。2018年安徽省合肥市庐阳区中考数学一模试卷
- 格式:pdf
- 大小:822.01 KB
- 文档页数:20
安徽省合肥市中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣的相反数是( )A.B.﹣C.D.﹣2.如图是由5个大小相同的小正方体拼成的几何体,下列说法中,正确的是( )A.主视图是轴对称图形B.左视图是轴对称图形C.俯视图是轴对称图形D.三个视图都不是轴对称图形3.总投资约160亿元,线路全长约29.06km的合肥地铁一号线已于2016年12月31日正式运营,这标志着合肥从此进入了地铁时代,将160亿用科学记数法表示为( )A.160×108B.16×109C.1.6×1010D.1.6×10114.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为( )A.35°B.40°C.45°D.55°5.下列运算中,正确的是( )A.3x3•2x2=6x6B.(﹣x2y)2=x4y C.(2x2)3=6x6D.x5÷x=2x46.蜀山区三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是( )A.折线统计图B.频数分布直方图C.条形统计图D.扇形统计图7.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为( )A.B.C.D.8.随着电子商务的发展,越来越多的人选择网上购物,导致各地商铺出租价格持续走低,某商业街的商铺今年1月份的出租价格为a元/平方米,2月份比1月份下降了5%,若3,4月份的出租价格按相同的百分率x继续下降,则4月份该商业街商铺的出租价格为:( )A.(1﹣5%)a(1﹣2x)元B.(1﹣5%)a(1﹣x)2元C.(a﹣5%)(a﹣2)x元D.a(1﹣5%﹣2x)元9.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是( )A.AF=CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有4个D.tan∠CAD=10.如图,在△ABC中,∠BAC=90°,AB=AC=3,点D在BC上且BD=2CD,E,F分别在AB,AC上运动且始终保持∠EDF=45°,设BE=x,CF=y,则y与x之间的函数关系用图象表示为:( )A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)11.分解因式:2ab3﹣8ab= .12.在某校“我爱我班”班歌比赛中,有11个班级参加了决赛,各班决赛的最终成绩各不相同,参加了决赛的六班班长想知道自己班级能否获得一等奖(根据比赛规则:最终成绩前5名的班级为一等奖),他不仅要知道自己班级的成绩,还要知道参加决赛的11个班级最终成绩的 (从“平均数、众数、中位数、方差”中选择答案)13.A,B两地相距120km.甲、乙两辆汽车同时从A地出发去B地,已知甲车的速度是乙车速度的1.2倍,结果甲车比乙车提前20分钟到达,则甲车的速度是 km/h.14.如图,点E,F分别为正方形ABCD的边BC,CD上一点,AC,BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①∠AEB=∠AEF=∠ANM;②EF=BE+DF;③△AOM∽△ADF;④S△AEF=2S△AMN以上结论中,正确的是 (请把正确结论的序号都填上)三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣2sin45°+||﹣()﹣2+()0.16.用配方法解一元二次方程:x2﹣6x+6=0.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,△ABC的三个顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出将△ABC先向右平移3个单位,再向上平移2个单位后得到的△A1B1C1;(2)在图中画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2;(3)在(2)的条件下,计算点A所经过的路径的长度.18.如图,在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n﹣1,使得点A1、A2、A3…A n在直线l上,点C1、C2、C3…C n在y轴正半轴上,请解决下列问题:(1)点A6的坐标是 ;点B6的坐标是 ;(2)点A n的坐标是 ;正方形A n B n C n C n﹣1的面积是 .五、解答题(本大题共2小题,每小题10分,共20分)19.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高米)度为1.6米,请计算主教学楼AB的高度.(≈1.73,结果精确到0.120.合肥市2017年中考的理化生实验操作考试已经顺利结束了,绝大部分同学都取得了满分成绩,某校对九年级20个班级的实验操作考试平均分x进行了分组统计,结果如下表所示:分组频数组号一9.6≤x<9.71二9.7≤x<9.82三9.8≤x<9.9a四9.9≤x<108五x=103(1)求a的值;(2)若用扇形统计图来描述,求第三小组对应的扇形的圆心角度数;(3)把在第二小组内的两个班分别记为:A1,A2,在第五小组内的三个班分别记为:B1,B2,B3,从第二小组和第五小组总共5个班级中随机抽取2个班级进行“你对中考实验操作考试的看法”的问卷调查,求第二小组至少有1个班级被选中的概率.六、解答题(满分12分)21.如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由.七、解答题(满分12分)22.如图,点C是以AB为直径的⊙O上一点,CD是⊙O切线,D在AB的延长线上,作AE⊥CD于E.(1)求证:AC平分∠BAE;(2)若AC=2CE=6,求⊙O的半径;(3)请探索:线段AD,BD,CD之间有何数量关系?请证明你的结论.八、解答题23.在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE 为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h 的取值范围.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.﹣的相反数是( )A.B.﹣C.D.﹣【考点】相反数.【分析】根据相反数的定义,可以得知负数的相反数为负,绝对值没变,此题得解.【解答】解:﹣(﹣)=,故选A.2.如图是由5个大小相同的小正方体拼成的几何体,下列说法中,正确的是( )A.主视图是轴对称图形B.左视图是轴对称图形C.俯视图是轴对称图形D.三个视图都不是轴对称图形【考点】简单组合体的三视图;轴对称图形.【分析】根据从正面看得到的图形是主视图,左边看得到的图形是左视图,从上边看得到的图形是俯视图,再根据轴对称图形的定义可得答案.【解答】解:如图所示:左视图是轴对称图形.故选:B.3.总投资约160亿元,线路全长约29.06km的合肥地铁一号线已于2016年12月31日正式运营,这标志着合肥从此进入了地铁时代,将160亿用科学记数法表示为( )A.160×108B.16×109C.1.6×1010D.1.6×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将160亿用科学记数法表示为:1.6×1010.故选:C.4.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为( )A.35°B.40°C.45°D.55°【考点】平行线的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【解答】解:根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3﹣∠1=95°﹣50°=45°,∵a∥b,∴∠2=∠4=45°.故选:C.5.下列运算中,正确的是( )A.3x3•2x2=6x6B.(﹣x2y)2=x4y C.(2x2)3=6x6D.x5÷x=2x4【考点】整式的除法;幂的乘方与积的乘方;单项式乘单项式.【分析】根据整式的除法,幂的乘方与积的乘方,以及单项式乘单项式的方法,逐项判定即可.【解答】解:A、3x3•2x2=6x5,故选项错误;B、(﹣x2y)2=x4y2,故选项错误;C、(2x2)3=8x6,故选项错误;D、x5÷x=2x4,故选项正确.故选:D.6.蜀山区三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是( )A.折线统计图B.频数分布直方图C.条形统计图D.扇形统计图【考点】统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:这七天空气质量变化情况最适合用折线统计图,故选:A.7.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为( )A.B.C.D.【考点】相似三角形的判定与性质.【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,借助相似三角形的性质即可解决问题.【解答】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC==,故选D.8.随着电子商务的发展,越来越多的人选择网上购物,导致各地商铺出租价格持续走低,某商业街的商铺今年1月份的出租价格为a元/平方米,2月份比1月份下降了5%,若3,4月份的出租价格按相同的百分率x继续下降,则4月份该商业街商铺的出租价格为:( )A.(1﹣5%)a(1﹣2x)元B.(1﹣5%)a(1﹣x)2元C.(a﹣5%)(a﹣2)x元D.a(1﹣5%﹣2x)元【考点】列代数式.【分析】根据降价后的价格=降价前的价格(1﹣降价的百分率),二月份的价格为a(1﹣5%),3,4每次降价的百分率都为x,后经过两次降价,则为(1﹣5%)a (1﹣x)2.【解答】解:由题意得,4月份该商业街商铺的出租价格为(1﹣5%)a(1﹣x)2元故选B.9.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是( )A.AF=CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有4个D.tan∠CAD=【考点】相似三角形的判定;矩形的性质;解直角三角形.【分析】由AE=AD=BC,又AD∥BC,所以==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE= BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【解答】解:A、∵AD∥BC,∴△AEF∽△CBF,∴=,∵AE=AD=BC,∴=,故A正确,不符合题意;B、过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C、图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,共有4个,故C正确,不符合题意;D、设AD=a,AB=b由△BAE∽△ADC,有=.∵tan∠CAD===,故D错误,符合题意.故选D.10.如图,在△ABC中,∠BAC=90°,AB=AC=3,点D在BC上且BD=2CD,E,F分别在AB,AC上运动且始终保持∠EDF=45°,设BE=x,CF=y,则y与x之间的函数关系用图象表示为:( )A.B.C.D.【考点】动点问题的函数图象.【分析】根据等边对等角得出∠B=∠C,再证明∠BED=∠CDF=135°﹣∠BDE,那么△BED∽△CDF,根据相似三角形对应边成比例求出y与x的函数关系式,结合函数值的取值范围即可求解.【解答】解:∵∠BAC=90°,AB=AC=3,∴∠B=∠C=45°,BC=3.∴∠BDE+∠BED=180°﹣∠B=135°,∵∠EDF=45°,∴∠BDE+∠CDF=180°﹣∠EDF=135°,∴∠BED=∠CDF,∴△BED∽△CDF,∴=.∵BD=2CD,∴BD=BC=2,CD=BC=,∴=,∴y=,故B、C错误;∵E,F分别在AB,AC上运动,∴0<x≤3,0<y≤3,故A错误.故选D.二、填空题(本大题共4小题,每小题5分,共20分)11.分解因式:2ab3﹣8ab= 2ab(b+2)(b﹣2) .【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=2ab(b2﹣4)=2ab(b+2)(b﹣2),故答案为:2ab(b+2)(b﹣2)12.在某校“我爱我班”班歌比赛中,有11个班级参加了决赛,各班决赛的最终成绩各不相同,参加了决赛的六班班长想知道自己班级能否获得一等奖(根据比赛规则:最终成绩前5名的班级为一等奖),他不仅要知道自己班级的成绩,还要知道参加决赛的11个班级最终成绩的 中位数 (从“平均数、众数、中位数、方差”中选择答案)【考点】统计量的选择.【分析】根据题意和平均数、众数、中位数、方差的含义可以解答本题.【解答】解:由题意可得,11个班级中取前5名,故只要知道参加决赛的11个班级最终成绩的中位数即可,故答案为:中位数.13.A,B两地相距120km.甲、乙两辆汽车同时从A地出发去B地,已知甲车的速度是乙车速度的1.2倍,结果甲车比乙车提前20分钟到达,则甲车的速度是 72 km/h.【考点】分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题,注意分式方程要检验.【解答】解:设乙车的速度为xkm/h,,解得,x=60,经检验x=60是原分式方程的根,∴1.2x=1.2×60=72,故答案为:72.14.如图,点E,F分别为正方形ABCD的边BC,CD上一点,AC,BD交于点O,且∠EAF=45°,AE,AF分别交对角线BD于点M,N,则有以下结论:①∠AEB=∠AEF=∠ANM;②EF=BE+DF;③△AOM∽△ADF;④S△AEF=2S△AMN以上结论中,正确的是 ①②③④ (请把正确结论的序号都填上)【考点】相似三角形的判定与性质;正方形的性质.【分析】如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,由已知条件得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∴∠AEB=∠AEF,求得BE+BH=BE+DF=EF,故②正确;根据三角形的外角的性质得到∠ANM=∠AEB,于是得到∠AEB=∠AEF=∠ANM;故①正确;根据相似三角形的判定定理得到△OAM∽△DAF,故③正确;由△AMN∽△BME,得到,推出△AMB∽△NME,根据相似三角形的性质得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根据勾股定理得到AE==2S△AMN故④正AN,根据相似三角形的性质得到EF=MN,于是得到S确.【解答】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故②正确;∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH,∴∠ANM=∠AEB,∴∠AEB=∠AEF=∠ANM;故①正确;∵AC⊥BD,∴∠AOM=∠ADF=90°,∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO,∴△OAM∽△DAF,故③正确;连接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME,∴△AMN∽△BME,∴,∴,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°,∵∠EAN=45°,∴∠NAE=∠NEA=45°,∴△AEN是等腰直角三角形,∴AE=AN,∵△AMN∽△BME,△AFE∽△BME,∴△AMN∽△AFE,∴=,∴EF=MN,∵AB=AO,∴S△AEF=S△AHE=HE•AB=EF•AB=MN AO=2×MN•AO=2S△AMN.故④正确.故答案为:①②③④.三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣2sin45°+||﹣()﹣2+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用二次根式性质,特殊角的三角函数值,绝对值的代数意义,以及零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=2﹣2×+2﹣﹣4+1=﹣1.16.用配方法解一元二次方程:x2﹣6x+6=0.【考点】解一元二次方程﹣配方法.【分析】移项后两边配上一次项系数一半的平方,写成完全平方式,再开方即可得.【解答】解:∵x2﹣6x=﹣6,∴x2﹣6x+9=﹣6+9,即(x﹣3)2=3,则x﹣3=±,∴x=3.四、解答题(本大题共2小题,每小题8分,共16分)17.如图,△ABC的三个顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出将△ABC先向右平移3个单位,再向上平移2个单位后得到的△A1B1C1;(2)在图中画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2;(3)在(2)的条件下,计算点A所经过的路径的长度.【考点】作图﹣旋转变换;轨迹;作图﹣平移变换.【分析】(1)利用点平移的坐标规律写出点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,从而得到△A2B2C2;(3)先计算出OA,然后利用弧长公式计算.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)OA==2,所以点A所经过的路径的长度==π.18.如图,在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n﹣1,使得点A1、A2、A3…A n在直线l上,点C1、C2、C3…C n在y轴正半轴上,请解决下列问题:(1)点A6的坐标是 A6(32,31) ;点B6的坐标是 (32,63) ;(2)点A n的坐标是 (2n﹣1,2n﹣1) ;正方形A n B n C n C n﹣1的面积是 22n﹣2 .【考点】一次函数图象上点的坐标特征;正方形的性质.【分析】根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点B n是线段C n A n+1的中点,由此即可得出点B n的坐标,然后根据正方形的面积公式即可得到结论.【解答】解:(1)观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),A5(16,15),A6(32,31),…,∴A n(2n﹣1,2n﹣1﹣1)(n为正整数).观察图形可知:点B n是线段C n A n+1的中点,∴点B n的坐标是(2n﹣1,2n﹣1),∴B6的坐标是(32,63);故答案为:(32,31),(32,63);(2)由(1)得A n(2n﹣1,2n﹣1﹣1)(n为正整数),∴正方形A n B n C n C n﹣1的面积是(2n﹣1)2=22n﹣2,故答案为:(2n﹣1,2n﹣1)(n为正整数).五、解答题(本大题共2小题,每小题10分,共20分)19.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(≈1.73,结果精确到0.1米)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】利用60°的正切值可表示出FG长,进而利用∠ACG的正切函数求AG 长,加上1.6m即为主教学楼的高度AB.【解答】解:在Rt△AFG中,tan∠AFG=,∴FG==,在Rt△ACG中,tan∠ACG=,∴CG==AG.又∵CG﹣FG=24m,即AG﹣=24m,∴AG=12m,∴AB=12+1.6≈22.4m.20.合肥市2017年中考的理化生实验操作考试已经顺利结束了,绝大部分同学都取得了满分成绩,某校对九年级20个班级的实验操作考试平均分x进行了分组统计,结果如下表所示:组号分组频数一9.6≤x<9.71二9.7≤x<9.82三9.8≤x<9.9a四9.9≤x<108五x=103(1)求a的值;(2)若用扇形统计图来描述,求第三小组对应的扇形的圆心角度数;(3)把在第二小组内的两个班分别记为:A1,A2,在第五小组内的三个班分别记为:B1,B2,B3,从第二小组和第五小组总共5个班级中随机抽取2个班级进行“你对中考实验操作考试的看法”的问卷调查,求第二小组至少有1个班级被选中的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)由总班数20﹣1﹣2﹣8﹣3即可求出a的值;(2)由(1)求出的a值,即可求出第三小组对应的扇形的圆心角度数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二小组至少有1个班级被选中的情况,再利用概率公式即可求得答案.【解答】解:(1)a=20﹣1﹣2﹣8﹣3=6;(2)第三小组对应的扇形的圆心角度数=×360°=108°;(3)画树状图得:由树状图可知共有20种可能情况,其中第二小组至少有1个班级被选中的情况数有14种,所以第二小组至少有1个班级被选中的概率==.六、解答题(满分12分)21.如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由.【考点】反比例函数综合题.【分析】(1)由平行线分线段成比例可求得CD的长,则可求得A、B、C、的坐标,再利用待定系数法可求得函数解析式;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,结合函数图象可求得答案;(3)由B、C的坐标可求得BC的长,当BC=BP时,则可求得P点坐标,当BC=PC时,可知点C在线段BP的垂直平分线上,则可求得BP的中点坐标,可求得P点坐标.【解答】解:(1)∵CD⊥OA,∴DC∥OB,∴===,∴CD=2OB=8,∵OA=OD=OB=3,∴A(3,0),B(0,4),C(﹣3,8),把A、B两点的坐标分别代入y=ax+b可得,解得,∴一次函数解析式为y=﹣x+4,∵反比例函数y=的图象经过点C,∴k=﹣24,∴反比例函数的解析式为y=﹣;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,即线段AC(包含A点,不包含C点)所对应的自变量x的取值范围,∵C(﹣3,8),∴0<﹣x+4≤﹣的解集为﹣3≤x<0;(3)∵B(0,4),C(﹣3,8),∴BC=5,∵△PBC是以BC为一腰的等腰三角形,∴有BC=BP或BC=PC两种情况,①当BC=BP时,即BP=5,∴OP=BP+OB=4+5=9,或OP=BP﹣PB=5﹣4=1,∴P点坐标为(0,9)或(0,﹣1);②当BC=PC时,则点C在线段BP的垂直平分线上,∴线段BP的中点坐标为(0,8),∴P点坐标为(0,12);综上可知存在满足条件的点P,其坐标为(0,﹣1)或(0,9)或(0,12).七、解答题(满分12分)22.如图,点C是以AB为直径的⊙O上一点,CD是⊙O切线,D在AB的延长线上,作AE⊥CD于E.(1)求证:AC平分∠BAE;(2)若AC=2CE=6,求⊙O的半径;(3)请探索:线段AD,BD,CD之间有何数量关系?请证明你的结论.【考点】切线的性质.【分析】(1)连接OC,由CD是⊙O切线,得到OC⊥CD,根据平行线的性质得到∠EAC=∠ACO,有等腰三角形的性质得到∠CAO=∠ACO,于是得到结论;(2)连接BC,由三角函数的定义得到sin∠CAE==,得到∠CAE=30°,于是得到∠CAB=∠CAE=30°,由AB是⊙O的直径,得到∠ACB=90°,解直角三角形即可得到结论;(3)根据余角的性质得到∠DCB=∠ACO根据相似三角形的性质得到结论.【解答】(1)证明:连接OC,∵CD是⊙O切线,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠A=CAO,即AC平分∠BAE;(2)解:连接BC,∵AE⊥CE,AC=2CE=6,∴sin∠CAE==,∴∠CAE=30°,∴∠CAB=∠CAE=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴cos∠CAB==,∴AB=4,∴⊙O的半径是2;(3)CD2=BD•AD,证明:∵∠DCB+∠BCO=90°,∠ACO+∠BCO=90°,∴∠DCB=∠ACO,∴∠DCB=∠ACO=∠CAD,∵∠D=∠D,∴△BCD∽△CAD,∴,即CD2=BD•AD.八、解答题23.在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE 为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h 的取值范围.【考点】二次函数的应用.【分析】(1)利用抛物线的顶点F的坐标为(6,2.8),将点(0,2)代入解析式求出即可;(2)利用当x=9时,y=﹣(x﹣6)2+2.8=2.6,当y=0时,﹣(x﹣6)2+2.8=﹣0.4,分别得出即可;(3)设抛物线解析式为y=a(x﹣6)2+h,由点C(0,2)得解析式为y=(x﹣6)2+h,再依据x=18时y≤0即可得h的范围.【解答】解:(1)由题意可得抛物线的顶点F的坐标为(6,2.8),设抛物线的解析式为y=a(x﹣6)2+2.8,将点C(0,2)代入,得:36a+2.8=2,解得:a=﹣,∴y=﹣(x﹣6)2+2.8;(2)当x=9时,y=﹣(9﹣6)2+2.8=2.6>2.24,当x=18时,y=﹣(18﹣6)2+2.8=﹣0.4<0,∴这次发球可以过网且不出边界;(3)设抛物线解析式为y=a(x﹣6)2+h,将点C(0,2)代入,得:36a+h=2,即a=,∴此时抛物线解析式为y=(x﹣6)2+h,根据题意,得: +h≤0,解得:h≥,又∵h>2.32,∴h≥答:球既能过网又不会出界的h的取值范围是h≥. 。
