遥感技术基础-第06讲(遥感图像及分辨率)
- 格式:ppt
- 大小:1.46 MB
- 文档页数:42
比例尺作为传统地图的基本要素之一,是十分重要的技术指标,反映了地图的精确度。
随着数字化测绘时代的到来,比例尺在实际应用中的重要性有所退化,开始被分辨率、精细度等指标所替代,甚至有人觉得它将不再衡量数字地图产品精确程度的指标。
本人觉得,比例尺仍应该长期存在于现代测绘应用中,尤其在各种地图数据输出状态,包括纸张、胶片显示器等载体上,比例尺依然是衡量地图产品详细程度最重要的概念,即使在数字世界,仍然没有一个指标可以替代比例尺来有效地描述地图的精确程度。
但是和传统地图不同,比例尺在信息时代是一个动态的指标,单纯使用比例尺这一指标来描述地图的精确度是不现实的,尤其在遥感影像应用中。
分辨率也是一个传统的术语。
在模拟航空像片中,通常使用分解率来描述胶片上影像的精细度。
在数字影像中,现在改用分辩率来描述。
但是分辨率的类型很多,在不同的领域有不同的表示方法。
仅与摄影测量与遥感有关的分辨率概念也有不下十种。
既然比例尺和分辨率都是衡量数字地图产品的精细程度,他们之间有怎样的区别和联系呢?遥感图像的分辨率分辨率是用于记录数据的最小度量单位,一般用来描述在显示设备上所能够显示的点的数量(行、列),或在影像中一个象元点所表示的面积。
因为遥感"拍摄"的"像片"是由位于不同高度,装在不同载体(如飞机、卫星等)上的不同清晰度(分辨率)"照像"设备,以不同的"照像"(采集)方式,获取的遥感"像片"(图像、数据、影像等),这些遥感图像是具有不同清晰度、不同分辨率的"照片"。
类似我们在生活中用"135" 照相机拍摄一棵树,从汽车上拍一张,然后再从飞机上拍一张,两张"135"底片在放大同一棵树时,其放大效果是不一样的。
肯定是高度低的"135"照片放大后的效果最清晰,也就是说分辨率最高。
第1部分绪论1.1 课题背景及研究的目的意义高光谱遥感(Hyperspectral Remote Sensing)是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术[1]。
随着遥感技术的发展,高光谱图像已经越来越广泛地被应用到海洋、植被、地质、大气、环境、军事和医学等方面[2]。
高光谱图像信息系统中重要的参数之一是空间分辨率,高光谱图像的光谱分辨率很高,但其空间分辨率较低。
例如机载可见光、红外成像光谱仪(AVIRIS)所成图像一般分辨率只达到20m*20m。
较低的空间分辨率给数据处理如目标检测与识别、混合像素解译、精准匹配等技术带来了巨大的困难。
可以说,空间分辨率已经成为高光谱图像应用效果的主要制约因素。
提高空间分辨率势必能够加强图像中目标的探测能力和识别能力。
在遥感技术快速发展的今天,对遥感图像的分辨率有着越来越高的要求,但对于现有的成像设备,由于其制作工艺和现有技术的制约,还远远不能满足各方面的要求,所以采用图像处理技术来提高空间分辨率有很大的研究价值和意义。
随着对遥感图像处理技术的提高,高光谱图像的分析从像素级发展到子像素级[3]已成为必然,由此带来的许多技术难点急待改进或解决。
高光谱图像的低空间分辨率导致了混合像素的广泛存在,即一个像素可能是几种类别的混合[4]。
对于这类像素,将其按照传统的硬分类方法归属为任一类都是不准确的。
在实际应用中,分析者常常需要更为精确的信息:混合像素内包含哪些类别,各类别所占的比例是多少,这些类别在混合像素内的空间分布是怎样的等等。
如图1.1所示。
它们各自对应的技术为光谱端元选择技术[5],光谱解混(又称光谱解译)技术[6]和子像素制图技术(子像素制图又称为亚像元定位)[7]。
图1.1 高光谱图像混合像素处理中主要问题及对应技术本文主要研究对混合像素进行光谱解混后的子像素制图技术(Subpixel Mapping, SM)。
传感器的分辨率辐射分辨率是传感器区分反射或发射的电磁波辐射强度差异的能力。
高辐射分辨率意味着可以区分信号强度的微小差异。
光谱分辨率是传感器记录的电磁光谱中特定波长的范围和数量空间分辨率是指遥感图像上能够详细区分的最小单元的尺寸或大小,即传感器能把两个目标物作为清晰的实体记录下来的两个目标物之间的最小距离。
空间分辨率通常用像素大小、解像力或视场角表示。
也可用地面分辨率来表示。
高空间分辨率图像中空………. 低…………时间分辨率对同一目标进行重复探测时,相邻两次探测时间间隔称为时间分辨率。
遥感数据级别0级产品:未经过任何校正的原始图像数据。
1级产品:经过了初步辐射校正的图像数据。
2级产品:经过了系统级的几何校正。
即根据卫星的轨道和姿态等参数以及地面系统中的有关参数对原始数据进行几何校正。
3级产品:经过了几何精校正。
即利用地面控制点对图像进行了校正,使之具有了更精确的地理坐标信息。
元数据:是关于图像数据特征的表述,是关于数据的数据。
元数据是重要的信息源,没有元数据,图像就没有使用价值。
