了安全,已经把定时檫试接近开关感应面作为生产操作的必备步骤。
为了解决这个问题,经调研认定可行后,在该设备的设计过程中,其控制系统采用了全气动控制方式。
检测信号的采集是由气动行程开关完成,它的特点是只有通过外力压下它的滚轮才发出信号;换向阀均采用气控式的;系统的控制方式采用气动程序控制。
因为气动元件的工作介质是压力气体,气动元件本身具有抗污染性,适于各种工作环境,因此系统具有高度的安全性。
图1步进模块结构示意图
图2气动原理图
三、气动程序控制在工业自动化中的应用设计
气动程序控制在工业自动化的应用极为广泛,下面简单地介绍一种气动程序控制系统的应用设计方案。
按照设备的操作程序,其整个气动程序控制系统其实就是通过四个气缸的顺序操作来实现的。
此时我们设计采用四支双气控换向阀来作为上述气缸的主控阀,与此同时,为了控制好四个气缸的每步操作的速度,又在每条
气路都设计配备了单向可调节流阀来对其进行有效的调速。
因为在这种气动程序控制系统当中需要其四个双作用气缸来进行次序操作,换而言之就是需要对八个工位进行严密的控制,因而在进行自动控制的过程中需要通过依次进行八个控制信号的输出工作来实现对该四个双气控阀的控制,又因为其设备振动要和投料进行同步,且设备停振也要和停料进行同步,所以最终决定选用六个步进模块来组合成为一个特别的程序控制器,以此来实现整个系统全部操作的顺利完成。
其中,该步进模块是通过一个单输出性质的记忆元件以及一个与门和一个或门来共同组成。
即将该单输出性质的记忆元件当中的一个接口和前一级与门当中的输出端相连接,另一个接口和一个或门输出端相连接,还要一个接口来和一个与门输入端相连接,从而实现该步进模块的整体构成。
而将若干个这种类型的步进模块进行串联,而就实现了气动程序控制器的构成(其程序控制器的简化符号表示详见图3:程序控制器符号)。
这里我们将气动程序控制器设计为由六个气动步进模块来共同组成,并将其自动控制过程中阀控制端所发出的控制信号的一个运算因子来作为输出信号,而将其被控操作在达到了检测位并接近了开关时所发出的反馈信号来作为输入信号,这样就可以保证前面的操作没有到位的话,后面的操作就无法执行,从而确保其不会发生误操作。
而这也正是气动程序控制器的一项重要的优点。
另外应当注意的是,在设备的调试过程中,有时需要进行手动操作,所以在设计时应考虑设备包含有自动与手动两套操作执行方案。
而让设备执行操作的综
合阀控信号,则应当经由在自动操作时的阀控信号和手动操作时的阀控信号进行一系列的逻辑运算后才能最终得出。
图3程序控制器符号
四、圆环法在工业自动化中气动程序控制上的应用
对于气动程序控制在工业自动化系统的应用当中来说,在全气动性质的多缸行程程序所控制的回路设计中,通常遇到的最为普遍而又困难的问题就是对于障碍信号的排查和消除。
在过去针对此类问题,通常采用的气动程序控制回路的设计方法一般有两种,一是根据信号——操作(即x—d)的状态图来找出障碍信号并将其排除,二是根据卡诺图来进行障碍信号的排查和消除。
然而这两种障碍信号排除方法都比较复杂,因而不易为人学习、掌握。
下面结合实例阐述了一种简单直接、易学可行的气动程序控制回路的设计方法——圆环法在工业自动化中气动程序控制上的应用。
以常用于工业装配线上两缸a、b以“l”循环顺序操作为例。
根据操作循环程序(详见图4:“l”循环工作程序),做直径为任意值的圆,由于本程序有四个操作步骤,因此从圆的上方开始,按照操作顺序顺时针画出正四边形,四边形的每一个边均为气缸的一个操作,同样用箭头表示操作顺序,四边形的四个角处标出气缸所到位置发出的行程信号(详见图5:“l”循环工作程序所对应的圆环图)。
将圆环按气缸的操作进行分区,分区原则为要使得每个区中的各气缸操作只出现一次。
显然,a0b1为分区信号,过a0b1两点作对角线,将圆环分成两个区,从起始位置开始编分区号1和2。
则在相应的气动程序控制回路当中需要增加带记忆的两位五通换
向阀来将主控阀两侧的原始信号进行分隔,从而就避免了障碍信号的产生。
记忆阀的数量比分区数量少一。
本例中,记忆阀的数量=2(分区数量)-1=1,需要增加一个两位五通阀v1。
在设计气动程序控制回路时,使记忆阀v1输出的两个控制信号y1、y2分别负责1区和2区的行程阀输入信号。
从圆环图中可以看出q、a1、b1属于1区,b0、a0属于2区(则其l循环的气动控制回路详见图6:“l”循环气动控制回路图)。
用同样的方法可以做出三缸六个操作步骤为a+a-b+b-c+c-的程序图和圆环图,按气缸操作将圆环分为三个区域(详见图7:三缸程序a+a-b+b-c+c-及圆环图)。
所增加记忆阀的数量即为两个,用记忆阀v1、v2隔离信号y1、y2、y3的接法(详见图8:用两个记忆阀隔离三组信号)。
应注意,用圆环法设计全气动程序控制回路,最多增加三个记忆阀(圆环分成四个区)。
如果回路用到多于三个记忆阀,则应使用气动顺序器(步进器),否则气动程序控制回路将过于复杂,反而不实用。