2018年安徽省合肥市名校中考数学模拟试卷(一)一、选择题(本题共10小题,每题4分,共40分.每小题有四个答,其中有且只有个答案是正确的,请把正确答案的代号,写在题后的括号内,答对的得4分,答错、不答或答案超过一个的一律得0分)1.(4分)2018的相反数是()A.8102B.﹣2018C.D.20182.(4分)如图,a∥b,含30°角的三角板的直角顶点在直线b上,一个锐角的顶点在直线a上,若∠1=20°,则∠2的度数是()A.20°B.40°C.50°D.60°3.(4分)2017年11月8日﹣10日,美国总统特朗普对我国进行国事访向,访问期间,中美两国企业签约项目总金额达2500亿美元,这里“2500亿”用科学记数法表示为()A.2.5×103B.2.5×1011C.0.25×1012D.2500×108 4.(4分)如图是由四个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.5.(4分)估计﹣2的值应该在()A.﹣1﹣0之间B.0﹣1之间C.1﹣2之间D.2﹣3之间6.(4分)一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(4分)如图是某班学生篮球运球成绩频数分布直方图,根据图中的信息,这组数据的中位数与众数是()A.10人、20人B.13人、14人C.14分、14分D.13.5分、14分8.(4分)如图,一次函数y=﹣x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数C.没有实数根D.以上结论都正确9.(4分)如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线AD的延长线交于点E,若点D是弧AC的中点,且∠ABC=70°,则∠AEC等于()A.80°B.75°C.70°D.65°10.(4分)如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE 折叠点D落在矩形ABCD内部的点D处,则CD′的最小值是()A.2B.C.D.二、填空题(本题有4小题,每小题5分,共20分)11.(5分)计算(﹣)﹣2= .12.(5分)因式分解:a3﹣16ab2=13.(5分)如图,点A,B,C都在⊙O上,∠ACB=60°,⊙O的直径是6,则劣弧AB的长是.14.(5分)在△ABC中,AB=6cm,点P在AB上,且∠ACP=∠B,若点P是AB的三等分点,则AC的长是.三、(本题有2题,每题8分,共16分)15.(8分)先化简,再求值:,其中x=﹣416.(8分)清朝数学家梅文鼎的著作《方程论》中有这样一道题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:假如有山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?请你解答.四、(本题有2题,每题8分,共16分)17.(8分)已知:如图,一次函数y1=x+2与反比例函数y2=(x>0)的图象交于点A(a,5)(1)确定反比例函数的表达式;(2)结合图象,直接写出x为何值时,y1<y218.(8分)在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2;(2)△A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.五、(本题有2题,每题10分,共20分)19.(10分)观察如图图形,把一个三角形分别连接其三边中点,构成4个小三角形,挖去中间的一个小三角形(如图1),对剩下的三个小三角形再分别重复以上做法,……,据此解答下面的问题(1)填写下表:(2)根据这个规律,求图n中挖去三角形的个数wn;(用含n的代数式表示)(3)若图n+1中挖去三角形的个数为wn+1,求wn+1﹣Wn20.(10分)如图,在一座小山上建有一座铁塔AD,小明站在C处测得小山顶A 的仰角为30°,铁塔顶端的D的仰角为45°,若铁塔AD的高度是100m,试求小山的铅直高度AB(精确到0.1m)(参考数据:=1.414.=1.732)六、(本题共12分)21.(12分)小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图(1)若小明设计的电路图如图1(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图如图2(四个开关按键都处于打开状态)如图所示,求同时时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法)七、(本题共12分)22.(12分)已知:如图,抛物线y=﹣x2+bx+C经过点B(0,3)和点A(3,0)(1)求该抛物线的函数表达式和直线AB的函数表达式;(2)若直线l⊥x轴,在第一象限内与抛物线交于点M,与直线AB交于点N,请在备用图上画出符合题意的图形,并求点M与点N之间的距离的最大值或最小值,以及此时点M,N的坐标.八.(本题共14分)23.(14分)如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P 与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF•AD;(2)若AP:PC=1:3,求tan∠CBQ.2018年安徽省合肥市名校中考数学模拟试卷(一)参考答案与试题解析一、选择题(本题共10小题,每题4分,共40分.每小题有四个答,其中有且只有个答案是正确的,请把正确答案的代号,写在题后的括号内,答对的得4分,答错、不答或答案超过一个的一律得0分)1.(4分)2018的相反数是()A.8102B.﹣2018C.D.2018【解答】解:2018的相反数﹣2018,故选:B.2.(4分)如图,a∥b,含30°角的三角板的直角顶点在直线b上,一个锐角的顶点在直线a上,若∠1=20°,则∠2的度数是()A.20°B.40°C.50°D.60°【解答】解:如图,∵a∥b,∴∠3=∠2,由三角形外角性质,可得∠3=∠1+30°=20°+30°=50°,∴∠2=50°,故选:C.3.(4分)2017年11月8日﹣10日,美国总统特朗普对我国进行国事访向,访问期间,中美两国企业签约项目总金额达2500亿美元,这里“2500亿”用科学记数法表示为()A.2.5×103B.2.5×1011C.0.25×1012D.2500×108【解答】解:2500亿用科学记数法表示为2.5×1011,故选:B.4.(4分)如图是由四个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.【解答】解:根据题意可得,几何体的主视图为:,故选:D.5.(4分)估计﹣2的值应该在()A.﹣1﹣0之间B.0﹣1之间C.1﹣2之间D.2﹣3之间【解答】解:∵1<3<4,∴,∴1﹣2<<2﹣2,即﹣1<0,故选:A.6.(4分)一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,由①得:x≤2,由②得:x>﹣1,则不等式组的解集为﹣1<x≤2,表示在数轴上,如图所示:故选:C.7.(4分)如图是某班学生篮球运球成绩频数分布直方图,根据图中的信息,这组数据的中位数与众数是()A.10人、20人B.13人、14人C.14分、14分D.13.5分、14分【解答】解:由频数分布直方图可知,11分的5人、12分的10人、13分的10人、14分的20人、15分的5人,共有5+10+10+20+5=50人,则中位数为第25、26个数据的平均数,即中位数为=13.5分,众数为14分,故选:D.8.(4分)如图,一次函数y=﹣x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数C.没有实数根D.以上结论都正确【解答】解:∵一次函数y=﹣x与二次函数为y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=﹣x有两个不相等的实数根,ax2+bx+c=﹣x变形为ax2+(b+1)x+c=0,∴ax2+(b+1)x+c=0有两个不相等的实数根,故选:A.9.(4分)如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线AD的延长线交于点E,若点D是弧AC的中点,且∠ABC=70°,则∠AEC等于()A.80°B.75°C.70°D.65°【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵圆内接四边形ABCD的边AB过圆心O,∴∠ADC+∠ABC=180°,∠ABC=70°,∴∠ADC=180°﹣∠ABC=110°,∠BAC=90°﹣∠ABC=10°,∵D为的中点,∴AD=DC,∴∠EAC=∠DCA=×(180°﹣110°)=35°,∵EC为⊙O的切线,∴∠ECA=∠ABC=70°,∴∠AEC=180°﹣∠EAC﹣∠ECA=180°﹣35°﹣70°=75°,故选:B.10.(4分)如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE 折叠点D落在矩形ABCD内部的点D处,则CD′的最小值是()A.2B.C.D.【解答】解:当点D'位于AC连线上时最小,∵矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,∴AD=AD'=BC=2,在Rt△ABC中,AC=,∴CD'=AC﹣AD'=2﹣2,故选:C.二、填空题(本题有4小题,每小题5分,共20分)11.(5分)计算(﹣)﹣2= 4 .【解答】解:==4.故答案为:4.12.(5分)因式分解:a3﹣16ab2= a(a+4b)(a﹣4b)【解答】解:原式=a(a2﹣16b2)=a(a+4b)(a﹣4b),故答案为:a(a+4b)(a﹣4b)13.(5分)如图,点A,B,C都在⊙O上,∠ACB=60°,⊙O的直径是6,则劣弧AB的长是2π.【解答】解:如图连接OA、OB.∵∠AOB=2∠ACB=120°,∴劣弧AB的长==2π,故答案为2π.14.(5分)在△ABC中,AB=6cm,点P在AB上,且∠ACP=∠B,若点P是AB的三等分点,则AC的长是.【解答】解:由∠ACP=∠B,∠A=∠A,可得△ACP∽△ABC.∴,即AC2=AP•AB.分两种情况:(1)当AP=AB=2cm时,AC2=2×6=12,∴AC==cm;(2)当AP=AB=4cm时,AC2=4×6=24,∴AC==;故答案为:.三、(本题有2题,每题8分,共16分)15.(8分)先化简,再求值:,其中x=﹣4【解答】解:,=•,=,=,当x=﹣4时,原式==.16.(8分)清朝数学家梅文鼎的著作《方程论》中有这样一道题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:假如有山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?请你解答.【解答】解:设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩,根据题意得:,解得:.答:每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田亩.四、(本题有2题,每题8分,共16分)17.(8分)已知:如图,一次函数y1=x+2与反比例函数y2=(x>0)的图象交于点A(a,5)(1)确定反比例函数的表达式;(2)结合图象,直接写出x为何值时,y1<y2【解答】解:(1)∵点A(a,5)在一次函数y1=x+2的图象上,∴5=a+2,∴a=3,∴点A坐标为(3,5),∵点A(3,5)在反比例函数的图象上,∴5=,∴k=15,∴反比例函数的表达式为y2=(x>0);(2)由图象可知,当0<x<3时,y1<y2.18.(8分)在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2;(2)△A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.【解答】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求;(2)由图可知,△A2B2C2与△ABC关于点(0,2)成中心对称.五、(本题有2题,每题10分,共20分)19.(10分)观察如图图形,把一个三角形分别连接其三边中点,构成4个小三角形,挖去中间的一个小三角形(如图1),对剩下的三个小三角形再分别重复以上做法,……,据此解答下面的问题(1)填写下表:(2)根据这个规律,求图n中挖去三角形的个数wn;(用含n的代数式表示)(3)若图n+1中挖去三角形的个数为wn+1,求wn+1﹣Wn【解答】解:(1)图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,则图4挖去中间的(1+3+32+33)个小三角形,即图4挖去中间的40个小三角形,故答案为:1+3+32+33;(2)由(1)知,图n中挖去三角形的个数wn=3n﹣1+3n﹣2+…+32+3+1;(3)∵wn+1=3n+3n﹣1+…+32+3+1,wn=3n﹣1+3n﹣2+…+32+3+1∴=3n.20.(10分)如图,在一座小山上建有一座铁塔AD,小明站在C处测得小山顶A 的仰角为30°,铁塔顶端的D的仰角为45°,若铁塔AD的高度是100m,试求小山的铅直高度AB(精确到0.1m)(参考数据:=1.414.=1.732)【解答】解:设AB=x(m),在Rt△ABC中∵tan30°=BC==在Rt△BCD中,∵tan45°=,∴∵AD+AB=BD,∴100+x=x,解得x≈136.6(m),答:小山的铅直高度AB约为136.6m.六、(本题共12分)21.(12分)小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图(1)若小明设计的电路图如图1(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图如图2(四个开关按键都处于打开状态)如图所示,求同时时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法)【解答】解:(1)一共有四个开关按键,只有闭合开关按键K,灯泡才会发光,2所以P(灯泡发光)=(2)用树状图分析如下:一共有12种不同的情况,其中有6种情况下灯泡能发光,所以P(灯泡发光)=.七、(本题共12分)22.(12分)已知:如图,抛物线y=﹣x2+bx+C经过点B(0,3)和点A(3,0)(1)求该抛物线的函数表达式和直线AB的函数表达式;(2)若直线l⊥x轴,在第一象限内与抛物线交于点M,与直线AB交于点N,请在备用图上画出符合题意的图形,并求点M与点N之间的距离的最大值或最小值,以及此时点M,N的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点B(0,3)和点A(3,0),∴,解得,∴抛物线的函数表达式是y=﹣x2+2x+3;设直线AB:y=kx+m,根据题意得,解得,∴直线AB的函数表达式是y=﹣x+3;(2)如图,设点M横坐标为a,则点M的坐标为(a,﹣a2+2a+3),点N的坐标是(a,﹣a+3),又点M,N在第一象限,∴|MN|=﹣a2+2a+3﹣(﹣a+3)=﹣a2+3a,又|MN|=﹣a2+3a=﹣(a2﹣3a+)+=,当a=时,|MN|有最大值,最大值为,即点M与点N之间的距离有最大值,此时点M坐标为(,)点N的坐标为.八.(本题共14分)23.(14分)如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P 与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF•AD;(2)若AP:PC=1:3,求tan∠CBQ.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°,∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,由①得△ABP≌△CBQ,∠ABP=∠CBQ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,∴,∴AP2=AF•AB=AF•AD;(本题也可以连接PD,证△APF∽△ADP)(2)由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,∵∠ACB=45°,∠PCQ=45°+45°=90°,∴tan∠CPQ=,由①得AP=CQ,又∵AP:PC=1:3,∴tan∠CPQ=,由②得∠CBQ=∠CPQ,∴tan∠CBQ=tan∠CPQ=.。
2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(6)——函数基础与一次函数一.选择题(共17小题)1.(2019•合肥二模)甲、乙两车从A 地出发,沿同一路线驶向B 地.甲车先出发匀速驶向B 地,40min 后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km /h ,结果与甲车同时到达B 地.甲乙两车距A 地的路程y (km )与乙车行驶时间x (h )之间的函数图象如图所示,则下列说法:①a =4.5;②甲的速度是60km /h ;③乙出发80min 追上甲;④乙刚到达货站时,甲距B 地180km .其中正确是( )A .①②③B .①②④C .②③④D .①②③④2.(2019•合肥模拟)在20km 的环湖越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,下列说法中,错误的是( )A .出发后1小时,两人行程均为10kmB .出发后1.5小时,甲的行程比乙多3kmC .两人相遇前,甲的速度小于乙的速度D .甲比乙先到达终点3.(2019•庐江县一模)如图在平面直角坐标系中,直线y =−43x +8与x 轴、y 轴分别交于点A 、B ,点C 在x 轴正半轴上,点D 在y 轴正半轴上,且CD =6,以CD 为直径的半圆与AB 交于点E 、F ,则线段EF 的最大值为( )A .245B .125C .16√65D .8√654.(2017•合肥模拟)直线y =x +1与y 轴交于点A 1,按如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 2C 3,…,A 1、A 2、A 3,…A n ,在直线y =x +1上,点C 1、C 2、C 3,…∁n 在x 轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3,…S n,则以下结论中正确的个数为()①S2=2②B n是线段A n+1∁n的中点;③S n=n 22④B1,B2,B3…B n都位于同一条直线上A.1个B.2个C.3个D.4个5.(2020•庐阳区校级一模)如图,Rt△ABC中,∠C=90°,AB=5cm,AC=4cm,点P从点A出发,以1cm/s的速度沿A→C向点C运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C向点C运动,直到它们都到达点C为止.若△APQ的面积为S(cm2),点P的运动时间为t(s),则S与t的函数图象是()A.B.C.D.6.(2020•包河区一模)在四边形ABCD中,AB∥DC,∠A=60°,AD=DC=BC=4,点E沿A→D→C→B运动,同时点F沿A→B→C运动,运动速度均为每秒1个单位,当两点相遇时,运动停止,则△AEF 的面积y与运动时间x秒之间的图象大致为()A.B.C .D .7.(2020•瑶海区二模)如图所示,在△ABC 中,AB =AC ,动点D 在折线段BAC 上沿B →A →C 方向以每秒1个单位的速度运动,过D 垂直于BC 的直线交BC 边于点E .如果AB =5,BC =8,点D 运动的时间为t 秒,△BDE 的面积为S ,则S 关于t 的函数图象的大致形状是( )A .B .C .D .8.(2020•庐江县一模)小元步行从家去火车站,走到6分钟时,以同样的速度回家取物品,然后从家乘出租车赶往火车站,结果比预计步行时间提前了3分钟.小元离家路程S (米)与时间t (分钟)之间的函数图象如图,那么从家到火车站路程是( )A .1300米B .1400米C .1600米D .1500米9.(2019•长丰县三模)如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm /s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .√5B .2C .52D .210.(2019•瑶海区二模)如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的函数关系图象,其中M 为曲线部分的最低点下列说法错误的是( )A.△ABC是等腰三角形B.AC边上的高为4C.△ABC的周长为16 D.△ABC的面积为1011.(2019•包河区一模)已知,△ABC中,∠BAC=135°,AB=AC=2√2,P为边AC上一动点,PQ∥BC 交AB于Q,设PC=x,△PCQ的面积为y,则y与x的函数关系图象是()A.B.C.D.12.(2019•庐江县一模)如图,EF垂直平分矩形ABCD的对角线AC,与AB、CD分别交于点E、F,连接AF.已知AC=4,设AB=x,AF=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.13.(2019•合肥模拟)如图1,在矩形MNPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M 处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则下列说法不正确的是()A .当x =2时,y =5B .矩形MNPQ 的面积是20C .当x =6时,y =10D .当y =152时,x =1014.(2018•长丰县一模)如图1,△ABC 中,∠A =30°,点P 从点A 出发以2cm /s 的速度沿折线A →C →B 运动,点Q 从点A 出发以a (cm /s )的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示,下列结论中,错误的是( )A .α=1B .sin B =13C .△APQ 面积的最大值为2D .图2中图象C 2段的函数表达式为y =−13x 2+53x 15.(2018•瑶海区三模)某条公共汽车线路收支差额y 与乘客量x 的函数关系如图所示(收支差额=车票收入﹣支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变支出费用,提高车票价格;建议(Ⅱ)不改变车票价格,减少支出费用.下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )A .①反映了建议(Ⅰ),③反映了建议(Ⅱ)B .②反映了建议(Ⅰ),④反映了建议(Ⅱ)C .①反映了建议(Ⅱ),③反映了建议(Ⅰ)D .②反映了建议(Ⅱ),④反映了建议(Ⅰ)16.(2018•长丰县二模)如图,向一个半径为3m ,容积为36πm 3的球形容器内注水,则能够反映容器内水的体积y 与水深x 间的函数关系的图象可能是( )A.B.C.D.17.(2018•合肥一模)如图,⊙O的直径AB垂直于CD弦,垂足为E,P为⊙O上一动点,P从A→D→B 在半圆上运动(点P不与点A重合),AP交CD所在的直线于F点,已知AB=10,CD=8,记P A=x,AF 为y,则y关于x的函数图象大致是()A.B.C.D.二.填空题(共6小题)18.(2020•肥城市四模)如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1、l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,则点A2020的坐标为.19.(2019•瑶海区校级三模)在平面直角坐标系中,直线y=−34x+6分别与x轴、y轴交于A、B两点,M是线段AB上的一个动点(点A、B除外),在x轴上方存在点N,使以O、B、M、N为顶点的四边形是菱形,则ON的长度为.20.(2017•合肥一模)将直线y=4x+1向下平移3个单位长度,得到直线解析式为.21.(2017•包河区一模)高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离y1、y2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的坐标为(7,180),其中正确的有(把所有正确结论的序号都填在横线上).22.(2020•包河区一模)函数y=1√n的自变量的取值范围是.23.(2019•合肥二模)函数y=√2−nn的自变量取值范围是.三.解答题(共9小题)24.(2020•瑶海区校级模拟)甲、乙两车分别从A、B两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V甲、V乙.(2)求m的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.25.(2019•蜀山区一模)小明大学毕业后积极响应政府号召回乡创业,准备经营水果生意,他在批发市场了解到某种水果的批发单价与批发量有如下关系批发量m(kg)批发单价(元/kg)40≤m≤100 6m>100 5(1)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;并在如图的坐标系网格中画出该函数图象;指出资金金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(2)经市场调查,销售该种水果的日最高销量n(kg)与零售价x(元/kg)之间满足函数关系n=440﹣40x,小明同学拟每日售出100kg以上该种水果(不考虑损耗),且当日零售价不变,请问他批发多少千克该种水果,零售价定为多少元时,能使当日获得的利润最大,最大利润是多少?26.(2019•合肥模拟)如图,冬生、夏亮两位同学从学校出发到青年路小学参加现场作为比赛,冬生步行一段时间后,夏亮骑自行车沿相同路线行进,两人都是匀速前进,他们的路程差s(米)与冬生出发时间t (分)之间的函数关系如图所示.根据图象进行以下探究:(1)冬生的速度是米/分,请你解释点B坐标(15,0)所表示的意义:;(2)求夏亮的速度和他们所在学校与青年路小学的距离;(3)求a,b值及线段CD所表示的s与t之间的函数关系,并写出自变量的取值范围.27.(2018•瑶海区二模)甲、乙两名同学从学校去图书馆,甲骑自行车,乙步行,甲比乙早出发5分钟,甲到达图书馆查阅资料,一段时间后离开图书馆返回学校,乙到达图书馆还书后立即返回学校(还书时间忽略不计).甲往返的速度均为250米/分,乙往返的速度均为80米/分.下图是两人距学校的距离y(米)与甲出发时间x(分)之间的函数图象,请结合图象回答下列问题(1)从学校到图书馆的距离是米,甲到达图书馆后分钟乙也到达图书馆.(2)求乙返回学校时距学校的距离y(米)与甲出发时间x(分)之间的函数关系式,并直接写出当甲回到学校时乙离学校的距离.28.(2018•包河区二模)A,B两地相距60km,甲从A地去B地,乙从B地去A地,图中l1,l2分别表示甲、乙两人离B地的距离y(km)与甲出发时间x(h)的函数关系图象.(1)根据图象,写出乙的行驶速度为km/h,并解释交点A的实际意义;(2)甲出发多少时间,两人之间的距离恰好相距5km;(3)若用y3(km)表示甲、乙两人之间的距离,请在坐标系中画出y3(km)关于时间x(h)的函数关系图象.29.(2017•庐江县模拟)一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示,慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示,根据图象进行以下探究.(1)甲、乙两地之间的距离为km;(2)线段AB的解析式为;线段OC的解析式为.(3)设快、慢车之间的距离为y(km),请直接写出y与行驶时间x(h)的函数关系式.30.(2017•蜀山区一模)如图,在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n∁n C n﹣1,使得点A1、A2、A3…A n在直线l上,点C1、C2、C3…∁n在y轴正半轴上,请解决下列问题:(1)点A6的坐标是;点B6的坐标是;(2)点A n的坐标是;正方形A n B n∁n C n﹣1的面积是.31.(2017•瑶海区一模)如图,一次函数的图象经过(2,0)和(0,﹣4),根据图象求√n2−2nn+n2的值.32.(2019•瑶海区校级三模)现有一笔直的公路连接M、N两地,甲车从M地驶往N地,速度为每小时60千米,同时乙车从N地驶往M地,速度为每小时80千米.途中甲车发生故障,于是停车修理了2.5小时,修好后立即开车驶往N地.设甲车行驶的时间为t(h),两车之间的距离为s(km).已知s与t的函数关系的部分图象如图所示.(1)直接写出B点的实际意义.(2)问:甲车出发几小时后发生故障?(3)将s与t的函数图象补充完整.(请对画出的图象用数据作适当的标注)2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(6)——函数基础与一次函数参考答案与试题解析一.选择题(共17小题)1.【解答】解:由题意可得,a =4+0.5=4.5,故①正确,甲的速度是:460÷(7+4060)=60km /h ,故②正确,设乙刚开始的速度为xkm /h ,则4x +(7﹣4.5)×(x ﹣50)=460,得x =90, 则设经过bmin ,乙追上甲, 90×n 60=60×40+n 60,解得,b =80,故③正确,乙刚到达货站时,甲距B 地:60×(7﹣4)=180km ,故④正确,故选:D .2.【解答】解:由图象可得,出发后1小时,两人行程均为10km ,故选项A 正确;甲的速度为:10÷1=10千米/时,则1.5小时时,甲走的路程是10×1.5=15(千米),当0.5≤x ≤1.5时,乙的速度为:(10﹣8)÷(1﹣0.5)=4千米/时,则1.5小时时,乙走的路程是10+(1.5﹣1)×4=12(千米),则出发后1.5小时,甲的行程比乙多走:15﹣12=3千米,故选项B 正确;两人相遇前,前0.5小时,甲的速度小于乙的速度,后来甲的速度大于乙的速度,故选项C 错误; 甲比乙先到达终点,故选项D 正确;故选:C .3.【解答】解:过CD 的中点作EF 的垂线与AB 交于点M ,连接MF ,当直线过O 点时,EF 的值最大;∵A (6,0),B (0,8),∴AB =10,∵sin ∠OAB =810=nn 6, ∴OM =4.8,∵CD =6,∴OG =3,∴GM =1.8,∴FM =2.4,∴EF =4.8;故选:A .4.【解答】解:∵直线y =x +1的k =1,∴直线与x 轴的夹角为45°,∴直线与坐标轴相交构成的三角形是等腰直角三角形,当x =0时,y =1,所以,OA 1=1,即第一个正方形的边长为1,所以,第二个正方形的边长为1+1=2,第三个正方形的边长为2+2=4=22,…,第n 个正方形的边长为2n ﹣1,∴S 1=12×1×1=12,S 2=12×2×2=222,S 3=12×22×22=242, …,n n =12×2n −1×2n −1=22n −22=22n −3. 故①②正确,③错误;B 1,B 2,B 3…B n 都位于同一条直线y =x 上,故④正确.所以正确的个数有①②④三个.故选:C .5.【解答】解:①当0≤t ≤2时,点Q 在AB 上,∴AQ =2t ,AP =t ,过Q 作QD ⊥AC 交AC 于点D ,∵Rt △ABC 中,∠C =90°,AB =5cm ,AC =4cm ,∴BC =3cm ,∴nn nn =nn nn ,∴QD =65t ,S △APQ =12×AP ×QD =12×t ×65t =35t 2,②当2<t ≤4时,点Q 在BC 上,S △APQ =S △ABC ﹣S △CPQ ﹣S △ABQ=12×3×4−12×(4﹣t )×(8﹣2t )−12×4×(2t ﹣5) =﹣t 2+4t=﹣(t ﹣2)2+4,综上所述,正确的图象是C .故选:C .6.