元数据与图像数据同时分发,或者嵌入到图像文件中,或者是单独的文件。
图像数据格式:(1)BSQ格式:Band Sequential Format。
像素按波段顺序记录的数据格式。
(2) BIL格式:Band Interleaved by Line Format 波段顺序交叉排列的数据存储格式(3)BIP格式:按象素顺序排列的数据存储格式反映像素值变化信息的统计参数方差:像素值与平均值差异的平方和,表示像素值的离散程度,是衡量图像信息量大小的重要度量。
变差像素最大值与最小值的差,表示图像灰度值的变化程度,间接地反应了图像的信息量。
反差反映图像的显示效果和可分辨率有时又称为对比度直方图性质及应用直方图的性质:1反映了图像中的灰度分布规律;2图像与直方图的对应关系;3包括两个不相连的区域图像,两个区域相加;4形态与数学上的正态分布的曲线形态类似应用:根据直方图的形态可以大致推断图像的反差,然后通过有目的改变直方图形态来改善图像的对比度。
遥感图像处理知识点总结一、遥感概述遥感是利用飞机、卫星等远距传感器获取地球表面信息的科学技术。
遥感图像处理就是处理遥感数据,进行信息提取的过程.二、遥感图像处理流程遥感图像处理的基本流程包括:数据获取、预处理、图像增强、特征提取和分类等环节。
1. 数据获取数据获取是遥感图像处理的第一步,可以通过卫星、飞机等遥感平台获得各种类型的遥感数据。
2. 预处理预处理是遥感图像处理的重要步骤,主要包括大气校正、几何校正、辐射定标等过程,目的是消除数据中的噪声和误差,保证数据质量。
3. 图像增强图像增强是指通过一系列的处理方法,提高遥感图像的视觉效果,突出图像中的信息,以便进行后续的分析和应用。
常见的图像增强方法包括直方图均衡化、滤波、拉普拉斯变换等。
4. 特征提取特征提取是指从原始遥感图像中提取各种地物和地物信息,常见的特征包括形状、纹理、光谱等。
5. 分类分类是将遥感图像中的像素划分到不同的类别中,如水体、植被、建筑等。
常用的分类方法包括最大似然分类、支持向量机(SVM)、人工神经网络等。
6. 应用遥感图像处理的最终目的是为了实现一定的应用目标,如土地利用/覆盖分类、资源调查、环境监测等。
三、遥感图像处理相关算法1. 监督分类监督分类是指在给定训练样本的情况下,采用某种分类算法识别遥感影像中的地物类型。
常用的监督分类算法有最大似然分类、支持向量机(SVM)、随机森林等。
2. 无监督分类无监督分类是指在不需要人工干预的情况下,利用图像自身的统计特性将像元分成若干类别。
常用的无监督分类算法有K均值聚类、ISODATA聚类等。
3. 特征提取特征提取是为了描述地物的形态、光谱、纹理等特性,从而区分不同地物。
常用的特征提取方法有主成分分析(PCA)、线性判别分析(LDA)、小波变换等。
4. 联合处理联合处理是指将多幅遥感影像进行融合,或者将遥感影像与其他数据进行联合处理,从而获取更多的地物信息。
常用的联合处理方法包括影像融合、多源数据融合等。
遥感影像的比例尺和分辨率的关系影像分辨率是决定影像精度的一个重要指标,影像精度要满足相应比例尺地图更新对于影像识别能力和成图精度要求,同时又要考虑地图更新成本。
冗余的分辨率会增加卫星影像购买成本和加重内业处理的负担;而若分辨率达不到一定要求,细小的地物就无法判读、像片控制点精度得不到保证,满足不了成图精度。
在选择合适的分辨率时,还要考虑最不利的生产条件。
1 航空摄影测量对影像的要求航空摄影测量的实践可以用来借鉴分析卫星影像与成图比例尺的选择。
这是因为二者的成图原理相似,并且航空摄影测量具有大量的实践经验和实验数据,是非常成熟的。
航空摄影测量中没有直接给出对影像分辨率的要求,但可以通过对摄影仪物镜分辨率的要求和摄影比例尺来推断。
航摄中航摄仪镜头分辨率表示通过航空摄影后在影像上能够分辨的线条的最小宽度(这里没有考虑软片和像纸的分辨率)。
在航摄规范(GB/T 15661-1995)中规定航摄仪有效使用面积内镜头分辨率“每毫米内不少于25 线对”。
根据物镜分辨率和摄影比例尺可以估算出航摄影像上相应的地面分辨率D,即D=M/R。
(其中M 为摄影比例尺分母,R 为镜头分辨率。
)根据航摄规范中“航摄比例尺的选择”的规定和以上公式,可得表(1)成图比例尺航摄比例尺影像地面分辨率(m)1:50001:10 000~1:20 0000.4~0.81:10 0001:20 000~1:40 0000.8~1.61:2 50001:25 000~1:60 000 1.0~2.41:50 0001:35 000~1:80 000 1.4~3.2上表可以作为选择卫星影像分辨率的参考。
顺便指出,从表中可以看出,虽然成图比例尺愈大,所需的影像分辨率愈高,但两者并不是成线性正比关系,而是非线性的。
2 卫星影像分辨率的选择卫星影像分辨率的选择除了考虑不同比例尺成图对影像分辨率要求,还要考虑现有可获取的卫星影像产品之规格,因为卫星摄影与航空摄影不同,其摄影高度(即摄影比例尺)是固定的。