【解答】解:∵点E 沿A →D →C →B 运动,同时点F 沿A →B →C 运动,运动速度均为每秒1个单位,∠A =60°,∴△AEF 为等边三角形,∵AD =DC =BC =4,∴当0≤x ≤4时,AE =AF =x ,△AEF 的面积y =12x •x •sin60°=√34x 2;当4<x ≤8时,如图1,AF =x ,作DG ⊥AB 于G ,则DG =4sin60°=2√3,∴△AEF 的面积y =12AF •DG =12x ×4×√32=√3x ;当8<x ≤10时,如图2,CE =x ﹣8,BF =x ﹣8,则EF =4﹣(x ﹣8)﹣(x ﹣8)=20﹣2x ,过D 作DG ⊥AB ,CH ⊥AB ,连接AC ,∵AB ∥DC ,AD =DC =BC =4,∴四边形ABCD 为等腰梯形,∴AG =BH =4×cos60°=2,GH =DC =4,∴AH =2+4=6,CH =DG =2√3,AB =2+4+2=8,由勾股定理得:AC =√nn 2+nn 2=√62+(2√3)2=4√3,∵AC 2+BC 2=48+16=64=AB 2,∴∠ACB =90°,∴△AEF 的面积y =12AC •EF =2√3(20﹣2x ),∴此时y 为x 的一次函数,A 正确.故选:A .7.【解答】解:过点A 作AH ⊥BC ,∵AB =AC ,∴HB =HC =12BC =4,∴cos B =nn nn =45,则sin B =35; 当点D 在AB 上时, S =12×AE ×DE =12×AD sin B •AD cos B =625t 2,该函数为开口向上的抛物线; 当点D 在BC 上时,同理可得:S =−625t 2+125t ;该函数为开口向下的抛物线, 故选:B .8.【解答】解:步行的速度为:480÷6=80米/分钟,∵小元步行从家去火车站,走到6分钟时,以同样的速度回家取物品,∴小元回到家时的时间为6×2=12(分钟)则返回时函数图象的点坐标是(12,0)设后来乘出租车中s 与t 的函数解析式为s =kt +b (k ≠0),把(12,0)和(16,1280)代入得,{12n +n =016n +n =1280, 解得{n =320n =−3840, 所以s =320t ﹣3840;设步行到达的时间为t ,则实际到达的时间为t ﹣3,由题意得,80t =320(t ﹣3)﹣3840,解得t =20.所以家到火车站的距离为80×20=1600m .故选:C .9.【解答】解:过点D 作DE ⊥BC 于点E ,由图象可知,点F 由点A 到点D 用时为as ,△FBC 的面积为acm 2.∴AD =a∴12nn ⋅nn =12nn ⋅nn =12n ⋅nn =a∴DE =2当点F 从D 到B 时,用√5s∴BD =√5Rt △DBE 中,BE =√nn 2−nn 2=√(√5)2−22=1∵ABCD 是菱形∴EC =a ﹣1,DC =aRt △DEC 中,a 2=22+(a ﹣1)2 解得a =52,故选:C .10.【解答】解:由图1看到,点P 从B 运动到A 的过程中,y =BP 先从0开始增大,到达点C 时达到最大,对应图2可得此时y =5,即BC =5;点P 从C 运动到A 的过程中,y =BP 先减小,到达BP ⊥AC 时达到最小,对应图2可得此时BP =4;而后BP 又开始增大,到达点A 时达到最大y =5,即BA =5,所以△ABC 为等腰三角形.由图形和图象可得BC =BA =5,BP ⊥AC 时,BP =4过点B 作BD ⊥AC 于D ,则BD =4∴AD =CD =√nn 2−nn 2=√52−42=3,∴AC =6,∴△ABC 的周长为:5+5+6=16,∴S △ABC =12AC •BD =12×6×4=12 故选项A 、B 、C 正确,选项D 错误.故选:D .11.【解答】解:∵AB =AC =2√2,PQ ∥BC ,∴AQ =AP =2√2−x ,过Q 作QD ⊥AC 交CA 的延长线于D ,∵∠BAC =135°,∴∠DAQ =45°,∴△AQD 是等腰直角三角形,∴DQ =√22AQ =2−√22x ,∴PC =x ,△PCQ 的面积为y ,∴y =12×(2−√22x )•x =−√24x 2+x (0<x <2√2),∴y=−√24(x−√2)2+√22;故选:C.12.【解答】解:由AB<AC=4可知,B错误;由EF垂直平分矩形ABCD的对角线AC,得F A=FC,连接EC,则EC=EA,易证△CFO≌△AEO(ASA)∴AE=CF=AF=CE=y,BE=AB﹣AE=x﹣y,∵在直角三角形AEO中,AE>AO=nn2=2,∴y>2,排除C;在直角三角形ABC和直角三角形ECB中,由勾股定理可得:AC2﹣AB2=EC2﹣BE2,16﹣x2=y2﹣(x﹣y)2,化简得:xy=8,∴n=8n,故y为关于x的反比例函数,排除A;综上,D正确.故选:D.13.【解答】解:由图2可知:PN=4,PQ=5.A、当x=2时,y=12×nn×nn=12×5×2=5,故A正确,与要求不符;B、矩形的面积=MN•PN=4×5=20,故B正确,与要求不符;C、当x=6时,点R在QP上,y=12×nn×nn=10,故C正确,与要求不符;D、当y=152时,x=3或x=10,故D错误,与要求相符.故选:D.14.【解答】解:当点P在AC上运动时,y=12nn⋅nn⋅nnnnn=12×2n⋅nn12=12nn2当x=1,y=12时,a=1由图象可知,AB=5,AC+CB=10当P在BC上时y=12⋅n⋅(10−2n)⋅nnnnn,当x=4,y=43时,代入解得sin∠B=13∴y=12⋅n(10−2n)13=−13x2+53x当x=−n2n=52时,y最大=2512故选:C.15.【解答】解:∵建议(Ⅰ)是不改变支出费用,提高车票价格;也就是也就是图形增大倾斜度,提高价格,∴③反映了建议(Ⅰ),∵建议(Ⅱ)是不改变车票价格,减少支出费用,也就是y增大,车票价格不变,即平行于原图象,∴①反映了建议(Ⅱ).故选:C.16.【解答】解:根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<3时,y增量越来越大,当3<x<6时,y增量越来越小,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故y关于x的函数图象是先凹后凸.故选:A.17.【解答】解:如图,分别连结OC、AC、CP、BP,在Rt△OCE中,OC=5,CE=4,∴OE=3,在Rt△ACE中,AE=5+3=8,CE=4,∴AC=√82+42=4√5,∵∠AFE=∠ABP=∠ACP,∠CAP=∠F AC,∴△ACP∽△F AC,∴AC2=AP•AF,即xy=80,∴y=80n(0<x≤10),∴函数图象为第一象限内的双曲线的一部分,故选:A.二.填空题(共6小题)18.【解答】解:当x=1时,y=2,∴点A1的坐标为(1,2);当y=﹣x=2时,x=﹣2,∴点A2的坐标为(﹣2,2);同理可得:A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),A6(﹣8,8),A7(﹣8,﹣16),A8(16,﹣16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(﹣22n+1,22n+1),A4n+3(﹣22n+1,﹣22n+2),A4n+4(22n+2,﹣22n+2)(n为自然数).∵2020=505×4,∴点A2020的坐标为(21010,﹣21010),故答案为:(21010,﹣21010).19.【解答】解:y=−34x+6,令x=0,y=6,令y=0,x=8,故点A、B的坐标分别为:(8,0)、(0,6),则OA=8,OB=6,则AB=√nn2+nn2=10,当BO是边时,如图所示,菱形为BOMN,连接ON交AB于点H,则OH⊥AB,S △AOB =12×OA ×OB =12×AB ×OH ,即6×8=10×OH ,解得:OH =4.8,ON =2OH =9.6;当BO 是对角线时,菱形为BN ′OM ′,当点M ′是Rt △ABO 的中线时,BM ′=OM ′=12AB =5=ON ′,综上,ON =5或9.6;故答案为:5或9.6.20.【解答】解:将直线y =4x +1向下平移3个单位长度后得到的直线解析式为y =4x +1﹣3, 即y =4x ﹣2.故答案为y =4x ﹣2.21.【解答】解:①450+240=690(千米).故A 、C 之间的路程为690千米是正确的;②450÷5﹣240÷4=90﹣60=30(千米/小时).故乙车比甲车每小时快30千米是正确的;③690÷(450÷5+240÷4)=690÷(90+60)=690÷150=4.6(小时).故4.6小时两车相遇,原来的说法是错误的;④(450﹣240)÷(450÷5﹣240÷4)=210÷(90﹣60)=210÷30=7(小时),450÷5×7﹣450=630﹣450=180(千米).故点E 的坐标为(7,180)是正确的,故其中正确的有①②④.故答案为:①②④.22.【解答】解:由题意,得x >0,故答案为:x >0.23.【解答】解:根据题意得,2﹣x ≥0,且x ≠0,解得:x ≤2且x ≠0.故答案为:x ≤2且x ≠0.三.解答题(共9小题)24.【解答】解:(1)由图可得,{0.5(n 甲+n 乙)=180−110(1.5−0.5)n 甲+1.5n 乙=180, 解得,{n 甲=60n 乙=80, 答:甲的速度是60km /h 乙的速度是80km /h ;(2)m =(1.5﹣1)×(60+80)=0.5×140=70,即m 的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=97,若甲车没有故障停车,则可以提前:1.5−97=314(小时)两车相遇,即若甲车没有故障停车,可以提前314小时两车相遇.25.【解答】解:(1)由题意得,当40≤m ≤100时,w =6m ;当m >100时,w =5m .由图象可知,当资金金额500<w ≤600时,以同样的资金可以批发到较多数量的该种水果.(2)∵销售该种水果的日最高销量n (kg )与零售价x (元/kg )之间满足函数关系n =440﹣40x ,∵小明同学拟每日售出100kg 以上该种水果,则其批发单价为5元/kg ,设利润为L 元,则由题意得: L =n (x ﹣5)=(440﹣40x )×(x ﹣5)=﹣40x 2+640x ﹣2200=﹣40(x ﹣8)2+360∴当x =8,n =440﹣40×8=120时,时,能使当日获得的利润最大,最大利润为360元.答:他批发120千克该种水果,零售价定为8元时,能使当日获得的利润最大,最大利润是360元26.【解答】解:(1)冬生的速度:900÷9=100米/分,点B 所表示的意义:冬生出发15分时,夏亮追上冬生;故答案为:100,冬生出发15分时,夏亮追上冬生;(2)当冬生出发15分时,夏亮运动了15﹣9=6(分),运动的距离是:15×100=1500(米), ∴夏亮的速度:1500÷6=250(米/分),当第19分以后两人距离越来越近,说明夏亮已到达终点,故夏亮先到达青年路小学,此时夏亮运动的时间为19﹣9=10(分),运动的距离为10×250=2500(米),故他们所在学校与青年路小学的距离是2500米;(3)由(1)(2)可知,两所学校相距2500米,冬生的速度是100米/分,故a =2500100=25,b =100×(25﹣19)=600,设线段CD 所表示的s 与t 之间的函数关系为s =kt +d ,由题意得{19n +n =60025n +n =0, 解得{n =−100n =2500. 故s =﹣100t +2500(19≤t ≤25).27.【解答】解:(1)250×8=2000(米),2000÷80=25(分),25+5﹣8=22∴从学校到图书馆的距离是1000米,甲到达图书馆后22分钟乙也到达图书馆,故答案为2000,22;(2)乙返回学校的函数解析式为y =mx +n ,把(30,2000)和(55,0)代入得到{30n +n =200055n +n =0, 解得{n =−80n =4400, ∴y =﹣80x +4400,当x =46时,y =720,答:乙返回学校时距学校的距离y (米)与甲出发时间x (分)之间的函数关系式为y =﹣80x +4400,甲回到学校时乙离学校的距离720米.28.【解答】解:(1)由图象可得,乙的行驶速度为:60÷(3.5﹣0.5)=20km /h ,设l 1对应的函数解析式为y 1=k 1x +b 1, {n 1=602n 1+n 1=0,得{n 1=−30n 1=60, 即l 1对应的函数解析式为y 1=﹣30x +60,设l 2对应的函数解析式为y 2=k 2x +b 2, {0.5n 2+n 2=03.5n 2+n 2=60,得{n 2=20n 2=−10, 即l 2对应的函数解析式为y 2=20x ﹣10,{n =−30n +60n =20n −10,得{n =1.4n =18, 即点A 的坐标为(1.4,18),∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇,此时距离B 地18km ;(2)由题意可得,|(﹣30x +60)﹣(20x ﹣10)|=5,解得,x 1=1.3,x 2=1.5,答:当甲出发1.3h 或1.5h 时,两人之间的距离恰好相距5km ;(3)由题意可得,当0≤x ≤0.5时,y 3=﹣30x +60,当0.5<x ≤1.4时,y 3=y 1﹣y 2=(﹣30x +60)﹣(20x ﹣10)=﹣50x +70,当1.4<x ≤2时,y 3=y 2﹣y 1=(20x ﹣10)﹣(﹣30x +60)=50x ﹣70,当2<x ≤3.5时,y 3=20x ﹣10,y 3(km )关于时间x (h )的函数关系图象如右图所示.29.【解答】解:(1)∵当x =0时,y 1=450,∴甲、乙两地之间的距离为450km .故答案为:450.(2)设线段AB 的解析式为y 1=kx +b ,线段OC 的解析式为y 2=mx ,将点A (0,450)、B (3,0)代入y 1=kx +b , {n =4503n +n =0,解得:{n =−150n =450, ∴线段AB 的解析式为y 1=﹣150x +450(0≤x ≤3).将点C (6,450)代入y 2=mx ,6m =450,解得:m =75,∴线段OC 的解析式为y 2=75x (0≤x ≤6).故答案为:y 1=﹣150x +450(0≤x ≤3);y 2=75x (0≤x ≤6).(3)令y 1=y 2,则﹣150x +450=75x ,解得:x =2.当0≤x <2时,y =y 1﹣y 2=﹣150x +450﹣75x =﹣225x +450;当2≤x ≤3时,y =y 2﹣y 1=75x ﹣(﹣150x +450)=225x ﹣450;当3<x ≤6时,y =y 2=75x .∴快、慢车之间的距离y (km )与行驶时间x (h )的函数关系式为y ={−225n +450(0≤n <2)225n −450(2≤n ≤3)75n (3<n ≤6).30.【解答】解:(1)观察,发现:A 1(1,0),A 2(2,1),A 3(4,3),A 4(8,7),A 5(16,15),A 6(32,31),…,∴A n (2n ﹣1,2n ﹣1﹣1)(n 为正整数).观察图形可知:点B n 是线段∁n A n +1的中点,∴点B n 的坐标是(2n ﹣1,2n ﹣1),∴B 6的坐标是(32,63);故答案为:(32,31),(32,63);(2)由(1)得A n (2n ﹣1,2n ﹣1﹣1)(n 为正整数),∴正方形A n B n ∁n C n ﹣1的面积是(2n ﹣1)2=22n ﹣2,故答案为:(2n ﹣1,2n ﹣1﹣1),22n ﹣2(n 为正整数).31.【解答】解:∵一次函数的图象经过(2,0)和(0,﹣4),∴{2n +n =0n =−4,解得{n =2n =−4. ∵k 2﹣2kb +b 2=(k ﹣b )2=(2+4)2=36,∴√n 2−2nn +n 2=√36=6.32.【解答】解:(1)点B 的实际意义是甲车故障开始修理了,乙车还在继续行驶;(2)∵t =3时,两车距离为0,相遇,∵80×3=240km ,∴发生故障前甲车行驶路程为300﹣240=60km ,时间=60÷60=1小时;(3)甲车再次行驶时,t =1+2.5=3.5h ,乙车到达N 地时,t =300÷80=3.75h ,甲车到达M 地时,t =300÷60+2.5=7.5h ,所以,3<t ≤3.5时,s =80(t ﹣3)=80t ﹣240,t =3.5时,80t ﹣240=80×3.5﹣240=40km ,3.5<t ≤3.75时,s =80(t ﹣3)+60(t ﹣3.5)=140t ﹣450,t =3.75时,140t ﹣450=140×3.75﹣450=75km ,3.75<t ≤7.5时,s =60(t ﹣3.75)+75=60t ﹣150,补全图形如图所示..。
2018届安徽省合肥市、安庆市名校大联考中考数学模拟试卷(一)解析版数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1. 在﹣1,﹣2,0,1四个数中最小的数是()A. -1B. -2C. 0D. 1【答案】B【解析】【分析】此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.所以解答此题可以根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数即可.【详解】∵﹣2<﹣1<0<1,∵最小的数是﹣2.故选B.2. 如图,a∥b,点B在直线b上,且AB∥BC,若∥1=36°,则∥2的大小为()A. 34°B. 54°C. 56°D. 66°【答案】B【解析】【详解】分析:根据a∵b求出∠3的度数,然后根据平角的定义求出∠2的度数.详解:∵a∵b∵ ∵∵3=∵1=36°∵ ∵∵ABC=90°∵ ∵∵2+∵3=90°∵∵∵2=90°∵36°=54°,故选B∵点睛:本题主要考查的是平行线的性质以及平角的性质,属于基础题型.明白平行线的性质是解决这个问题的关键.3. 如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是( )A. B. C. D.【答案】D【解析】【分析】根据俯视图的定义判断即可.【详解】水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个正方形,故选D∵【点睛】几何体的三视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.4. 一个扇形的半径等于一个圆的半径的2倍,且扇形面积是圆的面积的一半,则这个扇形的圆心角度数是( )A. 45°B. 60°C. 90°D. 75°【答案】A【解析】【详解】分析:首先设圆的半径为r ,则扇形的半径为2r ,然后根据扇形和圆的面积计算法则得出答案.详解:设圆的半径为r ,则扇形的半径为2r ,则扇形的面积=212r π,即()22π213602n r r π=∵ 解得:n=45°,故选A∵点睛:本题主要考查的是扇形的面积计算法则,属于基础题型.明白扇形的面积计算公式是解决这个问题的关键.5. 下列说法正确的是( )A. 矩形都是相似图形B. 各角对应相等的两个五边形相似C. 等边三角形都是相似三角形D. 各边对应成比例的两个六边形相似【答案】C【解析】【详解】分析:根据相似多边形的判定法则即可得出答案.如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形∵ 详解:根据定义可知:要使多边形相似则需要满足对应角相等,还要满足对应边成比例,则故选C∵点睛:本题主要考查的是相似多边形的判定定理,属于基础题型.理解相似多边形的定义是解题的关键.6. 如果点A (x 1,y 1)和点B (x 2,y 2)是直线y=﹣kx+b 上的两点,且当x 1<x 2时,y 1<y 2,那么函数y=k x 的图象位于象限( ) A. 一、四B. 二、四C. 三、四D. 一、三 【答案】B【解析】【详解】分析:根据一次函数的增减性得出k 的取值范围,然后根据反比例函数的性质得出答案.详解:∵当12x x <时12y y <∵ ∵∵k∵0,则k∵0∵ ∴反比例函数y k x =在二、四象限,故选B∵点睛:本题主要考查的是一次函数和反比例函数的性质,属于基础题型.明白函数的增减性是解题的关键.7. 如图,在Rt∵ABC 中,CD 是斜边AB 上的高,则下列结论正确的是( )A. BD=12ADB. BC 2=AB•CDC. AD 2=BD•ABD. CD 2=AD•BD【答案】D【解析】【详解】分析:根据题意得出△ACD 和△CBD 相似,从而得出答案. 详解:∵∵ACD∵∵CBD∵ ∵=CD BD AD CD∵ 即2CD AD BD =⋅∵ 故选D∵ 点睛:本题主要考查的是相似三角形的判定与性质,属于基础题型.得出三角形相似是解决这个问题的关键.8. 一组从小到大排列的数据:a ∵3∵5∵5∵6∵∵a 为正整数),唯一的众数是5,则该组数据的平均数是( )A. 3.8B. 4C. 3.6或3.8D. 4.2或4【答案】D【解析】【分析】根据众数的定义得出正整数a 的值,再根据平均数的定义求解可得.【详解】解:∵数据:a ∵3∵5∵5∵6∵a 为正整数),唯一的众数是5∵ 1a ∴=或2∵ 当1a =时,平均数为1355645, 当2a =时,平均数为23556 4.25, 故选:D∵【点睛】本题主要考查了众数与平均数的定义,根据众数是一组数据中出现次数最多的数得出a 的值是解题的关键.9. 反比例函数y=21m x+图象上三点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),已知x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A. y 3>y 1>y 2B. y 3>y 2>y 1C. y 1>y 2>y 3D. y 2>y 1>y 3【答案】A【解析】【详解】分析:首先根据题意得出函数所在的象限,然后根据反比例函数的增减性得出答案.详解:∵210m +>∵ ∴函数在每一个象限内y 随着x 的增大而减小, 当x∵0时y∵0∵x∵0时y∵0∵ ∵312y y y >>,故选A∵点睛:本题主要考查的是反比例函数的增减性,属于基础题型.理解反比例函数的增减性是解题的关键.10. 如图,在正方形ABCD 对角线BD 上截取BE BC =,连接CE 并延长交AD 于点F ,连接AE ,过B 作BG AE ⊥于点G ,交AD 于点H ,则下列结论错误的是( )A. AH DF =B. DEF AGH EFHG S S S =+四边形C. 45AEF ∠=︒D. ABH DCF ≅△△【答案】B【解析】 【分析】根据正方形的性质和BE BC =,得出ADE 与CDE 全等,22.5DAE DCE ∠=∠=︒,ABH DCF ∠=∠,再判断Rt ABH △与Rt DCF △全等,即可判断A 、C 、D 三个选项是否符合题意;连接HE ,判断EFH S与EFD S 的面积关系,即可判断B 选项是否符合题意∵【详解】解:在正方形ABCD 中,∵45ABE ADE CDE ∠=∠=∠=︒,AB BC =,∵BE BC =∵AE BE =∵BH 是线段AE 的垂直平分线,22.5ABH DBH ∠=∠=︒,在Rt ABH △中,9067.5AHB ABH ∠=︒-∠=︒,∵90AGH ∠=︒,∵22.5DAE ABH ∠=∠=︒, ADE 和CDE 中45DE DE ADE CDE AD CD =⎧⎪∠=∠=︒⎨⎪=⎩,∵()SAS ADE CDE ≅,∵22.5DAE DCE ∠=∠=︒,∵ABH DCF ∠=∠,在Rt ABH △和Rt DCF △中BAH CDF AB CDABH DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵()ASA Rt ABH Rt DCF ≅△△,∵AH DF =,67.5CFD AHB ∠=∠=︒∵CFD EAF AEF ∠=∠+∠,∵67.522.545AEF CFD EAF ∠=∠-∠=︒-︒=︒,故A ,C ,D 正确;如图,连接HE ,∵BH 是AE 垂直平分线,∵AG EG =,∵AGH HEG S S =△△,∵67.5EHG AHG ∠=∠=︒,∵45DHE ∠=︒,∵45ADE ∠=︒,∵90DEH ∠=︒,45DHE HDE ∠=∠=︒,∵EH ED =,∵DEH △是等腰直角三角形,∵EF 不垂直DH ,∵FH FD ≠,∵EFH EFD S S ≠△△,∵HEG EFH AGH EFH DEF AGH EFHG S S S S S S S =+=+≠+△△△△△△四边形,故B 错误, 故选B∵【点睛】本题考查了正方形的性质,全等三角形的判定和性质,三角形的内角和以及三角形的外角和,解答此题的关键是判断出ADE CDE ≅△△,难点是作辅助线.二、填空题(本大题共4小题,每小题5分,共20分)11. 因式分解:216x y xy -=__.【答案】()161xy x -【解析】【分析】先找出公因式,再提取公因式得出答案.【详解】216(161)x y xy xy x -=-.故答案为:(161)xy x -.【点睛】本题主要考查了提公因式法分解因式,掌握提公因式法的步骤是解题的关键.即先确定公因式,再提出公因式写成整式乘积的形式.12. 2017年安徽人口数量约为5950.05万人,其中城镇人口2674万人,乡村人口占安徽总人口的55.2%,其中数据5950.05万用科学记数法可表示为_____.【答案】5.95005×107【解析】【详解】分析:科学记数法是指a×10n ,且110a ≤<∵n 为原数的整数位数减一∵ 详解:5950.05万=59500500=75.9500510⨯∵点睛:本题主要考查的是科学记数法的表示方法,属于基础题型.明确科学记数法的方法是解题的关键.13. 如图,△ABC 绕C 点顺时针旋转37°后得到了△A ′B ′C ,A ′B ′⊥AC 于点D ,则∠A=______°.【答案】53【解析】【详解】分析:首先根据垂直得出∠A′DC=90°,根据旋转的性质得出∠A′CD=37°,根据三角形内角和定理得出∠A′的度数,从而得出∠A 的度数.详解:∵A′B′⊥AC, ∴∠A′DC=90°, ∵旋转角度为37°, ∴∠A′CD=37°, ∴根据△A′DC 的内角和定理可得:∠A′=90°-37°=53°,∴∠A=∠A′=53°.点睛:本题主要考查的是旋转图形的性质以及三角形内角和定理,属于中等难度的题型.明白旋转图形的性质是解题的关键.14. 已知关于x 的二次函数22423=-++-y ax ax a a 在13x -≤≤的范围内有最小值5,则a 的值为________.【答案】4或﹣8【解析】【详解】分析:根据题意得出函数的对称轴为直线x=2,然后分a∵0和a∵0两种情况分别求出a 的值.详解:根据函数解析式可得函数的对称轴为直线x=2∵当a∵0,则当x=2时函数的最小值为5∵ 即24a 8a 2a 35a -++-=∵ 解得:a=4或a=∵2(舍去)∵当a∵0时,则当x=∵1时函数的最小为5,即2a 4a 2a 35a +++-=∵ 解得:a=∵8或x=1(舍去)∵综上所述a=4或a=∵8∵点睛:本题主要考查的是二次函数的最值问题以及分类讨论思想的应用,属于中等难度的题型.理解二次函数的最值是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15. 计算:﹣22+tan60°﹣(3.14﹣π)0﹣|1.【答案】-4【解析】【详解】分析:首先根据幂的计算法则、绝对值以及特殊角的三角函数求出各式的值,然后进行求和得出答案.详解:原式=﹣4+﹣1﹣(﹣1)=﹣4+﹣1﹣+1=﹣4.点睛:本题主要考查的是实数的计算,属于基础题型.理解各种计算法则是解题的关键.16. 先化简:(21x x -﹣x ﹣1)÷22121x x x --+,然后求当﹣1时代数式的值.【解析】 【详解】分析:首先将括号里面的分式进通分,然后将分式的分子和分母进行因式分解,约分化简得出答案,最后将x 的值代入进行计算得出答案. 详解:原式=(﹣)•=•=, 当x=﹣1时,原式===. 点睛:本题主要考查的是分式的化简求值问题,属于基础题型.明白因式分解的方法是解决这个问题的关键.四、解答题(本大题共2小题,每小题8分,满分16分)17. 在12×12的网格中,每个小正方形的边长均为1,建立如图所示的平面直角坐标系,按照要求作图并解答相关问题.(1)将∥ABC围绕这原点O按顺时针方向旋转90°,得到∥A1B1C1;(2)以坐标原点O为位似中心,作出与∥A1B1C1位似且位似比为1:2的∥A2B2C2,并写出点A2的坐标.【答案】答案见解析【解析】【详解】分析:(1)、根据旋转图形的画法画出图形即可;(2)、根据位似图形的性质画出图形,根据坐标系得出点A2的坐标.详解:(1)如图所示,∥A1B1C1即为所求;(2)如图所示,∥A2B2C2即为所求,点A2的坐标为(2,2)或(﹣2,﹣2).点睛:本题主要考查的是旋转图形的性质以及位似图形的性质,属于基础题型.明确性质是解题的关键.18. 如图,在∵ABC中,∵B=45°∵∵C=60°∵AC=20∵∵1)求BC的长度;∵2)若∵ADC=75°,求CD的长.;(2)20【答案】(1)【解析】【详解】分析:(1)、分别根据Rt∵ACE和Rt∵ABE的性质求出CE和BE的长度,从而得出BC的长度;(2)、根据内角和定理求出∠BAC的度数,然后结合公共角得出△CDA和△CAB相似,从而得出CD的长度.详解:(1)作AE∥BC于E,如图,在Rt∥ACE中,∥∥C=60°,∥CE=AC=10,AE=CE=10,在Rt∥ABE中,∥∥B=45°,∥BE=AE=10,∥BC=BE+CE=10+10;(2)∥∥BAC=180°﹣45°﹣60°=75°,而∥ADC=75°,∥∥ADC=∥ABC,∥∥ACD=∥BCA,∥∥CDA∥∥CAB,∥=,即=,∥CD=20﹣20.点睛:本题主要考查的是直角三角形的性质以及三角形相似的判定与性质,属于中等难度的题型.明确特殊直角三角形的性质是解题的关键.五、解答题(本大题共2小题,每小题10分,满分20分)19. 某中学为了解七年级学生的体育成绩,从全年级学生中随机抽取部分学生进行“双飞”跳绳测试,结果分为A,B,C,D四个等级,请跟进两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该学校七年级共有400名学生,请你估计该学校七年级学生中“双飞”跳绳测试结果为D等级的学生有多少名.【答案】(1)本次抽样调查共抽取了50名学生;(2)16(3)估计该学校七年级学生中“双飞”跳绳测试结果为D等级的学生有32名【解析】【详解】分析:(1)、根据A等的人数和百分比求出样本容量;(2)、根据总人数减去各组的人数得出C等级的人数,从而补全图形;(3)、根据样本容量中的百分比得出全校的人数.详解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)400×=32,所以估计该学校七年级学生中“双飞”跳绳测试结果为D等级的学生有32名.点睛:本题主要考查的是条形统计图的实际应用,属于基础题型.明确频数、频率与样本容量之间的关系是解题的关键.20. “白马服饰城”某服装柜的某款裤子每条的成本是50元,经市场调查发现,当销售单价是100元时,每天可以卖掉50条,每降低1元,可多卖5条.(1)要使每天的利润为4000元,裤子的定价应该是多少元?(2)如何定价可以使每天的利润最大?最大利润是多少?【答案】(1)裤子的定价应该是70元或90元;(2)定价为每条80元可以使每天的利润最大,最大利润是4500元【解析】【详解】分析:(1)、首先设设裤子的定价为每条x元,根据题意列出一元二次方程,从而得出答案;(2)、根据题意得出关于x的函数解析式,然后根据二次函数的增减性得出最大值.详解:(1)设裤子的定价为每条x元,根据题意,得:(x﹣50)[50+5(100﹣x)]=4000,解得:x=70或x=90,答:裤子的定价应该是70元或90元;(2)销售利润y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x ﹣27500,=﹣5(x﹣80)2+4500,∥a=﹣5<0,∥抛物线开口向下.∥50≤x≤100,对称轴是直线x=80,∥当x=80时,y最大值=4500;答:定价为每条80元可以使每天的利润最大,最大利润是4500元.点睛:本题主要考查的是一元二次方程的应用以及二次函数的应用,属于中等难度题型.列出方程是解决这个问题的关键.六、解答题(本大题满分12分)21. 在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.(1)求从袋中同时摸出的两个球都是黄球的概率;(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是12,求放入袋中的黑球的个数.【答案】(1)310(2)2【解析】【分析】(1)、根据题意画出树状图,从而根据概率的计算法则得出答案;(2)∵设放入袋中的黑球的个数为x,根据概率列出方程从而得出答案.【详解】解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率=632010=; (2)设放入袋中的黑球的个数为x , 根据题意得211252x x x +=++, 解得x=2, 所以放入袋中的黑球的个数为2.【点睛】本题主要考查的是概率的计算法则,属于基础题型.画出树状图是解决概率问题的关键.七、解答题(本大题满分12分)22. 如图,抛物线2122y x bx =-++与x 轴交于A ,B 两点,与y 轴交于C 点,且点A 的坐标为(1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)判断△ABC 的形状,并证明你的结论;(3)点M 是抛物线对称轴上的一个动点,当△ACM 的周长最小时,求点M 的坐标.【答案】(1)顶点D 的坐标为(﹣32,258);(2)△ABC 是直角三角形(3)当M 的坐标为(﹣32,54) 【解析】 【分析】(1)将点A 的坐标代入函数解析式求出b 的值,然后将二次函数进行配方从而得出顶点坐标;(2)根据二次函数的解析式分别得出点A 、B 、C 的坐标,然后分别求出AC 、BC和AB 的长度,然后根据勾股定理的逆定理得出答案;(3)由抛物线的性质可知,点A 与点B 关于对称轴对称,则BC 与对称轴的交点就是点M ,根据一次函数的交点求法得出点M 的坐标.【详解】解:(1)∵点A (1,0)在抛物线2122y x bx =-++上, ∴12-+b +2=0,解得,32b =-, 抛物线的解析式为22131325222228y x x x ⎛⎫=--+=-++ ⎪⎝⎭, 则顶点D 的坐标为325,28⎛⎫- ⎪⎝⎭; (2)△ABC 是直角三角形,证明:点C 的坐标为(0,2),即OC =2, 当213x x 2022--+=, 解得,x 1=﹣4,x 2=1,则点B 的坐标为(﹣4,0),即OB =4,OA =1,OB =4,∴AB =5,由勾股定理得,ACBC=∴ AC 2+BC 2=25=AB 2,∴△ABC 是直角三角形;(3)由抛物线的性质可知,点A 与点B 关于对称轴对称,连接BC 交对称轴于M ,此时△ACM 的周长最小,设直线BC 的解析式为:y =kx +b ,由题意得,402k b b -+=⎧⎨=⎩, 解得,122k b ⎧=⎪⎨⎪=⎩, 则直线BC 的解析式为:122y x =+, 当x =32-时,54y =,∴当M的坐标为35,24⎛⎫-⎪⎝⎭.【点睛】本题主要考查的是二次函数的性质以及一次函数的交点坐标,属于中等难度的题型.待定系数法求函数解析式是解决这个问题的关键.八、解答题(本大题满分14分)23. 如图1,在矩形ABCD中,AB=9,BC=12,点M从点A出发,以每秒2个单位长度的速度沿AB方向在AB上运动,以点M为圆心,MA长为半径画圆,如图2,过点M作NM∥AB,交∥M于点N,设运动时间为t秒.(1)填空:BD= ,BM=;(请用准确数值或含t的代数式表示)(2)当∥M与BD相切时,①求t的值;②求∥CDN的面积.(3)当∥CND为直角三角形时,求出t的值.【答案】(1)15,9﹣t;(2)①t=2②36;(3)t=4.5秒【解析】【详解】分析:(1)、根据Rt∵ABD的勾股定理求出BD的长度,根据AM=t得出BM的长度;(2)①、判断出△BME和△BDA相似,得出比例式建立方程即可得出答案;②、先求出MN∵CD边上的高,利用三角形的面积公式得出答案;(3)∵过点N作直线FG∥MN,分别交AD,BC于点F,G,分别求出2DN和2CN与t的关系式,然后分∥DNC=90°和∥DCN=90°两种情况求出t的值.详解:(1)∥四边形ABCD是矩形,∥AD=BC=12,∥BAD=90°,在Rt∥ABD中,AB=9,BC=12,根据勾股定理得,BD==15,由运动知,AM=t.∥BM=AB﹣AM=9﹣t;(2)①如图1,∥M且BD于E,∥ME∥BD,∥∥BEM=∥BAD=90°,∥∥EBM=∥ABD,∥∥BME∥∥BDA,∥,∥,∥t=2,②∥MN=AM=2t=4,∥CD边上的高为AD﹣MN=12﹣4=8,∥S△CDN=×9×8=36;(3)如图2,过点N作直线FG∥MN,分别交AD,BC于点F,G,∥FN=2t,GN=9﹣2t,DF=CG=12﹣2t,∥DN2=DF2+FN2=(12﹣2t)2+(2t)2,∥CN2=CG2+GN2=(12﹣2t)2+(9﹣2t)2,①当∥DNC=90°时,DN2+CN2=CD2,∥(12﹣2t)2+(2t)2+(12﹣2t)2+(9﹣2t)2=81,化简,得4t2﹣33t+72=0,∥∥=(﹣33)2﹣4×4×72<0,∥此方程无实数根;②当∥DCN=90°时,点N在BC上,BN=BA=2t=9,∥t=4.5,综上所述,t=4.5秒.点睛:本题主要考查的是直角三角形的勾股定理、圆的切线的性质以及三角形相似的应用,综合性比较强.解决这个问题的关键就是切线的性质的应用.。
2018年安徽省合肥市名校中考数学模拟试卷(一)一、选择题(本题共10小题,每题4分,共40分.每小题有四个答,其中有且只有个答案是正确的,请把正确答案的代号,写在题后的括号内,答对的得4分,答错、不答或答案超过一个的一律得0分)1.(4分)2018的相反数是()A.8102B.﹣2018C.D.20182.(4分)如图,a∥b,含30°角的三角板的直角顶点在直线b上,一个锐角的顶点在直线a上,若∠1=20°,则∠2的度数是()A.20°B.40°C.50°D.60°3.(4分)2017年11月8日﹣10日,美国总统特朗普对我国进行国事访向,访问期间,中美两国企业签约项目总金额达2500亿美元,这里“2500亿”用科学记数法表示为()A.2.5×103B.2.5×1011C.0.25×1012D.2500×108 4.(4分)如图是由四个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.5.(4分)估计﹣2的值应该在()A.﹣1﹣0之间B.0﹣1之间C.1﹣2之间D.2﹣3之间6.(4分)一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(4分)如图是某班学生篮球运球成绩频数分布直方图,根据图中的信息,这组数据的中位数与众数是()A.10人、20人B.13人、14人C.14分、14分D.13.5分、14分8.(4分)如图,一次函数y=﹣x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数C.没有实数根D.以上结论都正确9.(4分)如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线AD的延长线交于点E,若点D是弧AC的中点,且∠ABC=70°,则∠AEC等于()A.80°B.75°C.70°D.65°10.(4分)如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,则CD′的最小值是()A.2B.C.D.二、填空题(本题有4小题,每小题5分,共20分)11.(5分)计算(﹣)﹣2=.12.(5分)因式分解:a3﹣16ab2=13.(5分)如图,点A,B,C都在⊙O上,∠ACB=60°,⊙O的直径是6,则劣弧AB的长是.14.(5分)在△ABC中,AB=6cm,点P在AB上,且∠ACP=∠B,若点P是AB 的三等分点,则AC的长是.三、(本题有2题,每题8分,共16分)15.(8分)先化简,再求值:,其中x=﹣416.(8分)清朝数学家梅文鼎的著作《方程论》中有这样一道题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:假如有山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?请你解答.四、(本题有2题,每题8分,共16分)17.(8分)已知:如图,一次函数y1=x+2与反比例函数y2=(x>0)的图象交于点A(a,5)(1)确定反比例函数的表达式;(2)结合图象,直接写出x为何值时,y1<y218.(8分)在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2;(2)△A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.五、(本题有2题,每题10分,共20分)19.(10分)观察如图图形,把一个三角形分别连接其三边中点,构成4个小三角形,挖去中间的一个小三角形(如图1),对剩下的三个小三角形再分别重复以上做法,……,据此解答下面的问题(1)填写下表:(2)根据这个规律,求图n中挖去三角形的个数w n;(用含n的代数式表示)(3)若图n+1中挖去三角形的个数为w n+1,求w n+1﹣W n20.(10分)如图,在一座小山上建有一座铁塔AD,小明站在C处测得小山顶A 的仰角为30°,铁塔顶端的D的仰角为45°,若铁塔AD的高度是100m,试求小山的铅直高度AB(精确到0.1m)(参考数据:=1.414.=1.732)六、(本题共12分)21.(12分)小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图(1)若小明设计的电路图如图1(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图如图2(四个开关按键都处于打开状态)如图所示,求同时时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法)七、(本题共12分)22.(12分)已知:如图,抛物线y=﹣x2+bx+C经过点B(0,3)和点A(3,0)(1)求该抛物线的函数表达式和直线AB的函数表达式;(2)若直线l⊥x轴,在第一象限内与抛物线交于点M,与直线AB交于点N,请在备用图上画出符合题意的图形,并求点M与点N之间的距离的最大值或最小值,以及此时点M,N的坐标.八.(本题共14分)23.(14分)如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P 与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF•AD;(2)若AP:PC=1:3,求tan∠CBQ.2018年安徽省合肥市名校中考数学模拟试卷(一)参考答案与试题解析一、选择题(本题共10小题,每题4分,共40分.每小题有四个答,其中有且只有个答案是正确的,请把正确答案的代号,写在题后的括号内,答对的得4分,答错、不答或答案超过一个的一律得0分)1.(4分)2018的相反数是()A.8102B.﹣2018C.D.2018【解答】解:2018的相反数﹣2018,故选:B.2.(4分)如图,a∥b,含30°角的三角板的直角顶点在直线b上,一个锐角的顶点在直线a上,若∠1=20°,则∠2的度数是()A.20°B.40°C.50°D.60°【解答】解:如图,∵a∥b,∴∠3=∠2,由三角形外角性质,可得∠3=∠1+30°=20°+30°=50°,∴∠2=50°,故选:C.3.(4分)2017年11月8日﹣10日,美国总统特朗普对我国进行国事访向,访问期间,中美两国企业签约项目总金额达2500亿美元,这里“2500亿”用科学记数法表示为()A.2.5×103B.2.5×1011C.0.25×1012D.2500×108【解答】解:2500亿用科学记数法表示为2.5×1011,故选:B.4.(4分)如图是由四个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.【解答】解:根据题意可得,几何体的主视图为:,故选:D.5.(4分)估计﹣2的值应该在()A.﹣1﹣0之间B.0﹣1之间C.1﹣2之间D.2﹣3之间【解答】解:∵1<3<4,∴,∴1﹣2<<2﹣2,即﹣1<0,故选:A.6.(4分)一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,由①得:x≤2,由②得:x>﹣1,则不等式组的解集为﹣1<x≤2,表示在数轴上,如图所示:故选:C.7.(4分)如图是某班学生篮球运球成绩频数分布直方图,根据图中的信息,这组数据的中位数与众数是()A.10人、20人B.13人、14人C.14分、14分D.13.5分、14分【解答】解:由频数分布直方图可知,11分的5人、12分的10人、13分的10人、14分的20人、15分的5人,共有5+10+10+20+5=50人,则中位数为第25、26个数据的平均数,即中位数为=13.5分,众数为14分,故选:D.8.(4分)如图,一次函数y=﹣x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数C.没有实数根D.以上结论都正确【解答】解:∵一次函数y=﹣x与二次函数为y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=﹣x有两个不相等的实数根,ax2+bx+c=﹣x变形为ax2+(b+1)x+c=0,∴ax2+(b+1)x+c=0有两个不相等的实数根,故选:A.9.(4分)如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线AD的延长线交于点E,若点D是弧AC的中点,且∠ABC=70°,则∠AEC等于()A.80°B.75°C.70°D.65°【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵圆内接四边形ABCD的边AB过圆心O,∴∠ADC+∠ABC=180°,∠ABC=70°,∴∠ADC=180°﹣∠ABC=110°,∠BAC=90°﹣∠ABC=10°,∵D为的中点,∴AD=DC,∴∠EAC=∠DCA=×(180°﹣110°)=35°,∵EC为⊙O的切线,∴∠ECA=∠ABC=70°,∴∠AEC=180°﹣∠EAC﹣∠ECA=180°﹣35°﹣70°=75°,故选:B.10.(4分)如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,则CD′的最小值是()A.2B.C.D.【解答】解:当点D'位于AC连线上时最小,∵矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,∴AD=AD'=BC=2,在Rt△ABC中,AC=,∴CD'=AC﹣AD'=2﹣2,故选:C.二、填空题(本题有4小题,每小题5分,共20分)11.(5分)计算(﹣)﹣2=4.【解答】解:==4.故答案为:4.12.(5分)因式分解:a3﹣16ab2=a(a+4b)(a﹣4b)【解答】解:原式=a(a2﹣16b2)=a(a+4b)(a﹣4b),故答案为:a(a+4b)(a﹣4b)13.(5分)如图,点A,B,C都在⊙O上,∠ACB=60°,⊙O的直径是6,则劣弧AB的长是2π.【解答】解:如图连接OA、OB.∵∠AOB=2∠ACB=120°,∴劣弧AB的长==2π,故答案为2π.14.(5分)在△ABC中,AB=6cm,点P在AB上,且∠ACP=∠B,若点P是AB的三等分点,则AC的长是.【解答】解:由∠ACP=∠B,∠A=∠A,可得△ACP∽△ABC.∴,即AC2=AP•AB.分两种情况:(1)当AP=AB=2cm时,AC2=2×6=12,∴AC==cm;(2)当AP=AB=4cm时,AC2=4×6=24,∴AC==;故答案为:.三、(本题有2题,每题8分,共16分)15.(8分)先化简,再求值:,其中x=﹣4【解答】解:,=•,=,=,当x=﹣4时,原式==.16.(8分)清朝数学家梅文鼎的著作《方程论》中有这样一道题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:假如有山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?请你解答.【解答】解:设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩,根据题意得:,解得:.答:每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田亩.四、(本题有2题,每题8分,共16分)17.(8分)已知:如图,一次函数y1=x+2与反比例函数y2=(x>0)的图象交于点A(a,5)(1)确定反比例函数的表达式;(2)结合图象,直接写出x为何值时,y1<y2【解答】解:(1)∵点A(a,5)在一次函数y1=x+2的图象上,∴5=a+2,∴a=3,∴点A坐标为(3,5),∵点A(3,5)在反比例函数的图象上,∴5=,∴k=15,∴反比例函数的表达式为y2=(x>0);(2)由图象可知,当0<x<3时,y1<y2.18.(8分)在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2;(2)△A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.【解答】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求;(2)由图可知,△A2B2C2与△ABC关于点(0,2)成中心对称.五、(本题有2题,每题10分,共20分)19.(10分)观察如图图形,把一个三角形分别连接其三边中点,构成4个小三角形,挖去中间的一个小三角形(如图1),对剩下的三个小三角形再分别重复以上做法,……,据此解答下面的问题(1)填写下表:(2)根据这个规律,求图n中挖去三角形的个数w n;(用含n的代数式表示)(3)若图n+1中挖去三角形的个数为w n+1,求w n+1﹣W n【解答】解:(1)图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,则图4挖去中间的(1+3+32+33)个小三角形,即图4挖去中间的40个小三角形,故答案为:1+3+32+33;(2)由(1)知,图n中挖去三角形的个数w n=3n﹣1+3n﹣2+…+32+3+1;(3)∵w n+1=3n+3n﹣1+…+32+3+1,w n=3n﹣1+3n﹣2+…+32+3+1∴=3n.20.(10分)如图,在一座小山上建有一座铁塔AD,小明站在C处测得小山顶A 的仰角为30°,铁塔顶端的D的仰角为45°,若铁塔AD的高度是100m,试求小山的铅直高度AB(精确到0.1m)(参考数据:=1.414.=1.732)【解答】解:设AB=x(m),在Rt△ABC中∵tan30°=BC==在Rt△BCD中,∵tan45°=,∴∵AD+AB=BD,∴100+x=x,解得x≈136.6(m),答:小山的铅直高度AB约为136.6m.六、(本题共12分)21.(12分)小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图(1)若小明设计的电路图如图1(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图如图2(四个开关按键都处于打开状态)如图所示,求同时时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法)【解答】解:(1)一共有四个开关按键,只有闭合开关按键K2,灯泡才会发光,所以P(灯泡发光)=(2)用树状图分析如下:一共有12种不同的情况,其中有6种情况下灯泡能发光,所以P(灯泡发光)=.七、(本题共12分)22.(12分)已知:如图,抛物线y=﹣x2+bx+C经过点B(0,3)和点A(3,0)(1)求该抛物线的函数表达式和直线AB的函数表达式;(2)若直线l⊥x轴,在第一象限内与抛物线交于点M,与直线AB交于点N,请在备用图上画出符合题意的图形,并求点M与点N之间的距离的最大值或最小值,以及此时点M,N的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点B(0,3)和点A(3,0),∴,解得,∴抛物线的函数表达式是y=﹣x2+2x+3;设直线AB:y=kx+m,根据题意得,解得,∴直线AB的函数表达式是y=﹣x+3;(2)如图,设点M横坐标为a,则点M的坐标为(a,﹣a2+2a+3),点N的坐标是(a,﹣a+3),又点M,N在第一象限,∴|MN|=﹣a2+2a+3﹣(﹣a+3)=﹣a2+3a,又|MN|=﹣a2+3a=﹣(a2﹣3a+)+=,当a=时,|MN|有最大值,最大值为,即点M与点N之间的距离有最大值,此时点M坐标为(,)点N的坐标为.八.(本题共14分)23.(14分)如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P 与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF•AD;(2)若AP:PC=1:3,求tan∠CBQ.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°,∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,由①得△ABP≌△CBQ,∠ABP=∠CBQ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,∴,∴AP2=AF•AB=AF•AD;(本题也可以连接PD,证△APF∽△ADP)(2)由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,∵∠ACB=45°,∠PCQ=45°+45°=90°,∴tan∠CPQ=,由①得AP=CQ,又∵AP:PC=1:3,∴tan∠CPQ=,由②得∠CBQ=∠CPQ,∴tan∠CBQ=tan∠CPQ=.。
2018年安徽省合肥市中考模拟测试数学试题完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四题号 1 2 3 4 5 6 7 8 9 10答案1.在算式(-2)□(-3)的□中填上运算符号,使结果最小,运算符号是()A. 加号B. 减号C. 乘号D. 除号2.如图所示的几何体的俯视图是()A B C D3.下列计算中正确的是()A. a·a2=a2B. 2a·a=2a2C. (2a2)2=2a4D. 6a8÷3a2=2a44.二次根式x x3中x的取值范围是()A.x>3 B.x≤3且x≠0C.x≤3 D.x<3且x≠05.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°第5题图第8题图第10题图6.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2-1 B.a2+a C.a2+a-2 D.(a+2)2-2(a+2)+17.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=32cm,则∠BAC的度得分评卷人数为()A.15°B.75°或15°C.105°或15°D.75°或105°8.为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图.由图可知,一周参加体育锻炼时间等于9小时的人数是()A. 5B. 18C. 10D. 49.若关于x的一元二次方程ax2+bx+1=0(a≠0)的解是x=1,则2015-a-b的值是()A. 2014B. 2015C. 2016D. 201710.如图,动点S从点A出发,沿线段AB运动至点B后,立即按原路返回,点S在运动过程中速度不变,则以点B为圆心,线段BS长为半径的圆的面积m与点S的运动时间t之间的函数关系图象大致为()A.B.C.D.得分评卷人二、填空题(每题5分,共20分)11.据安徽省旅游局信息,2018年春节假日期间全省旅游总收入约为196.19亿元,196.19亿用科学记数法表示为.12.如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则弧BC的长为(结果保留π).第12题图第13题图第14题图13.根据图中的程序,当输入x=2时,输出的结果y=.14.如图,正五边形的边长为2,连接对角线AD、BE、CE,线段AD分别与BE和CE相交于点M、N,给出下列结论:①∠AME=108°,②AN2=AM•AD;③MN=3-5;④S△EBC=25-1,其中正确的结论是(把你认为正确结论的序号都填上).得分评卷人三、解答题(共90分)15.(8分)先化简:(2x -x x 12+) ÷ xx x 122+-,然后从0,1,-2中选择一个适当的数作为x 的值代入求值.16.(8分)观察下列算式:21=2、22=4、23=8、24=16、25=32、26=64、27=128、28=256,…. 通过观察,能用你所发现的规律写出232的个位数字是多少吗?那32018的个位数字呢?17.(8分)如图,在边长为1个单位长度的小正方形网格中. (1)画出△ABC 向上平移6个单位长度,再向右平移5个单位长度后的△A 1B 1C 1.(2)以点B 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2.18.(8分)如图①,②分别是某吊车在吊一物品时的实物图与示意图,已知吊车底盘CD的高度为2米,支架BC的长为4米,且与地面成30°角. 吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A距地面的高度是多少米?(精确到0.1米. 参考数据:sin10°=cos80°≈0.17,cos10°=sin80°≈0.98,sin20°=cos70°≈0.34,tan70°≈2.75,sin70°≈0.94)19.(10分)目前节能灯在城市已基本普及,今年云南省面向县级及农村地区推广,为相应号召,某商场计划用3800元购进节能灯120只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利润多少元?20.(10分)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A 、B 、C 三个班,他俩希望能再次成为同班同学. (1)请你用列举法,列出所有可能的结果; (2)求两人再次成为同班同学的概率.21.(12分)已知,如图,反比例函数y=xk的图象与一次函数y=x+b 的图象交于点A (1,4),点B (m ,-1),(1)求一次函数和反比例函数的解析式; (2)求△OAB 的面积;(3)直接写出不等式x+b >x k的解.22.(12分)已知,抛物线y=ax2+bx-2与x轴的两个交点分别为A(1,0),B(4,0),与y轴的交点为C.(1)求出抛物线的解析式及点C的坐标;(2)点P是在直线x=4右侧的抛物线上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OCB相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.23.(14分)已知,如图1,AD是△ABC的角平分线,且AD=BD,(1)求证:△CDA∽△CAB;(2)若AD=6,CD=5,求AC的值;(3)如图2,延长AD至E,使AE=AB,过E点作EF∥AB,交AC于点F,试探究线段EF 与线段AD的大小关系.2018年安徽省合肥市中考模拟测试数学试题参考答案完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
2018年安徽省合肥市庐阳区中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣2地绝对值是()A.﹣2 B.2 C.±2 D.2.(4分)计算(﹣2x2)3地结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x53.(4分)如图所示地工件,其俯视图是()A.B.C.D.4.(4分)2018年3月5日,李克强总理在政府工作报告中指出,过去五年农村贫困人口脱贫6800万,脱贫攻坚取得阶段性胜利,6800万用科学记数法表示为()A.6800×104B.6.8×104C.6.8×107D.0.68×1085.(4分)不等式组地解集在数轴上表示正确地是()A.B.C.D.6.(4分)如图,把一块含有45°地直角三角形地两个顶点放在直尺地对边上.如果∠1=20°,那么∠2地度数是()A.15°B.20°C.25°D.30°7.(4分)下列关于x地一元二次方程有实数根地是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=08.(4分)某企业因春节放假,二月份产值比一月份下降20%,春节后生产呈现良好上升势头,四月份比一月份增长15%,设三、四月份地月平均增长率为x,则下列方程正确地是()A.(1﹣20%)(1+x)2=1+15% B.(1+15%%)(1+x)2=1﹣20%C.2(1﹣20%)(1+x)=1+15% D.2(1+15%)(1+x)=1﹣20%9.(4分)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)地图象可能是()A.B.C.D.10.(4分)如图,已知菱形ABCD地周长为16,面积为8,E为AB地中点,若P为对角线BD上一动点,则EP+AP地最小值为()A.2 B.2 C.4 D.4二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)9地平方根是.12.(5分)分解因式:a3﹣2a2+a=.13.(5分)如图,正五边形ABCDE地边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则地长为.14.(5分)矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上地点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE地长为.三、解答题(本大题共2小题,共计68分)15.(8分)计算:()﹣2﹣+(﹣4)0﹣cos45°.16.(8分)《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地点出发,甲地速度为7,乙地速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?四、解答题(本大题共2小题,每小题8分,共16分)17.(8分)如图,在平面直角坐标系中,△ABC地三个顶点都在格点上,点A 地坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称地△A1B1C1,并写出点A1地坐标.(2)画出△A1B1C1绕原点O旋转180°后得到地△A2B2C2,并写出点A2地坐标.18.(8分)观察下面地点阵图和相应地等式,探究其中地规律:(1)认真观察,并在④后面地横线上写出相应地等式.①1=1 ②1+2==3 ③1+2+3==6 ④…(2)结合(1)观察下列点阵图,并在⑤后面地横线上写出相应地等式.①1=12②1+3=22③3+6=32④6+10=42⑤…(3)通过猜想,写出(2)中与第n个点阵相对应地等式.五、解答题(本大题共2小题,每小题10分,共20分)19.(10分)如图,用细线悬挂一个小球,小球在竖直平面内地A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB地长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)20.(10分)已知:如图,在半径为4地⊙O中,AB、CD是两条直径,M为OB 地中点,CM地延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求EM地长;(3)求sin∠EOB地值.六、解答题(本题满分12分)21.(12分)为大力弘扬“奉献、友爱、互助、进步”地志愿服务精神,传播“奉献他人、提升自我”地志愿服务理念,合肥市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务地情况,收集整理数据后,绘制以下不完整地统计图,请你根据统计图中所提供地信息解答下列问题:(1)请把折线统计图补充完整;(2)求扇形统计图中,网络文明部分对应地圆心角地度数;(3)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动地概率.七、解答题(本题满分12分)22.(12分)某旅行社推出一条成本价位500元/人地省内旅游线路,游客人数y (人/月)与旅游报价x(元/人)之间地关系为y=﹣x+1300,已知:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间.(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价地取值范围;(2)求经营这条旅游线路每月所需要地最低成本;(3)档这条旅游线路地旅游报价为多少时,可获得最大利润?最大利润是多少?八、解答题(本题满分14分)23.(14分)已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE ⊥AB于点E,点F为AB上一点,且EF=EB,连结DF.(1)求证:CD=CF;(2)连结DF,交AC于点G,求证:△DGC∽△ADC;(3)若点H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=3,DC=2,求地值.2018年安徽省合肥市庐阳区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣2地绝对值是()A.﹣2 B.2 C.±2 D.【解答】解:﹣2地绝对值是:2.故选:B.2.(4分)计算(﹣2x2)3地结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x5【解答】解:(﹣2x2)3=(﹣2)3•(x2)3=﹣8x6.故选:A.3.(4分)如图所示地工件,其俯视图是()A.B.C.D.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.4.(4分)2018年3月5日,李克强总理在政府工作报告中指出,过去五年农村贫困人口脱贫6800万,脱贫攻坚取得阶段性胜利,6800万用科学记数法表示为()A.6800×104B.6.8×104C.6.8×107D.0.68×108【解答】解:6800万用科学记数法表示为6.8×107.故选:C.5.(4分)不等式组地解集在数轴上表示正确地是()A.B.C.D.【解答】解:,由①得:x<1;由②得:x≤4,则不等式组地解集为x<1,表示在数轴上,如图所示故选:C.6.(4分)如图,把一块含有45°地直角三角形地两个顶点放在直尺地对边上.如果∠1=20°,那么∠2地度数是()A.15°B.20°C.25°D.30°【解答】解:∵直尺地两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.7.(4分)下列关于x地一元二次方程有实数根地是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0【解答】解:A、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;D、这里a=1,b=﹣1,c=﹣1,∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等实数根,本选项符合题意;故选:D.8.(4分)某企业因春节放假,二月份产值比一月份下降20%,春节后生产呈现良好上升势头,四月份比一月份增长15%,设三、四月份地月平均增长率为x,则下列方程正确地是()A.(1﹣20%)(1+x)2=1+15% B.(1+15%%)(1+x)2=1﹣20%C.2(1﹣20%)(1+x)=1+15% D.2(1+15%)(1+x)=1﹣20%【解答】解:设三、四月份地月平均增长率是x,一月份产值为“1”.根据题意得,(1﹣20%)(1+x)2=1+15%,故选:A.9.(4分)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)地图象可能是()A.B.C.D.【解答】解:A.由函数y=mx+m地图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B.由函数y=mx+m地图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x=﹣=<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C.由函数y=mx+m地图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D.由函数y=mx+m地图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x=﹣=<0,则对称轴应在y轴左侧,与图象符合,故D选项正确.故选:D.10.(4分)如图,已知菱形ABCD地周长为16,面积为8,E为AB地中点,若P为对角线BD上一动点,则EP+AP地最小值为()A.2 B.2 C.4 D.4【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD地周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E地值最小,最小值为CE地长=2,故选:B.二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)9地平方根是±3.【解答】解:∵±3地平方是9,∴9地平方根是±3.故答案为:±3.12.(5分)分解因式:a3﹣2a2+a=a(a﹣1)2.【解答】解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.13.(5分)如图,正五边形ABCDE地边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则地长为π.【解答】解:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴地长==π,故答案为:π.14.(5分)矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上地点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE地长为3或6.【解答】解:①当∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD地边AD=8,∴BC=AD=8,在Rt△ABC中,AC===10,设BE=x,则CE=BC﹣BE=8﹣x,由翻折地性质得,AF=AB=6,EF=BE=x,∴CF=AC﹣AF=10﹣6=4,在Rt△CEF中,EF2+CF2=CE2,即x2+42=(8﹣x)2,解得x=3,即BE=3;②当∠CEF=90°时,如图2,由翻折地性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=6,综上所述,BE地长为3或6.故答案为:3或6.三、解答题(本大题共2小题,共计68分)15.(8分)计算:()﹣2﹣+(﹣4)0﹣cos45°.【解答】解:原式=4﹣3+1﹣×=2﹣1=1.16.(8分)《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地点出发,甲地速度为7,乙地速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?【解答】解:设经x秒二人在B处相遇,这时乙共行AB=3x,甲共行AC+BC=7x,∵AC=10,∴BC=7x﹣10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x﹣10)2=102+(3x)2,∴x=0(舍去)或x=3.5,∴AB=3x=10.5,AC+BC=7x=24.5,答:甲走了24.5步,乙走了10.5步.四、解答题(本大题共2小题,每小题8分,共16分)17.(8分)如图,在平面直角坐标系中,△ABC地三个顶点都在格点上,点A 地坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称地△A1B1C1,并写出点A1地坐标.(2)画出△A1B1C1绕原点O旋转180°后得到地△A2B2C2,并写出点A2地坐标.【解答】解:(1)如图所示:点A1地坐标(2,﹣4);(2)如图所示,点A2地坐标(﹣2,4).18.(8分)观察下面地点阵图和相应地等式,探究其中地规律:(1)认真观察,并在④后面地横线上写出相应地等式.①1=1 ②1+2==3 ③1+2+3==6 ④…(2)结合(1)观察下列点阵图,并在⑤后面地横线上写出相应地等式.①1=12②1+3=22③3+6=32④6+10=42⑤10+15=52…(3)通过猜想,写出(2)中与第n个点阵相对应地等式.【解答】解:(1)根据题中所给出地规律可知:;(2)由图示可知点地总数是5×5=25,所以10+15=52.(3)由(1)(2)可知.五、解答题(本大题共2小题,每小题10分,共20分)19.(10分)如图,用细线悬挂一个小球,小球在竖直平面内地A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB地长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)【解答】解:设细线OB地长度为xcm,作AD⊥OB于D,如图所示:∴∠ADM=90°,∵∠ANM=∠DMN=90°,∴四边形ANMD是矩形,∴AN=DM=14cm,∴DB=14﹣5=9cm,∴OD=x﹣9,在Rt△AOD中,cos∠AOD=,∴cos66°==0.40,解得:x=15,∴OB=15cm.20.(10分)已知:如图,在半径为4地⊙O中,AB、CD是两条直径,M为OB 地中点,CM地延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•M C;(2)求EM地长;(3)求sin∠EOB地值.【解答】(1)证明:连接AC、EB,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM•BM=EM•CM;(2)解:∵DC是⊙O地直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC为正数,∴EC=7,∵M为OB地中点,∴BM=2,AM=6,∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:过点E作EF⊥AB,垂足为点F,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.六、解答题(本题满分12分)21.(12分)为大力弘扬“奉献、友爱、互助、进步”地志愿服务精神,传播“奉献他人、提升自我”地志愿服务理念,合肥市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务地情况,收集整理数据后,绘制以下不完整地统计图,请你根据统计图中所提供地信息解答下列问题:(1)请把折线统计图补充完整;(2)求扇形统计图中,网络文明部分对应地圆心角地度数;(3)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动地概率.【解答】解:(1)该班全部人数:12÷25%=48人.社区服务地人数为48×50%=24,补全折线统计如图所示:(2)网络文明部分对应地圆心角地度数为360°×=45°;(3)分别用A,B,C,D表示“社区服务、助老助残、生态环保、网络文明”四个服务活动,画树状图得:∵共有16种等可能地结果,他们参加同一服务活动地有4种情况,∴他们参加同一服务活动地概率为.七、解答题(本题满分12分)22.(12分)某旅行社推出一条成本价位500元/人地省内旅游线路,游客人数y (人/月)与旅游报价x(元/人)之间地关系为y=﹣x+1300,已知:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间.(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价地取值范围;(2)求经营这条旅游线路每月所需要地最低成本;(3)档这条旅游线路地旅游报价为多少时,可获得最大利润?最大利润是多少?【解答】解:(1)由题意得y<200时,即﹣x+1300<200,解得:x>1100,即该旅游线路报价地取值范围为1100元/人~1200元/人之间;(2)设经营这条旅游线路每月所需要地成本为z,∴z=500(﹣x+1300)=﹣500x+650000,∵﹣500<0,∴当x=1200时,z最低,即z=50000;(3)设经营这条旅游线路地总利润为w,则w=(x﹣500)(﹣x+1300)=﹣x2+1800x﹣650000=﹣(x﹣900)2+160000,当x=900时,w=160000.最大八、解答题(本题满分14分)23.(14分)已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE ⊥AB于点E,点F为AB上一点,且EF=EB,连结DF.(1)求证:CD=CF;(2)连结DF,交AC于点G,求证:△DGC∽△ADC;(3)若点H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=3,DC=2,求地值.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠BAC,在△ADC和△ABC中∴△ADC≌△ABC,∴CD=CB,∵CE⊥AB,EF=EB,∴CD=CF;(2)解:∵△ADC≌△ABC,∴∠ADC=∠B,∵CF=CB,∴∠CFB=∠B,∴∠ADC=∠CFB,∴∠ADC+∠AFC=180°,∵四边形AFCD地内角和等于360°,∴∠DCF+∠DAF=180°,∵CD=CF,∴∠CDG=∠CFD,∵∠DCF+∠CDF+∠CFD=180°,∴∠DAF=∠CDF+∠CFD=2∠CDG,∵∠DAB=2∠DAC,∴∠CDG=∠DAC,∵∠DCG=∠ACD,∴△DGC∽△ADC;(3)解:∵△DGC∽△ADC,∴∠DGC=∠ADC,=,∵∠ADC=2∠HAG,AD=3,DC=2,∴∠HAG=∠DGC,=,∴∠HAG=∠AHG,=,∴HG=AG,∵∠GDC=∠DAC=∠FAG,∠DGC=∠AGF,∴△DGC∞△AGF,∴==,赠送:初中数学几何模型举例【模型四】 几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2018年中考一模数学试题卷一、选择题(本大题共10小题,每小题4分,满分40分)1.2的相反数是()A 、2B 、—2C 、12D 、12-2.计算38(2)aa÷-的结果是()A 、4aB 、-4aC 、4a2D 、-4a23.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()A 、44×105B 、0.44×105C 、4×106D 、4.4×1054.下列各图中,是中心对称图形的为()5.若二次根式24x -有意义,则x 的取值范围是()A 、x =2B 、2x ≠C 、2x ≤D 、2x ≥6.将一副三角板如图放置,使点A 落在DE 上,若BC ∥DE ,则∠AFC 的度数为()A 、75ºB 、60ºC 、50ºD 、45º7.已知点A (1,y 1)、B (2-,y 2)、C (2-,y 3)在函数212(1)2=+-y x 上,则y 1、y 2、y 3的大小关系是A 、y 1>y 2>y 3B 、y 2>y 1>y 3C 、y 3>y 1>y 2D 、y 1>y 3>y 28.一个图形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角∠ACB=45°,则这个人工湖的直径AD 为()A 、502m B 、1002m C 、1502m D 、2002m 9.如图,在□ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,:4:25DEF ABF S S ∆∆=,则DE :EC =()A 、2:3B 、2:5.C 、3:2D 、3:510.如图,以任意△ABC 的边AB 和AC 向形外作等腰Rt △ABD 和等腰Rt △ACE ,F 、G 分别是线段BD和CE 的中点,则CD FG的值等于A 、233B 、32C 、2D 、3二、填空题(本大题共4小题,每小题5分,满分20分)11.16的算术平方根是12.因式分解:x 3-4x =13.在阳光下某一时刻,测得一根高为1.2m 的竹竿的影长为3m ,同时测得一栋楼的影长为45m ,那么这栋楼的高度为________.14.如图,矩形ABCD 中,3,4AB BC ==,点E 是BC 边上一点,连接AE ,把B ∠沿AE 折叠,使点B 落在点'B 处,当△'CEB 为直角三角形时,BE 的长为.三、(本题共2小题,每小题8分,满分16分)15.计算:011|2|(3)2cos 452π--+-+-︒()16.解不等式组⎩⎨⎧+<+>-②① .,7)2(2513x x x ,并把它的解集在数轴上表示出来.四、(本题共两小题,每小题10分,满分20分)17.如图,点A 的坐标为(3,2),点B 的坐标为(3,0).作如下操作:①以点A 为旋转中心,将△ABO 顺时针方向旋转90°,得到△AB 1O 1;②以点O 为位似中心,将△ABO 放大,得到△A 2B 2O ,使相似比为1∶2,且点A 2在第三象限.(1)在图中画出△AB 1O 1和△A 2B 2O ;(2)请直接写出点A 2的坐标:__________.A(第10题)BCEDFG18.为进一步发展基础教育,自2015年以来,某县加大了教育经费的投入,2015年该县投入教育经费6000万元.2017年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2018年该县投入教育经费多少万元.五、(本题共两小题,每小题10分,满分20分)19.如图,山顶有一铁塔AB的高度为20米,为测量山的高度BC,在山脚点D处测得塔顶A和塔基B 的仰角分别为60º和45º,求山的高度BC.(结果保留根号)20.已知A(-4,2)、B(n,-4)两点是一次函数y=kx+b和反比例函数y=m x图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b-mx>0的解集.六、(本题共两小题,每小题10分,满分20分)21.我市某中学艺术节期间,向学校学生征集书画作品。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1,0.21,2π ,18,0.20202中,无理数的个数为( ) A .1B .2C .3D .4 【答案】C0.21,2π ,18,0.20202中,2π,共三个. 故选C .2.点A (m ﹣4,1﹣2m )在第四象限,则m 的取值范围是 ( )A .m >12B .m >4C .m <4D .12<m <4 【答案】B 【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点A (m-1,1-2m )在第四象限,∴40120m m -⎧⎨-⎩>①,<②解不等式①得,m >1,解不等式②得,m >12所以,不等式组的解集是m >1,即m 的取值范围是m >1.故选B .【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 3.下列各式中,互为相反数的是( )A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32- 【答案】A【解析】根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A. 2(3)-=9,23-=-9,故2(3)-和23-互为相反数,故正确; B. 2(3)-=9,23=9,故2(3)-和23不是互为相反数,故错误;C. 3(2)-=-8,32-=-8,故3(2)-和32-不是互为相反数,故错误;D. 3|2|-=8,32-=8故3|2|-和32-不是互为相反数,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.4.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )A .20%B .11%C .10%D .9.5% 【答案】C【解析】设二,三月份平均每月降价的百分率为x ,则二月份为1000(1)x -,三月份为21000(1)x -,然后再依据第三个月售价为1,列出方程求解即可.【详解】解:设二,三月份平均每月降价的百分率为x .根据题意,得21000(1)x -=1.解得10.1x =,2 1.9x =-(不合题意,舍去).答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a ,每次降价的百分率为a ,则第一次降价后为a (1-x );第二次降价后后为a (1-x )2,即:原数x (1-降价的百分率)2=后两次数. 5.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =5,那么点C 的位置可以在( )A .点C 1处B .点C 2处 C .点C 3处D .点C 4处【答案】D【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin 5A =, ∴545DC AC AC ==,∴AC=45, ∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C =228445+=,故答案为D.6.如图,在矩形ABCD 中,P 、R 分别是BC 和DC 上的点,E 、F 分别是AP 和RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R 不动时,下列结论正确的是( )A .线段EF 的长逐渐增长B .线段EF 的长逐渐减小C .线段EF 的长始终不变D .线段EF 的长与点P 的位置有关【答案】C 【解析】试题分析:连接AR ,根据勾股定理得出AR=22AD DR +的长不变,根据三角形的中位线定理得出EF=12AR ,即可得出线段EF 的长始终不变, 故选C .考点:1、矩形性质,2、勾股定理,3、三角形的中位线7.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .【答案】B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形. 故选B.8.如图,二次函数y=ax 2+bx+c (a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab <0,②b 2>4a ,③0<a+b+c <2,④0<b <1,⑤当x >﹣1时,y >0,其中正确结论的个数是A.5个B.4个C.3个D.2个【答案】B【解析】解:∵二次函数y=ax3+bx+c(a≠3)过点(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵抛物线的对称轴在y轴右侧,∴b=-,x>3.x2a∴a与b异号.∴ab<3,正确.②∵抛物线与x轴有两个不同的交点,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正确.④∵抛物线开口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正确.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正确.⑤抛物线y=ax3+bx+c与x轴的一个交点为(﹣3,3),设另一个交点为(x3,3),则x3>3,由图可知,当﹣3<x<x3时,y>3;当x>x3时,y<3.∴当x>﹣3时,y>3的结论错误.综上所述,正确的结论有①②③④.故选B.9.如图所示的两个四边形相似,则α的度数是()A.60°B.75°C.87°D.120°【答案】C【解析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.10.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个【答案】C【解析】分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.【详解】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.二、填空题(本题包括8个小题)11.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=kx的图象上,则k的值为_____.【答案】1【解析】根据题意和旋转的性质,可以得到点C 的坐标,把点C 坐标代入反比例函数y=k x 中,即可求出k 的值.【详解】∵OB 在x 轴上,∠ABO=90°,点A 的坐标为(2,4),∴OB=2,AB=4∵将△AOB 绕点A 逆时针旋转90°,∴AD=4,CD=2,且AD//x 轴∴点C 的坐标为(6,2),∵点O 的对应点C 恰好落在反比例函数y=k x的图象上, ∴k=2612⨯=,故答案为1.【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.12.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.【答案】4610⨯【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1,故答案为:6×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.如图,点O (0,0),B(0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1,再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,……,依次下去.则点B 6的坐标____________.【答案】(-1,0)【解析】根据已知条件由图中可以得到B1所在的正方形的对角线长为2,B2所在的正方形的对角线长为(2)2,B3所在的正方形的对角线长为(2)3;B4所在的正方形的对角线长为(2)4;B5所在的正方形的对角线长为(2)5;可推出B6所在的正方形的对角线长为(2)6=1.又因为B6在x轴负半轴,所以B6(-1,0).解:如图所示∵正方形OBB1C,∴OB12,B1所在的象限为第一象限;∴OB2=2)2,B2在x轴正半轴;∴OB3=2)3,B3所在的象限为第四象限;∴OB4=2)4,B4在y轴负半轴;∴OB5=2)5,B5所在的象限为第三象限;∴OB6=2)6=1,B6在x轴负半轴.∴B6(-1,0).故答案为(-1,0).14.分解因式:ax2﹣2ax+a=___________.【答案】a(x-1)1.【解析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【详解】解:ax 1-1ax+a ,=a (x 1-1x+1),=a (x-1)1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.计算:21m m ++112m m ++=______. 【答案】1.【解析】利用同分母分式加法法则进行计算,分母不变,分子相加.【详解】解:原式=12112121m m m m m +++==++. 【点睛】本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.16.分解因式:a 3-a=【答案】(1)(1)a a a -+【解析】a 3-a=a(a 2-1)=(1)(1)a a a -+17.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S 甲2、S 乙2,则S 甲2__S 乙2(填“>”、“=”、“<”)【答案】>【解析】要比较甲、乙方差的大小,就需要求出甲、乙的方差;首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数;接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.【详解】甲组的平均数为:3626463+++++=4, S 甲2=16×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=73,乙组的平均数为:4353465+++++=4,S乙2=16×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=23,∵73>23,∴S甲2>S乙2.故答案为:>.【点睛】本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.18.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=__________°.【答案】1【解析】试题分析:由三角形的外角的性质可知,∠1=90°+30°=1°,故答案为1.考点:三角形的外角性质;三角形内角和定理.三、解答题(本题包括8个小题)19.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【答案】50°.【解析】试题分析:由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDE=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.解:∵AB∥CD,∴∠ABC=∠1=65°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDE=180°﹣∠ABD=50°,∴∠2=∠BDE=50°.【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.20.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣1.求一次函数的解析式;求△AOB的面积;观察图象,直接写出y1>y1时x的取值范围.【答案】(1)y1=﹣x+1,(1)6;(3)x<﹣1或0<x<4【解析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(1)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.试题解析:(1)设点A坐标为(﹣1,m),点B坐标为(n,﹣1)∵一次函数y1=kx+b(k≠0)的图象与反比例函数y1=﹣的图象交于A、B两点∴将A(﹣1,m)B(n,﹣1)代入反比例函数y1=﹣可得,m=4,n=4∴将A(﹣1,4)、B(4,﹣1)代入一次函数y1=kx+b,可得,解得∴一次函数的解析式为y1=﹣x+1;,(1)在一次函数y1=﹣x+1中,当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)∴=×1×1+×1×1+×1×1=1+1+1=6;(3)根据图象可得,当y1>y1时,x的取值范围为:x<﹣1或0<x<4考点:1、一次函数,1、反比例函数,3、三角形的面积21.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.【答案】(1)证明见解析;(2)15.【解析】(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC 中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.【详解】(1)证明:连结OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切线;(2)连结CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直径,∠ACB=90°.∴EC是⊙O的切线.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC=22201612-=设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC=22+=.12915【点睛】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.22.为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.【答案】 (1)1000;(2)54°;(3)见解析;(4)32万人【解析】根据“每项人数=总人数×该项所占百分比”,“所占角度=360度×该项所占百分比”来列出式子,即可解出答案.【详解】解:(1)400÷40%=1000(人) (2)360°×1501000=54°, 故答案为:1000人; 54° ;(3)1-10%-9%-26%-40%=15%15%×1000=150(人)(4)80×6601000=52.8(万人) 答:总人数为52.8万人.【点睛】本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.23.为给邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡AB 长602米,坡角(即BAC ∠)为45︒,BC AC ⊥,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE (下面两个小题结果都保留根号).若修建的斜坡BE 3:1,求休闲平台DE 的长是多少米?一座建筑物GH 距离A 点33米远(即33AG =米),小亮在D 点测得建筑物顶部H 的仰角(即HDM ∠)为30.点B 、C 、A 、G ,H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG CG ⊥,问建筑物GH 高为多少米?【答案】(1)(30103)-m (2)(30213)+米【解析】分析:(1)由三角函数的定义,即可求得AM 与AF 的长,又由坡度的定义,即可求得NF 的长,继而求得平台MN 的长;(2)在RT △BMK 中,求得BK=MK=50米,从而求得 EM=84米;在RT △HEM 中,求得283HE =,继而求得28350HG =+米.详解:(1)∵MF ∥BC ,∴∠AMF=∠ABC=45°,∵斜坡AB 长1002米,M 是AB 的中点,∴AM=502(米),∴AF=MF=AM•cos ∠AMF=2502502⨯=(米), 在RT ANF 中,∵斜坡AN 的坡比为3∶1,∴31AF NF =, ∴5033NF ==, ∴MN=MF-NF=50-503=150503-.(2)在RT △BMK 中,BM=502,∴BK=MK=50(米),EM=BG+BK=34+50=84(米)在RT △HEM 中,∠HME=30°,∴3tan30HE EM =︒=, ∴384283HE == ∴28350HG HE EG HE MK =+=+=(米)答:休闲平台DE 150503-GH 高为()28350米. 点睛:本题考查了坡度坡角的问题以及俯角仰角的问题.解题的关键是根据题意构造直角三角形,将实际问题转化为解直角三角形的问题;掌握数形结合思想与方程思想在题中的运用.24.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【答案】(1)12;(2)316【解析】(1)由题意知,共有4种等可能的结果,而取到红枣粽子的结果有2种则P(恰好取到红枣粽子)=1 2 .(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴由上表可知,取到的两个粽子共有16种等可能的结果,而一个是红枣粽子,一个是豆沙粽子的结果有3种,则P(取到一个红枣粽子,一个豆沙粽子)=3 16.考点:列表法与树状图法;概率公式.25.如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)△ABF≌△DCE;四边形ABCD是矩形.【答案】(1)见解析;(2)见解析.【解析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.【详解】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∵AB=DC ,BF=CE ,AF=DE ,∴△ABF ≌△DCE .(2)∵△ABF ≌△DCE ,∴∠B=∠C .∵四边形ABCD 是平行四边形,∴AB ∥CD .∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD 是矩形.26.在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.【答案】(1)1(2)10%.【解析】试题分析:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x-80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y ,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可.试题解析:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x-80)元,根据题意得 6000480080x x =-, 解得x=1.经检验,x=1是原方程的根.答:每张门票的原定票价为1元;(2)设平均每次降价的百分率为y ,根据题意得1(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去).答:平均每次降价10%.考点:1.一元二次方程的应用;2.分式方程的应用.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°【答案】C【解析】根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.【详解】解:∵直线m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故选C.【点睛】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.2.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处C.3处D.4处【答案】D【解析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.如图所示,故选D.【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.3.如图,在△ABC中,cosB=22,sinC=35,AC=5,则△ABC的面积是()A.212B.12 C.14 D.21【答案】A【解析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC中,2,sinC=35,AC=5,∴cosB=22=BD AB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴CD=2253-=4,∴BD=3,则△ABC 的面积是:12×AD×BC=12×3×(3+4)=212. 故选:A .【点睛】此题主要考查了解直角三角形的知识,作出AD ⊥BC ,进而得出相关线段的长度是解决问题的关键. 4.如图,在⊙O 中,弦BC =1,点A 是圆上一点,且∠BAC =30°,则BC 的长是( )A .πB .13πC .12πD .16π 【答案】B 【解析】连接OB ,OC .首先证明△OBC 是等边三角形,再利用弧长公式计算即可.【详解】解:连接OB ,OC .∵∠BOC =2∠BAC =60°,∵OB =OC ,∴△OBC 是等边三角形,∴OB =OC =BC =1,∴BC 的长=6011803ππ⋅⋅=, 故选B .【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.5.一个正比例函数的图象过点(2,﹣3),它的表达式为( )A .3y -2x =B .2y 3x =C .3y 2x =D .2y -3x = 【答案】A【解析】利用待定系数法即可求解.【详解】设函数的解析式是y=kx ,根据题意得:2k=﹣3,解得:k=32-. ∴ 函数的解析式是:32y x =-. 故选A .6.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S 6,则S 6的值为( )A .3B .23C .332D .233【答案】C【解析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF 中,△AOB 是边长为1的正三角形,所以正六边形ABCDEF 的面积为S 6=6×12×1×1×sin60°=332. 故选C .【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n 边形的性质解答.7.若22a -3,则a 的值可以是( )A .﹣7B .163C .132D .12【答案】C【解析】根据已知条件得到4<a-2<9,由此求得a 的取值范围,易得符合条件的选项.【详解】解:∵22a -3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范围是6<a<1.观察选项,只有选项C符合题意.故选C.【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.8.已知函数()()()()22113{513x xyx x--≤=-->,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.3【答案】D【解析】解:如图:利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.故选:D.9.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4【答案】A【解析】先将抛物线解析式化为顶点式,左加右减的原则即可.【详解】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;10.下列各式计算正确的是( )A =B 6=C .3+=D 2=【答案】B【解析】A 选项中,∵∴本选项错误;B 选项中,∵,∴本选项正确;C 选项中,∵,∴本选项错误;D 选项中,∵≠∴本选项错误; 故选B.二、填空题(本题包括8个小题)11.已知α ,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足11αβ+=﹣1,则m 的值是____.【答案】3.【解析】可以先由韦达定理得出两个关于α、β的式子,题目中的式子变形即可得出相应的与韦达定理相关的式子,即可求解. 【详解】得α+β=-2m-3,αβ=m 2,又因为211+-2m-3+===-1m αβαβαβ,所以m 2-2m-3=0,得m=3或m=-1,因为一元二次方程()22230x m x m +++=的两个不相等的实数根,所以△>0,得(2m+3)2-4×m 2=12m+9>0,所以m >4-3,所以m=-1舍去,综上m=3. 【点睛】本题考查了根与系数的关系,将根与系数的关系与代数式相结合解题是解决本题的关键.12.若一个多边形的内角和是900º,则这个多边形是 边形.【答案】七【解析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.13.如图,正方形ABCD 边长为3,以直线AB 为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_____.【答案】1.【解析】分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2.详解:矩形的周长=3+3+2+2=1.点睛:本题比较容易,考查三视图和学生的空间想象能力以及计算矩形的周长.14.12019的相反数是_____. 【答案】12019- 【解析】根据只有符号不同的两个数互为相反数,可得答案.【详解】12019的相反数是−12019. 故答案为−12019. 【点睛】本题考查的知识点是相反数,解题的关键是熟练的掌握相反数.15.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .【答案】6或2或12【解析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算.【详解】由方程2680x x -+=,得x =2或1.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.综上所述此三角形的周长是6或12或2.16.如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF【答案】①②④【解析】试题解析:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM ,故②正确;③∵EF=FM ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC故S △BEC =2S △CEF 错误;④设∠FEC=x ,则∠FCE=x ,∴∠DCF=∠DFC=90°-x ,∴∠EFC=180°-2x ,∴∠EFD=90°-x+180°-2x=270°-3x ,∵∠AEF=90°-x ,∴∠DFE=3∠AEF ,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.17.如图,在正六边形ABCDEF 的上方作正方形AFGH ,联结GC ,那么GCD ∠的正切值为___.【答案】31+【解析】延长GF 与CD 交于点D ,过点E 作EM DF ⊥交DF 于点M,设正方形的边长为a ,则,CD GF DE a ===解直角三角形可得DF ,根据正切的定义即可求得GCD ∠的正切值 【详解】延长GF 与CD 交于点D ,过点E 作EM DF ⊥交DF 于点M,设正方形的边长为a ,则,CD GF DE a ===AF //CD ,90,CDG AFG ∴∠=∠=1209030,EDM ∠=-=3cos30,DM DE =⋅=23,DF DM a ∴==()331,DG GF FD a a a∴=+=+=+()3131tan.aGDGCDCD a+∠===+故答案为:3 1.+【点睛】考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.18.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为_____米.(sin56°≈0.8,tan56°≈1.5)【答案】60【解析】根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决.【详解】∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米,∴BD=tan56AD︒,CD=tan45AD︒,∴tan56AD︒+tan45AD︒=100,解得,AD≈60考点:解直角三角形的应用.三、解答题(本题包括8个小题)19.如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?【答案】(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等【解析】试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.试题解析:(1)∵OB=3OA=1,∴B对应的数是1.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x-2,点N对应的数为2x.①点M、点N在点O两侧,则2-3x=2x,解得x=2;②点M、点N重合,则,3x-2=2x,解得x=2.所以经过2秒或2秒,点M、点N分别到原点O的距离相等.20.一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)【答案】54小时【解析】过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.【详解】解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).考点:解直角三角形的应用-方向角问题21.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)。
2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(9)——三角形一.选择题(共9小题) 1.(2020•包河区一模)如图,△ABC 中,∠ACB =90°,AB =12,点D 、E 分别是边AB 、BC 的中点,CD 与AE 交于点O ,则OD 的长是( )A .1.5B .1.8C .2D .2.4 2.(2020•肥东县一模)在△ABC 与△A ′B ′C ′中,已知∠A =∠A ′,AB =A ′B ′,增加下列条件,能够判定△ABC 与△A ′B ′C ′全等的是( ) A .BC =B ′C ′ B .BC =A ′C ′ C .∠B =∠B ′ D .∠B =∠C ′ 3.(2020•蜀山区校级模拟)如图,在△ABC 中,AB =AC ,CD 平分∠ACB 交AB 于点D ,AE ∥DC 交BC 的延长线于点E ,已知∠BAC =32°,求∠E 的度数为( )A .48°B .42°C .37°D .32° 4.(2019•瑶海区一模)如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4,点D 、F 分别是边AB ,BC 上的动点,连接CD ,过点A 作AE ⊥CD 交BC 于点E ,垂足为G ,连接GF ,则GF +12FB 的最小值是( )A .√3−1B .√3+1C .3√32−1 D .3√32+15.(2019•合肥一模)△ABC 中,BC =6,AB =2√3,∠ABC =30°,点P 在直线AC 上,点P 到直线AB 的距离为1,则CP 的长为( ) A .2√33B .4√33C .2√33或4√33D .4√33或8√336.(2019•合肥模拟)如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,将△ABC 扩充为等腰三角形ABD ,且扩充部分是以AC 为直角边的直角三角形,则CD 的长为( )A .76,2或3B .3或76C .2或76D .2或37.(2019•蜀山区一模)如图,在△ABC 中,∠B +∠C =100°,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于E ,则∠ADE 的大小是( )A .30°B .40°C .50°D .60° 8.(2018•包河区一模)如图,在四边形ABCD 中AC ,BD 为对角线,AB =BC =AC =BD ,则∠ADC 的大小为( )A .120°B .135°C .145°D .150° 9.(2018•瑶海区三模)如图,直线l 1∥l 2,等腰Rt △ABC 的直角顶点C 在l 1上,顶点A 在l 2上,若∠β=14°,则∠α=( )A .31°B .45°C .30°D .59° 二.填空题(共9小题) 10.(2020•蜀山区一模)如图,已知Rt △ABC 中,∠C =90°,AC =6,BC =8,点E 、F 分别是边AC 、BC 上的动点,且EF ∥AB ,点C 关于EF 的对称点D 恰好落在△ABC 的内角平分线上,则CD 长为 .11.(2020•瑶海区二模)如图,四边形ABCD 中,AB ⊥AD ,点E 是BC 边的中点,DA 平分对角线BD 与CD 边延长线的夹角,若BD =5,CD =7,则AE = .12.(2020•蜀山区校级模拟)如图,若点D 为等边△ABC 的边BC 的中点,点E ,F 分别在AB ,AC 边上,且∠EDF =90°,当BE =2,CF =1时,EF 的长度为 .13.(2019•庐阳区校级四模)在等边△ABC中,AB=3,点D是边BC上一点,点E在直线AC上,且∠BAD =∠CBE,当BD=1时,则AE的长为.14.(2019•蜀山区校级三模)如图,在△ABC中,已知,AB=AC=6,BC=10.E是C边上一动点(E不与点B、C重合),△DEF≌△ABC.其中点A,B的对应点分别是点D、E,且点E在运动时,DE边始终经过点A,设EF与AC相交于点G,当△AEG为等腰三角形时,则BE的长为.15.(2019•合肥模拟)在四边形ABCD中,AB=AD=5,BC=12,∠B=∠D=90°,点M在边BC上,点N在四边形ABCD内部且到边AB、AD的距离相等,若要使△CMN是直角三角形且△AMN是等腰三角形,则MN=.16.(2019•合肥模拟)如图是小章为学校举办的数学文化节设计的标志,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC=6,空白部分面积为10.5,则阴影部分面积为.17.(2019•庐江县模拟)已知△ABC是等腰直角三角形,AB=AC,D为平面内的任意一点,且满足CD=AC,若△ADB是以AD为腰的等腰三角形,则∠CDB的度数为.18.(2019•合肥模拟)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E,F分别在AC,BC边上运动(点E不与点A,C重合),且保持ED⊥FD,连接DE,DF,EF,在此运动变化的过程中,有下列结论:①AE=CF;①EF最大值为2√2;①四边形CEDF的面积不随点E位置的改变而发生变化;①点C到线段EF的最大距离为√2.其中结论正确的有(把所有正确答案的序号都填写在横线上)三.解答题(共15小题)19.(2020•包河区一模)已知:如图1,△ABC中,AB=AC,BC=6,BE为中线,点D为BC边上一点,BD=2CD,DF⊥BE于点F,EH⊥BC于点H.(1)CH 的长为 ; (2)求BF •BE 的值;(3)如图2,连接FC ,求证:∠EFC =∠ABC .20.(2020•瑶海区二模)如图,已知两个全等的等腰三角形如图所示放置,其中顶角顶点(点A )重合在一起,连接BD 和CE ,交于点F . (1)求证:BD =CE ;(2)当四边形ABFE 是平行四边形时,且AB =2,∠BAC =30°,求CF 的长.21.(2020•蜀山区一模)如图,在△ABC 中,∠ACB =90°,AC =BC ,CD 是AB 边上的中线,点E 为线段CD 上一点(不与点C 、D 重合),连接BE ,作EF ⊥BE 与AC 的延长线交于点F ,与BC 交于点G ,连接BF .(1)求证:△CFG ∽△EBG ; (2)求∠EFB 的度数; (3)求DD DD的值.22.(2020•瑶海区二模)如图,在等边△ABC 中,BD =CE ,连接AD 、BE 交于点F . (1)求∠AFE 的度数;(2)求证:AC •DF =BD •BF ;(3)连接FC ,若CF ⊥AD 时,求证:BD =12DC .23.(2020•包河区校级一模)如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,连结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=D△DDDD△DDD(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;①当D△DDDD△DDD=17时,请直接写出线段AE的长.24.(2020•庐江县一模)英雄的武汉人民在新冠肺炎疫情来临时,遵照党中央指示:武汉封城.经过76天封城于4月8日解封.小红同学与小颖同学相约在公园一角相距200m放风筝.已知小红的风筝线和水平线成30°,小颖的风筝线和水平线成45°,在某一时刻他们风筝正好在空中相遇(如图所示),求风筝的高度.即在△ABC中,∠ABC=30°,∠ACB=45°,AD⊥BC,D为垂足,BC=200m,求AD.25.(2020•合肥二模)如图,在△ABC中,AC=√10,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.①在①的条件下,连接EF,直接写出△EFM面积的最小值 . 26.(2019•庐阳区校级四模)如图,点C 为线段AB 上一点,分别以AB 、AC 、CB 为底作顶角为120°的等腰三角形,顶角顶点分别为D ,E ,F (点E ,F 在AB 的同侧,点D 在AB 的另一侧)(1)如图1,若点C 是AB 的中点,则∠ADE = °;(2)如图2,若点C 不是AB 的中点,①求证:△DEF 为等边三角形; ①如图3,连接CD ,若∠ADC =90°,AB =3,求EF 的长. 27.(2019•庐江县模拟)定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边上的中分线,其中落在三角形内部的部分叫做中分线段.(1)如图,△ABC 中,AC >AB ,DE 是△ABC 在BC 边上的中分线段,F 为AC 中点,过点B 作DE 的垂线交AC 于点G ,垂足为H ,设AC =b ,AB =c . ①求证:DF =EF ;①若b =6,c =4,求CG 的长度;(2)若题(1)中,S △BDH =S △EGH ,求DD 的值.28.(2019•包河区一模)已知:△ABC 中,BC =a ,AC =b ,AB =c ,∠ACB =2∠B ,CD 是∠ACB 的角平分线.(1)如图1,若∠A =∠B ,则a 、b 、c 、三者之间满足的关系式是 ; (2)如图2,求证:c 2﹣b 2=ab ; (3)如图3,若∠B =2∠A ,求证:1D+1D=1D.29.(2018•合肥二模)在△OBC中,∠BOC为钝角,以OB、OC分别为一直角边向外作等腰Rt△OAB和Rt△OCD,∠AOB=∠COD=90°(1)如图1,连接AC、BD,求证:△AOC≌△BOD;(2)如图2,连接AD,若点E、M、N分别是AD、AB、DC的中点,连接EM、EN、OE.①求证:△EMN为等腰三角形;①判断线段EO与BC的数量关系和位置关系,并说明理由.30.(2018•长丰县一模)如图1,已知△ABC中,AB=20cm,AC=16cm,BC=12cm.点P沿B出发,以5cm/s的速度沿BA方向向点A匀速运动,同时点Q由A出发,以4cm/s的速度沿AC向点C匀速运动.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).(1)求点P到AC的距离(用含t的代数式表示);(2)求t为何值时,线段PQ将△ABC的面积分成的两部分的面积之比为3:13;(3)当△APQ为直角三角形时,求t的值.31.(2018•瑶海区二模)如图,OA=OB=50cm,OC是一条射线,OC⊥AB,甲小虫由点A以2cm/s的速度向B爬行,同时乙小虫由点O以3cm/s的速度沿OC爬行,甲小虫到达B时两只小虫爬行停止(1)设小虫运动的时间为x秒,两小虫所在位置与点O组成的三角形的面积为ycm2,求y与x之间的函数关系式.(2)当小虫运动的时间为多少时,两小虫所在位置与点O组成的三角形的面积等于450cm2.(3)请直接说明y随x的变化而变化情况.32.(2018•庐阳区一模)《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?33.(2018•合肥二模)我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和,请用所学知识说明它们是一组勾股数.2018-2020年安徽省中考数学复习各地区模拟试题分类(合肥专版)(9)——三角形参考答案与试题解析一.选择题(共9小题) 1.【解答】解:∵OD 为斜边AB 上的中线, ∴CD =12AB =12×12=6,∵O 点为中线CD 和AE 的交点, ∴O 点为△ABC 的重心, ∴OD =13CD =13×6=2.故选:C . 2.【解答】解:A 、若添加条件BC =B ′C ′,不能判定△ABC ≌△A ′B ′C ′,故此选项不合题意; B 、若添加条件BC =A ′C ′,不能判定△ABC ≌△A ′B ′C ′,故此选项不合题意;C 、若添加条件∠B =∠B ′,可利用ASA 判定△ABC ≌△A ′B ′C ′,故此选项符合题意;D 、若添加条件∠B =∠C ′,不能判定△ABC ≌△A ′B ′C ′,故此选项不合题意. 故选:C . 3.【解答】解:∵AB =AC ,∠BAC =32°, ∴∠B =∠ACB =74°, ∵CD 平分∠ACB , ∴∠BCD =12∠ACB =37°,∵AE ∥DC ,∴∠E =∠BCD =37°. 故选:C . 4.【解答】解:延长AC 到点P ,使CP =AC ,连接BP ,过点F 作FH ⊥BP 于点H ,取AC 中点O ,连接OG ,过点O 作OQ ⊥BP 于点Q ,∵∠ACB =90°,∠ABC =30°,AB =4 ∴AC =CP =2,BP =AB =4 ∴△ABP 是等边三角形 ∴∠FBH =30°∴Rt △FHB 中,FH =12FB∴当G 、F 、H 在同一直线上时,GF +12FB =GF +FH =GH 取得最小值 ∵AE ⊥CD 于点G ∴∠AGC =90° ∵O 为AC 中点∴OA =OC =OG =12AC∴A 、C 、G 三点共圆,圆心为O ,即点G 在①O 上运动 ∴当点G 运动到OQ 上时,GH 取得最小值 ∵Rt △OPQ 中,∠P =60°,OP =3,sin ∠P =DD DD =√32 ∴OQ =√32OP =3√32∴GH 最小值为3√32−1故选:C .5.【解答】解:如图,过点C 作CD ⊥AB 交BA 的延长线于点D , ∵BC =6,∠ABC =30°, ∴CD =BC sin30°=3, BD =BC cos30°=3√3, ∵AB =2√3,∴AD =BD ﹣AB =3√3−2√3=√3,在Rt △ACD 中,AC =√DD +DD =√32+3=2√3. 过P 作PE ⊥AB ,与BA 的延长线于点E ,∵点P 在直线AC 上,点P 到直线AB 的距离为1, ∴△APE ∽△ACD , ∴DD DD =DD DD ,即=13,解得AP =2√33,∴①点P 在线段AC 上时,CP =AC ﹣AP =2√3−2√33=4√33, ①点P 在射线CA 上时,CP =AC +AP =2√3+2√33=8√33. 综上所述,CP 的长为4√33或8√33.故选:D .6.【解答】解:分三种情况:①当AD =AB 时, 如图1所示: 则CD =BC =3; ①当AD =BD 时, 如图2所示:设CD =x ,则AD =x +3,在Rt △ADC 中,由勾股定理得: (x +3)2=x 2+42, 解得:x =76,∴CD =76;①当BD =AB 时,如图3所示:在Rt △ABC 中,AB =√32+42=5,∴BD =5,∴CD =5﹣3=2;综上所述:CD 的长为3或76或2;故选:A .7.【解答】解:∵在△ABC 中,∠B +∠C =100°,∴∠BAC =80°,∵AD 平分∠BAC ,∴∠BAD =12∠BAC =40°,∵DE ∥AB ,∴∠ADE =∠BAD =40°.故选:B .8.【解答】解:∵AB =BC =AC ,∴△ABC 是等边三角形,∴∠ABC =60°,∵AB =BC =BD ,∴∠ADB =12(180°﹣∠ABD ),∠BDC =12(180°﹣∠CBD ),∴∠ADC =∠ADB +∠BDC ,=12(180°﹣∠ABD )+12(180°﹣∠CBD ),=12(180°+180°﹣∠ABD ﹣∠CBD ),=12(360°﹣∠ABC ), =180°−12×60°, =150°.故选:D .9.【解答】解:过点B 作BE ∥l 1,∵l 1∥l 2,∴BE ∥l 1∥l 2,∴∠CBE =∠α,∠EBA =∠β=14°,∵△ABC 是等腰直角三角形,∴∠ABC =45°,∴∠α=∠CBE =∠ABC ﹣∠EBA =31°.故选:A .二.填空题(共9小题)10.【解答】解:过点C 作CH ⊥AB 于H ,如图,∵EF ∥AB ,∴CH ⊥EF ,∵点D 与点C 关于EF 对称,∴点D 在CH 上,在Rt △ABC 中,AB =√62+82=10,∵12CH •AB =12AC •BC , ∴CH =6×810=245,∴AH =√62−(245)2=185,当点D 为∠BAC 的平分线AM 与CH 的交点时,如图1,过点M 作MN ⊥AB 于N , ∴MC =MN ,∴AN =AC =6,∴BN =4,设MC =MN =x ,则BM =8﹣x ,在Rt △BMN 中,x 2+42=(8﹣x )2,解得x =3,∵DH ∥MN ,∴DD DD =DD DD ,即DD 3=1856,解得HD =95, ∴CD =245−95=3; 当点D 为∠ABC 的平分线BG 与CH 的交点时,如图2,BH =AB ﹣AH =325, 过点G 作GQ ⊥AB 于Q ,则GQ =GC ,∴BQ =BC =8,∴AQ =2,设GQ =GC =t ,则AG =6﹣t ,在Rt △AGQ 中,22+t 2=(6﹣t )2,解得t =83,∵DH ∥GQ ,∴DD DD =DD DD,即DD 83=3258,解得DH =3215, ∴CD =245−3215=83,综上所述,CD 的长为3或83. 故答案为3或83.11.【解答】解:如图,取BD 中点H ,连AH 、EH ,∵AB ⊥AD ,∴AH =DH =BH =12BD =2.5,∴∠HDA =∠HAD ,∵DA 平分∠FDB ,∴∠FDA =∠HDA ,∴∠FDA =∠HAD ,∴AH ∥DF ,∵点E 是BC 边的中点,点H 是BD 的中点,∴EH ∥CD ,EH =12CD =3.5, ∴A 、H 、E 三点共线,∴AE =AH +EH =2.5+3.5=6.故答案为:6.12.【解答】解:作EM ⊥BC 于点M ,作FN ⊥BC 于点N , 则∠EMB =∠EMD =90°,∠FNC =∠FND =90°, ∵△ABC 是等边三角形,BE =2,CF =1,∴∠B =∠C =60°,∴BM =1,EM =√3,CN =12,FN =√32,∵∠EDF =90°,∠EDM +∠DEM =90°,∴∠EDM +∠FDN =90°,∴∠DEM =∠FDN ,∴△EDM ∽△DFN ,DD DD =DD DD ,∵点D为BC的中点,设BD=a,则DM=a﹣1,DN=a−1 2,∴√3D−12=√32,解得,a1=−12(舍去),a2=2,∴DM=1,DN=3 2,∵∠EMD=90°,∠FND=90°,∴DE=√DD2+DD2=√(√3)2+12=2,DF=√DD2+DD2=(32)2+(32)2=√3,又∵∠EDF=90°,∴EF=√DD+DD=√22+(√3)2=√7,故答案为:√7.13.【解答】解:分两种情形:①如图1中,当点D在边BC上,点E在边AC上时.∵△ABC是等边三角形,∴AB=BC=AC=3,∠ABD=∠BCE=60°,∵∠BAD=∠CBE,∴△ABD≌△BCE(ASA),∴BD=EC=1,∴AE=AC﹣EC=2.①如图2中,当点D在边BC上,点E在AC的延长线上时.作EF∥AB交BC的延长线于F.∴∠CEF =∠CAB =60°,∠ECF =∠ACB =60°,∴△ECF 是等边三角形,设EC =CF =EF =x ,∵∠ABD =∠BFE =60°,∠BAD =∠FBE ,∴△ABD ∽△BFE ,∴DD DD =DD DD ∴1D =3D +3,∴x =32,∴AE =AC +CE =3+32=92,综上,AE 的长为2或92;故答案为:2或92.14.【解答】解:∵∠AEF =∠B =∠C ,且∠AGE >∠C , ∴∠AGE >∠AEF ,∴AE ≠AG ;当AE =EG 时,则△ABE ≌△ECG ,∴CE =AB =6,∴BE =BC ﹣EC =10﹣6=4;当AG =EG 时,则∠GAE =∠GEA ,∴∠GAE +∠BAE =∠GEA +∠CEG ,即∠CAB =∠CEA ,又∵∠C =∠C ,∴△CAE ∽△CBA ,∴DD DD =DD DD, ∴CE =DD 2DD =3610=3.6, ∴BE =10﹣3.6=6.4;∴BE =4或6.4.故答案为4或6.4.15.【解答】解:如图,连接AC .∵∠B =90°,AB =5,BC =12,∴DD =√52+122=13,∵∠D =90°,AD =5,AC =13,∴CD =√132−52=12,∴AB =AD ,BC =CD ,∵AC =AC ,∴△ABC ≌△ADC (SSS ),∴∠CAB =∠CAD ,∵点N 在四边形ABCD 内部且到边AB 、AD 的距离相等, ∴点N 在线段AC 上,①如图1中,当AN =MN ,NM ⊥BC 时,设AN =MN =x .∵NM ∥AB ,∴DD DD =DD DD , ∴D 5=13−D 13, ∴x =6518. ①如图2中,当AN =MN ,MN ⊥AC 时,设AN =MN =y ,∵∠MCN =∠ACB ,∠MNC =∠B =90°,∴△CMN ∽△CAB ,∴DD DD =DD DD , ∴D 5=13−D 12,∴y =6517, 综上所述,满足条件的MN 的长为6518或6517.故答案为6518或6517.16.【解答】解:如图∵四边形ABGF 是正方形,∴∠F AB =∠AFG =∠ACB =90°,∴∠F AC +∠BAC =∠F AC +∠ABC =90°,∴∠F AC =∠ABC ,在△F AM 与△ABN 中,{∠D =∠DDD =90°DDDD =DDDDDD =DD,∴△F AM ≌△ABN (AAS ),∴S △F AM =S △ABN ,∴S△ABC=S四边形FNCM,∵在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=6,∴(AC+BC)2=AC2+BC2+2AC•BC=36,∴AB2+2AC•BC=36,∵AB2﹣2S△ABC=10.5,∴AB2﹣AC•BC=10.5,∴3AB2=57,∴2AB2=38,∴阴影部分面积为=38﹣10.5×2=17,故答案为:17.17.【解答】解:①当AD=AB时,∵AB=AC,CD=AC,AD=AB,∴AC=AD=CD,∴△ACD为等边三角形.当点D在AC边上方时,如图1所示.∵△ABC是等腰直角三角形,AB=AC,△ACD为等边三角形,∴∠BAC=90°,∠CAD=60°,∴∠BAD=∠BAC+∠CAD=150°.∵AB=AD,∴∠ABD=∠ADB=12(180°﹣∠BAD)=15°,∴∠CDB=∠ADC﹣∠ADB=60°﹣15°=45°;当点D在AC边下方时,如图2所示.∵∠BAC=90°,∠CAD=60°,∴∠BAD=∠BAC﹣∠CAD=30°.∵AB=AD,∴∠ABD=∠ADB=12(180°﹣∠BAD)=75°,∴∠CDB=∠ADB+∠ADC=75°+60°=135°.①当AD=BD时,当点D在BC的上方,如图3所示.过D作DE⊥AB于E,过A作AF⊥CD于F,∴∠BED=90°,∵∠BAC=90°,∴∠BED=∠BAC,∴ED∥AC,∴∠EDA=∠DAC,∵AD=CD,∴∠ADC=∠DAC,∴∠EDA=∠ADC,∴AF=AE=12AB=12AC,Rt△AFC中,∠ACF=30°,∴∠ADC=180°−30°2=75°,∴∠ADB=2∠ADE=2∠ADC=150°,∴∠CDB=360°﹣150°﹣75°=135°;当D在BC的下方时,如图4,过D作DE⊥AC于E,过C作CF⊥ED于F,∴∠AEF=∠BAC=∠EFC=90°,∴四边形AEFC是矩形,∴CF=AE,∵AD=BD,DE⊥AB,∴AE=12AB,∠ADE=∠BDE,∴CF=12AB=12AC=12CD,Rt△CFD中,∠CDF=30°,∵AC∥ED,∴∠CAD=∠ADE,∵AC=CD,∴∠CAD=∠ADC,∴∠CDA=∠ADE=12∠CDF=15°,∴∠ADB=30°,∴∠CDB=45°.综上所述,则∠CDB的度数为45°或135°;故答案为:45°或135°.18.【解答】解:如图,连接CD .∵在△ABC 中,AC =BC ,∠ACB =90°,∴∠A =∠B =45°,∵D 是AB 的中点,∴CD =AD =BD ,∠ADC =90°,∠ACD =∠BCD =45°, ∴∠1+∠2=90°,∵ED ⊥FD ,∴∠2+∠3=90°,∴∠1=∠3,在△ADE 和△CDF 中,{∠D =∠DDD =45°DD =DD D1=D3,∴△ADE ≌△CDF (ASA ),∴AE =CF ;故①正确;(2)设CE =x ,则CF =AE =4﹣x ,在Rt △CEF 中,DD =√D 2+(4−D )2=√2(D −2)2+8, ∵2(x ﹣2)2+8有最小值,最小值为8,∴EF 有最小值,最小值为2√2.故①错误;①由①知,△ADE ≌△CDF ,∴S 四边形EDFC =S △EDC +S △FDC =S △EDC +S △ADE =S △ADC , ∴四边形CEDF 的面积不随点E 位置的改变而发生变化. 故①正确;①由①可知,△ADE ≌△CDF ,∴DE =DF ,∴△DEF 是等腰直角三角形,∴DD =√2DD ,当EF ∥AB 时,∵AE =CF ,∴E ,F 分别是AC ,BC 的中点,故EF 是△ABC 的中位线,∴EF 取最小值=√22+22=2√2,∵CE =CF =2,∴此时点C 到线段EF 的最大距离为12DD =√2.故①正确.故答案为:①①①.三.解答题(共15小题)19.【解答】解:(1)如图1,作AG ⊥BC 于点G ,∵AB =AC ,BC =6,∴CG =3,∵AE =EC ,EH ⊥BC ,∴EH ∥AG ,∴CH =12CG =32;故答案为:32.(2)∵BD =2CD , ∴CD =13BC =13×6=2, ∴BD =4,∴DH =CD ﹣CH =2﹣1.5=0.5,∴BH =4+0.5=4.5,∵DF ⊥BE ,EH ⊥BC ,∴∠DFB =∠EHB ,∵∠DBF =∠EBH ,∴△DFB ∽△EHB ,∴DD DD =DD DD ,∴BF •BE =BH •BD =92×4=18. (3)如图2,过点A 作AM ∥BC 交BE 延长线于点M ,∴∠M=∠EBC,∠AEM=∠CEB,又∵AE=EC,∴△AEM≌△CEB(AAS),∴AM=BC=6,BM=2BE,∴BF•BM=BF•2BE=2×18=36,∵AM•BC=6×6=36,∴BF•BM=AM•BC,∴DDDD=DDDD,∵∠FBC=∠M,∴△FBC∽△AMB,∴∠ABM=∠BCF,∵∠EFC=∠FBC+∠BCF,∴∠EFC=∠FBC+∠ABM,∴∠EFC=∠ABC.20.【解答】(1)证明:∵△ABC≌△ADE,AB=AC,∴AB=AC=AD=AE,∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中{DD=DD DDDD=DDDD DD=DD∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:∵△ABC≌△ADE,∠BAC=30°,∴∠BAC=∠DAE=30°,∵四边形ABFE是平行四边形,∴AB∥CE,AB=EF,由(1)知:AB=AC=AE,∴AB =AC =AE =2,即EF =2,过A 作AH ⊥CE 于H ,∵AB ∥CE ,∠BAC =30°,∴∠ACH =∠BAC =30°,在Rt △ACH 中,AH =12DD =12×2=1,CH =√DD 2−DD 2=√22−12=√3, ∵AC =AE ,AH ⊥CE ,∴CE =2CH =2√3,∴CF =CE ﹣EF =2√3−2.21.【解答】(1)证明:∵∠ACB =90°,EF ⊥BE ,∴∠FCG =∠BEG =90°,又∵∠CGF =∠EGB ,∴△CFG ∽△EBG ;(2)解:由(1)得△CFG ∽△EBG ,∴DD DD =DD DD , ∴DD DD =DD DD ,又∵∠CGE =∠FGB ,∴△CGE ∽△FGB ,∴∠EFB =∠ECG =12∠ACB =45°; (3)解:过点F 作FH ⊥CD 交DC 的延长线于点H ,由(2)知,△BEF 是等腰直角三角形,∴EF =BE ,∵∠FEH +∠DEB =90°,∠EBD +∠DEB =90°,∴∠FEH =∠EBD ,在△FEH 和△EBD 中,{∠DDD =∠DDD DDDD =DDDD =90°DD =DD,∴△FEH ≌△EBD (AAS ),∴FH =ED ,∵∠FCH =∠ACD =45°,∠CHF =90°,∴∠CFH =∠FCH =45°,∴CH =FH ,在Rt △CFH 中,CF =√DD 2+DD 2=√2FH ,∴CF =√2DE ,∴DD DD =√22. 22.【解答】解:(1)∵△ABC 是等边三角形,∴AB =AC =BC ,∠ABD =∠BCE =60°,在△ABD和△BCE中,{DD=DDDDDD=DDDD=60°DD=DD,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ADC=∠CBE+∠BFD=∠BAD+∠ABC,∴∠BFD=∠AFE=∠ABC=60°;(2)证明:由(1)知∠BAD=∠DBF,又∵∠ADB=∠BDF,∴△ADB∽△BDF,∴DDDD=DDDD,又AB=AC,∴DDDD=DDDD,∴AC•DF=BD•BF;(3)证明:延长BE至H,使FH=AF,连接AH,CH,由(1)知∠AFE=60°,∠BAD=∠CBE,∴△AFH是等边三角形,∴∠F AH=60°,AF=AH,∴∠BAC=∠F AH=60°,∴∠BAC﹣∠CAD=∠F AH﹣∠CAD,即∠BAF=∠CAH,在△BAF和△CAH中,{DD=DDDDDD=DDDD DD=DD,∴△BAF≌△CAH(SAS),∴∠ABF=∠ACH,CH=BF,又∵∠ABC=∠BAC,∠BAD=∠CBE,∴∠ABC﹣∠CBE=∠BAC﹣∠BAD,即∠ABF=∠CAF,∴∠ACH=∠CAF,∴AF∥CH,∵∠AFC=90°,∠AFE=60°,∴CF⊥CH,∠CFH=30°,∴FH=2CH,∴FH=2BF,∵FD∥CH,∴DDDD=DDDD=12,∴BD=12 DC.23.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC=AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴EG=EC•sin∠ACB=√32(2﹣x),CG=EC•cos∠ACB=1−12x,∴BG=2﹣CG=1+12 x,在Rt△BGE中,∠EBC=45°,∴1+12D=√32(2﹣x),解得x=4﹣2√3.∴线段AE的长是4﹣2√3.(2)①当∠CAD<120°时,设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴∠CAF=12∠DAC=60°﹣α,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴D△DDDD△DDD=DD2DD2,由(1)得在Rt△CGE中,BG=1+12x,EG=√32(2﹣x),∴BE2=BG2+EG2=x2﹣2x+4,∴y=D2D2−2D+4(0<x<2).①y =17,则有17=D 2D 2−2D +4, 整理得3x 2+x ﹣2=0, 解得x =23或﹣1(舍去),∴AE =23. 当120°<∠CAD <180°时,同法可得y =D 2D 2+2D +4, 当y =17时,17=D 2D 2+2D +4, 整理得3x 2﹣x ﹣2=0, 解得x =−23(舍去)或1,∴AE =1. 综合以上可得AE 的长为1或23.24.【解答】解:设AD =xcm ,在Rt △ADC 中,∠ACB =45°,∴CD =x ,BD =200﹣x ,在Rt △ADB 中,∠ABC =30°,tan B =DD DD , 即tan30°=DD DD , √33=D 200−D , 解得:x =100(√3+1)米,答:AD 约为100(√3+1)米.25.【解答】解:(1)如图1中,作CH ⊥AB 于H .在Rt △ACH 中,∵∠AHC =90°,AC =√10,tan A =DD DD =3,∴AH =1,CH =3,∵∠CBH =45°,∠CHB =90°,∴∠HCB =∠CBH =45°,∴CH =BH =3,∴BC =√2CH =3√2.(2)①结论:∠EMF =90°不变.理由:如图2中,∵DE ⊥AB ,DF ⊥BC ,∴∠DEB =∠DFB =90°,∵DM =MB ,∴ME =12BD ,MF =12BD ,∴ME =MF =BM ,∴∠MBE =∠MEB ,∠MBF =∠MFB ,∵∠DME =∠MEB +∠MBE ,∠DMF =∠MFB +∠MBF ,∴∠EMF =∠DME +∠DMF =2(∠MBE +∠MBF )=90°,①如图2中,作CH ⊥AB 于H ,由①可知△MEF 是等腰直角三角形,∴当ME 的值最小时,△MEF 的面积最小,∵ME =12BD ,∴当BD ⊥AC 时,ME 的值最小,此时BD =DD ⋅DD DD =10=6√105, ∴EM 的最小值=3√105, ∴△MEF 的面积的最小值=12×3√105×3√105=95.故答案为95. 26.【解答】解:(1)如图1,过E 作EH ⊥AB 于H ,连接CD ,设EH=x,则AE=2x,AH=√3x,∵AE=EC,∴AC=2AH=2√3x,∵C是AB的中点,AD=BD,∴CD⊥AB,∵∠ADB=120°,∴∠DAC=30°,∴DC=2x,∴DC=CE=2x,∵EH∥DC,∴∠HED=∠EDC=∠CED,∵∠AEH=60°,∠AEC=120°,∴∠HEC=60°,∴∠HED=30°,∴∠AED=∠AEH+∠HED=90°,∵∠DAE=∠CAE+∠DAC=30°+30°=60°,∴∠ADE=90°﹣60°=30°.故答案为:30;(2)①延长FC交AD于H,连接HE,如图2,∵CF=FB,∴∠FCB=∠FBC,∵∠CFB=120°,∴∠FCB=∠FBC=30°,同理:∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,∴∠DAB=∠ECA=∠FBD,∴AD∥EC∥BF,同理AE∥CF∥BD,∴四边形BDHE、四边形AECH是平行四边形,∴EC=AH,BF=HD,∵AE=EC,∴AE=AH,∵∠HAE=60°,∴△AEH是等边三角形,∴AE=AH=HE=CE,∠AHE=∠AEH=60°,∴∠DHE=120°,∴∠DHE=∠FCE.∵DH=BF=FC,∴△DHE≌△FCE(SAS),∴DE=EF,∠DEH=∠FEC,∴∠DEF=∠CEH=60°,∴△DEF是等边三角形;①如图3,过E作EM⊥AB于M,∵∠ADC=90°,∠DAC=30°,∴∠ACD=60°,∵∠DBA=30°,∴∠CDB=∠DBC=30°,∴CD=BC=12 AC,∵AB=3,∵AC=2,BC=CD=1,∵∠ACE=30°,∠ACD=60°,∴∠ECD=30°+60°=90°,∵AE=CE,∴CM=12AC=1,∵∠ACE=30°,∴CE=2√3 3,Rt△DEC中,DE=√DD2+DD2=12+(233)2=√213,由①知:△DEF是等边三角形,∴EF=DE=√21 3.27.【解答】(1)①证明:∵F为AC中点,DE是△ABC在BC边上的中分线段,∴DF是△CAB的中位线,∴DF=12AB=12c,AF=12AC=12b,CE=12(b+c),∴AE=b﹣CE=b−12(b+c)=12(b﹣c),∴EF=AF﹣AE=12b−12(b﹣c)=12c,∴DF=EF;①解:过点A作AP⊥BG于P,如图1所示:∵DF是△CAB的中位线,∴DF∥AB,∴∠DFC=∠BAC,∵∠DFC=∠DEF+∠EDF,EF=DF,∴∠DEF=∠EDF,∴∠BAP+∠P AC=2∠DEF,∵ED⊥BG,AP⊥BG,∴DE∥AP,∴∠P AC=∠DEF,∴∠BAP=∠DEF=∠P AC,∵AP⊥BG,∴AB=AG=4,∴CG=AC﹣AG=6﹣4=2;(2)解:连接BE、DG,如图2所示:∵S△BDH=S△EGH,∴S△BDG=S△DEG,∴BE∥DG,∵DF∥AB,∴△ABE∽△FDG,∴DDDD=DDDD=21,∴FG=12AE=12×12(b﹣c)=14(b﹣c),∵AB=AG=c,∴CG=b﹣c,∴CF=12b=FG+CG=14(b﹣c)+(b﹣c),∴3b=5c,∴DD=53.28.【解答】解:(1)设∠A=∠B=x°,则∠ACB=2∠B=2x°,根据题意,得:x+x+2x=180,解得:x=45°,∴∠A=∠B=45°,∠ACB=90°,由AC2+BC2=AB2得a2+b2=c2,故答案为:a2+b2=c2.(2)∵CD平分∠ACB,∠ACB=2∠B,∴∠B=∠ACD=∠BCD,∴CD=BD,∵∠A=∠A,∴△ACD∽△ABC,∴DDDD=DDDD=DDDD,即DD=DDD=DDD,∴DD=DD+DDD+D=DDD,∴c2=b2+ab,∴c2﹣b2=ab;(3)作BE平分∠ABC,∵∠ABC=2∠A,∴由(2)的结论知b2﹣a2=ac,∵由(2)的结论有c2﹣b2=ab,∴c2=b2+ab,∴1D−1D=D−DDD=D2−D2DD(D+D)=DDD(D2+DD)=DD2=1D,∴1D+1D=1D.29.【解答】(1)证明:如图1中,∵OA=OB,OD=OC,∠AOB=∠DOC,∴∠BOD=∠AOC,∴△AOC≌△BOD.(2)①证明:如图2中,∵AM=MB,AE=ED,∴EM=12DE,同法可证:EN=12AC,∵△AOC≌△BOD,∴BD=AC,∴EM=EN,∴△EMN是等腰三角形.①解:结论:EO=12BC,EO⊥BC.理由:延长OE到H,使得OE=EH,连接AH、DH,延长EO交BC于K.∵EA=ED,EO=EH,∴四边形AODH是平行四边形,∴AH=OD=OC,AH∥OD,∴∠HAO+∠AOD=180°,∵∠BOC+∠AOD=180°,∴∠HAO=∠BOC,∵AO=OB,∴△HAO≌△COB,∴OH=BC,∠AOH=∠OBC,∵OE=HE,∴OE=12 BC,∵∠AOH+∠BOK=90°,∴∠OBC+∠BOK=90°,∴∠BKO=90°,∴EO⊥BC.30.【解答】解:(1)在△ABC中,AB=20cm,AC=16cm,BC=12cm,∴AC2+BC2=162+122=400=202=AB2,∴△ABC是直角三角形,∴sin A=DDDD=1220=35,由运动知,BP=5t,∴AP=20﹣5t,过点P作PD⊥AC于D,在Rt△APD中,sin A=DDDD=DD20−5D=35,∴DP=3(4﹣t),∴点P到AC的距离为3(4﹣t);(2)由运动知AQ=4t,由(1)知,DP=3(4﹣t),∴S△APQ=12AQ•DP=6t(4﹣t),∵AC=16,BC=12,∴S△ABC=12AC•BC=96,∵线段PQ将△ABC的面积分成的两部分的面积之比为3:13,∴S△APQ=316S△ABC=18或S△APQ=1316S△ABC=78,∴6t (4﹣t )=18或6t (4﹣t )=78,当6t (4﹣t )=18时,t =1秒或3秒当6t (4﹣t )=78时,此方程无实数根,即:t =1秒或3秒时,线段PQ 将△ABC 的面积分成的两部分的面积之比为3:13;(3)当△APQ 为直角三角形时,①∠APQ =90°=∠ACB ,∵∠A =∠A ,∴△APQ ∽△ACB ,∴DD DD =DD DD , ∴20−5D 16=4D 20, ∴t =10041秒, ①当∠AQP =90°=∠ACB ,∵∠A =∠A ,∴△AQP ∽△ACB ,∴DD DD =DD DD , ∴4D 16=20−5D 20,∴t =2秒, 即:当△APQ 为直角三角形时,t =2秒或10041秒.31.【解答】解:(1)如图,当甲小虫在OA 上时,即:0≤x ≤25,甲虫爬行到点D ,乙虫爬行到点E ,由运动知,AD =2x ,OE =3x ,∴OD =50﹣2x ,∵OC ⊥AB ,∴y =12OD ×OE =12(50﹣2x )×3x =﹣3x 2+75x ,当甲虫在OB 上时,即:25<x ≤50,甲虫爬行到F 点,乙虫爬行到G 点,由运动知,AF =2x ,OG =3x ,∴OF =AF ﹣OA =2x ﹣50,∴y =12OF ×OG =12(2x ﹣50)×3x =3x 2﹣75x , 即:y ={−3D 2+75D (0≤D ≤25)3D 2−75D (25<D ≤50);(2)∵两小虫所在位置与点O 组成的三角形的面积等于450cm 2.∴y =450当甲虫在OA 上爬行时,由(1)知,y =﹣3x 2+75x (0≤x ≤25),∴﹣3x 2+75x =450,∴x =10或x =15,当甲虫在OB 上爬行时,由(1)知,y =3x 2﹣75x (25<x ≤50),∴3x 2﹣75x =450,∴x =﹣5(舍)或x =30即:当小虫运动的时间为10秒或15秒或30秒时,两小虫所在位置与点O 组成的三角形的面积等于450cm 2.(3)当甲虫在OA 上爬行时,由(1)知,y =﹣3x 2+75x (0≤x ≤25),∴对称轴为x =−752×(−3)=12.5, ∴当0≤x <12.5时,y 随x 的增大而增大,当12.5≤x ≤25时,y 随x 的增大而减小,当甲虫在OB 上爬行时,由(1)知,y =3x 2﹣75x (25<x ≤50),∴对称轴为x =12.5,∴当25<x ≤50时,y 随x 的增大而增大.32.【解答】解:设经x 秒二人在B 处相遇,这时乙共行AB =3x ,甲共行AC +BC =7x ,∵AC =10,∴BC =7x ﹣10,又∵∠A =90°,∴BC 2=AC 2+AB 2,∴(7x ﹣10)2=102+(3x )2,∴x =0(舍去)或x =3.5,∴AB =3x =10.5,AC +BC =7x =24.5,答:甲走了24.5步,乙走了10.5步.33.【解答】解:(1)11,60,61;(2)后两个数表示为D 2−12和D 2+12, ∵D 2+(D 2−12)2=D 2+D 4−2D 2+14=D 4+2D 2+14,(D 2+12)2=D 4+2D 2+14, ∴D 2+(D 2−12)2=(D 2+12)2. 又∵n ≥3,且n 为奇数,∴由n ,D 2−12,D 2+12三个数组成的数是勾股数.故答案为:11,60,61.。
2018年安徽省合肥市瑶海区、庐阳区中考数学一模试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共40.0分)1,-2的绝对值是()A.-2B.2C.±2D.|【答案】B【解析】解:-2的绝对值是:2.故选:B.直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2,计算(-2疽)3的结果是()A.—B,—C.—8*s D.—6x^【答案】A【解析】解:(-2疽)3=(—2)3.02)3=—8x6.故选:A.根据积的乘方计算即可.本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幕相乘.3,如图所示的工件,其俯视图是()【答案】B【解析】解:从上边看是一个同心圆,外圆是实线,内圆是虚线,故选:B.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.4.2018年3月5日,李克强总理在政府工作报告中指出,过去五年农村贫困人口脱贫6800万,脱贫攻坚取得阶段性胜利,6800万用科学记数法表示为()A.6800x104B. 6.8x104C. 6.8x107D.0.68x108【答案】C【解析】解:6800万用科学记数法表示为6.8X107.故选:C.科学记数法的表示形式为ax10"的形式,其中lV|a|<10,〃为整数.确定〃的值时,要看把原数变成。
时,小数点移动了多少位,"的绝对值与小数点移动的位数相同.当原数绝对值>1时,”是正数;当原数的绝对值<1时,〃是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a x10”的形式,其中lW|a|<10,〃为整数,表示时关键要正确确定a的值以及77的值.(3%—1<2x<1的解集在数轴上表示正确的是()A,-foiTT^_京有后C.ZL,D.▲6>-1012345-1012345【答案】C【解析】解:3%-1<2x①*1②由①得:x<1;由②得:x<4,则不等式组的解集为x<1,表示在数轴上,如图所示故选:C.求出不等式组的解集,表示在数轴上即可.此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,2向右画;<,M向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“2”,“V”要用实心圆点表示;“<”,">”要用空心圆点表示.6,如图,把一块含有45。
2018年安徽省合肥市庐阳区中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4.00分)﹣2的绝对值是()A.﹣2 B.2 C.±2 D.2.(4.00分)计算(﹣2x2)3的结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x53.(4.00分)如图所示的工件,其俯视图是()A.B.C.D.4.(4.00分)2018年3月5日,李克强总理在政府工作报告中指出,过去五年农村贫困人口脱贫6800万,脱贫攻坚取得阶段性胜利,6800万用科学记数法表示为()A.6800×104B.6.8×104C.6.8×107D.0.68×1085.(4.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(4.00分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°7.(4.00分)下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=08.(4.00分)某企业因春节放假,二月份产值比一月份下降20%,春节后生产呈现良好上升势头,四月份比一月份增长15%,设三、四月份的月平均增长率为x,则下列方程正确的是()A.(1﹣20%)(1+x)2=1+15% B.(1+15%%)(1+x)2=1﹣20%C.2(1﹣20%)(1+x)=1+15% D.2(1+15%)(1+x)=1﹣20%9.(4.00分)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.10.(4.00分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为()A.2 B.2 C.4 D.4二、填空题(本大题共4小题,每小题5分,共20分)11.(5.00分)9的平方根是.12.(5.00分)分解因式:a3﹣2a2+a=.13.(5.00分)如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD 长为半径画弧,两弧交于点F,则的长为.14.(5.00分)矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE 为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE 的长为.三、解答题(本大题共2小题,共计68分)15.(8.00分)计算:()﹣2﹣+(﹣4)0﹣cos45°.16.(8.00分)《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?四、解答题(本大题共2小题,每小题8分,共16分)17.(8.00分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.18.(8.00分)观察下面的点阵图和相应的等式,探究其中的规律:(1)认真观察,并在④后面的横线上写出相应的等式.①1=1 ②1+2==3 ③1+2+3==6 ④…(2)结合(1)观察下列点阵图,并在⑤后面的横线上写出相应的等式.①1=12②1+3=22③3+6=32④6+10=42⑤…(3)通过猜想,写出(2)中与第n个点阵相对应的等式.五、解答题(本大题共2小题,每小题10分,共20分)19.(10.00分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)20.(10.00分)已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM?MB=EM?MC;(2)求EM的长;(3)求sin∠EOB的值.六、解答题(本题满分12分)21.(12.00分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,合肥市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)请把折线统计图补充完整;(2)求扇形统计图中,网络文明部分对应的圆心角的度数;(3)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.七、解答题(本题满分12分)22.(12.00分)某旅行社推出一条成本价位500元/人的省内旅游线路,游客人数y(人/月)与旅游报价x(元/人)之间的关系为y=﹣x+1300,已知:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间.(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价的取值范围;(2)求经营这条旅游线路每月所需要的最低成本;(3)档这条旅游线路的旅游报价为多少时,可获得最大利润?最大利润是多少?八、解答题(本题满分14分)23.(14.00分)已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,连结DF.(1)求证:CD=CF;(2)连结DF,交AC于点G,求证:△DGC∽△ADC;(3)若点H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=3,DC=2,求的值.2018年安徽省合肥市庐阳区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4.00分)﹣2的绝对值是()A.﹣2 B.2 C.±2 D.【分析】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(4.00分)计算(﹣2x2)3的结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x5【分析】根据积的乘方计算即可.【解答】解:(﹣2x2)3=(﹣2)3?(x2)3=﹣8x6.故选:A.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.3.(4.00分)如图所示的工件,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.4.(4.00分)2018年3月5日,李克强总理在政府工作报告中指出,过去五年农村贫困人口脱贫6800万,脱贫攻坚取得阶段性胜利,6800万用科学记数法表示为()A.6800×104B.6.8×104C.6.8×107D.0.68×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:6800万用科学记数法表示为 6.8×107.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(4.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x<1;由②得:x≤4,则不等式组的解集为x<1,表示在数轴上,如图所示故选:C.【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(4.00分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.7.(4.00分)下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0【分析】计算出各项中方程根的判别式的值,找出根的判别式的值大于等于0的方程即可.【解答】解:A、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;D、这里a=1,b=﹣1,c=﹣1,∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等实数根,本选项符合题意;故选:D.【点评】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.8.(4.00分)某企业因春节放假,二月份产值比一月份下降20%,春节后生产呈现良好上升势头,四月份比一月份增长15%,设三、四月份的月平均增长率为x,则下列方程正确的是()A.(1﹣20%)(1+x)2=1+15% B.(1+15%%)(1+x)2=1﹣20%C.2(1﹣20%)(1+x)=1+15% D.2(1+15%)(1+x)=1﹣20%【分析】设三、四月份的月平均增长率是x,一月份产值为“1”.根据题意得到二月份的产值是(1﹣20%),在此基础上连续增长x,则四月份的产量是(1﹣20%)(1+x)2,则根据四月份比一月份增长15%列方程即可..【解答】解:设三、四月份的月平均增长率是x,一月份产值为“1”根据题意得,(1﹣20%)(1+x)2=1+15%,故选:A.【点评】此题考查由实际问题抽象出一元二次方程,根据题意寻找相等关系列方程是关键,难度不大.9.(4.00分)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.【分析】关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=﹣,与y轴的交点坐标为(0,c).【解答】解:A.由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B.由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x=﹣=<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C.由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D.由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x=﹣=<0,则对称轴应在y轴左侧,与图象符合,故D选项正确.故选:D.【点评】本题考查了一次函数和二次函数的图象性质以及分析能力和读图能力,要掌握它们的性质才能灵活解题.10.(4.00分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为()A.2 B.2 C.4 D.4【分析】如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.首先证明E′与E重合,因为A、C关于BD对称,所以当P与P′重合时,P′A+P′E的值最小,由此求出CE 即可解决问题.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB?CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE的长=2,故选:B.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题..二、填空题(本大题共4小题,每小题5分,共20分)11.(5.00分)9的平方根是±3.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.12.(5.00分)分解因式:a3﹣2a2+a=a(a﹣1)2.【分析】此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.【解答】解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.(5.00分)如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD 长为半径画弧,两弧交于点F,则的长为π.【分析】连接CF,DF,得到△CFD是等边三角形,得到∠FCD=60°,根据正五边形的内角和得到∠BCD=108°,求得∠BCF=48°,根据弧长公式即可得到结论.【解答】解:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长==π,故答案为:π.【点评】本题考查了正多边形与圆,弧长的计算,等边三角形的判定和性质,正确的作出辅助线是解题的关键.14.(5.00分)矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE 为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE 的长为3或6.【分析】分两种情况:①当∠EFC=90°时,先判断出点F在对角线AC上,利用勾股定理列式求出AC,设BE=x,表示出CE,根据翻折变换的性质可得AF=AB,EF=BE,然后在Rt△CEF中,利用勾股定理列出方程求解即可;②当∠CEF=90°时,判断出四边形ABEF是正方形,根据正方形的四条边都相等可得BE=AB.【解答】解:①当∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=8,∴BC=AD=8,在Rt△ABC中,AC===10,设BE=x,则CE=BC﹣BE=8﹣x,由翻折的性质得,AF=AB=6,EF=BE=x,∴CF=AC﹣AF=10﹣6=4,在Rt△CEF中,EF2+CF2=CE2,即x2+42=(8﹣x)2,解得x=3,即BE=3;②当∠CEF=90°时,如图2,由翻折的性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=6,综上所述,BE的长为3或6.故答案为:3或6.【点评】本题考查了翻折变化的性质,勾股定理,正方形的判定与性质,此类题目,利用勾股定理列出方程求解是常用的方法,本题难点在于分情况讨论,作出图形更形象直观.三、解答题(本大题共2小题,共计68分)15.(8.00分)计算:()﹣2﹣+(﹣4)0﹣cos45°.【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【解答】解:原式=4﹣3+1﹣×=2﹣1=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.(8.00分)《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?【分析】设经x秒二人在B处相遇,然后利用勾股定理列出方程即可求得甲乙两人走的步数.【解答】解:设经x秒二人在B处相遇,这时乙共行AB=3x,甲共行AC+BC=7x,∵AC=10,∴BC=7x﹣10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x﹣10)2=102+(3x)2,∴x=0(舍去)或x=3.5,∴AB=3x=10.5,AC+BC=7x=24.5,答:甲走了24.5步,乙走了10.5步.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,尤其本题中的文言文更不容易理解.四、解答题(本大题共2小题,每小题8分,共16分)17.(8.00分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.【分析】(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标;(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.【解答】解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).【点评】本题考查图形的轴对称变换及旋转变换.解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连接即可.18.(8.00分)观察下面的点阵图和相应的等式,探究其中的规律:(1)认真观察,并在④后面的横线上写出相应的等式.①1=1 ②1+2==3 ③1+2+3==6 ④…(2)结合(1)观察下列点阵图,并在⑤后面的横线上写出相应的等式.①1=12②1+3=22③3+6=32④6+10=42⑤10+15=52…(3)通过猜想,写出(2)中与第n个点阵相对应的等式.【分析】(1)根据①②③观察会发现第四个式子的等号的左边是1+2+3+4,右边分子上是(1+4)×4,从而得到规律;(2)通过观察发现左边是10+15,右边是25即5的平方;(3)过对一些特殊式子进行整理、变形、观察、比较,归纳出一般规律.【解答】解:(1)根据题中所给出的规律可知:;(2)由图示可知点的总数是5×5=25,所以10+15=52.(3)由(1)(2)可知.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.五、解答题(本大题共2小题,每小题10分,共20分)19.(10.00分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)【分析】设细线OB的长度为xcm,作AD⊥OB于D,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x﹣9,在Rt△AOD中,由三角函数得出方程,解方程即可.【解答】解:设细线OB的长度为xcm,作AD⊥OB于D,如图所示:∴∠ADM=90°,∵∠ANM=∠DMN=90°,∴四边形ANMD是矩形,∴AN=DM=14cm,∴DB=14﹣5=9cm,∴OD=x﹣9,在Rt△AOD中,cos∠AOD=,∴cos66°==0.40,解得:x=15,∴OB=15cm.【点评】本题考查解直角三角形的应用,解此题关键是把实际问题转化为数学问题,本题只要把实际问题抽象到三角形中,根据线段之间的转换列方程即可.注意实际问题要入进.20.(10.00分)已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM?MB=EM?MC;(2)求EM的长;(3)求sin∠EOB的值.【分析】(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.【解答】(1)证明:连接AC、EB,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM?BM=EM?CM;(2)解:∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC为正数,∴EC=7,∵M为OB的中点,∴BM=2,AM=6,∵AM?BM=EM?CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:过点E作EF⊥AB,垂足为点F,。