北师大版数学九年级下册第三章圆教学案
- 格式:docx
- 大小:352.45 KB
- 文档页数:53
第三章圆《圆》教学设计一、教学目标1.经历形成圆的概念的过程,经历探索点与圆位置关系的过程.2.理解圆的概念,理解点与圆的位置关系.3.经历由生活现象揭示其数学本质的过程,培养抽象思维和归纳概括的能力.4.经历探索点与圆位置关系的过程,让学生体会定量分析对图形性质的判定方法.二、学情分析学生在小学已经学习过圆的相关知识,对弦、弧、直径、半径、半圆、等圆的相关概念有初步的了解. 但还没有抽象出“平面上到定点的距离等于定长的所有点组成的图形叫做圆”的概念.在圆相关知识的学习过程中,学生已经经历了利用圆规画圆的活动,利用公式求圆的周长和面积,感受到了学习圆的必要性和作用,获得了进一步学习圆的相关知识必须的一些数学活动经验的基础. 三、教学重点:经历形成圆的概念的过程,经历探索点与圆位置关系的过程.四、教学难点:理解圆的概念五、教法与学法教师创设问题情境将学生带到活动中去,让他们经历“观察,思考,交流,总结,应用”的学习过程。
同时教师运用现代教育技术(PPT,视频插入,几何画板,白板)辅助教学,让学生直观发现知识,理解知识,从而加快其形成完整的认知结构,提高他们应用知识的能力。
学生经历观察→操作→思考→归纳等探索过程,体验在数学学习活动中探索的乐趣,增强学习数学的兴趣和信心。
六,教学工具:PPT,视频插入,几何画板,白板辅助教学七、教学过程设计第三章圆第一节 圆 习题A 组【基础知识填空】1. 由圆的定义可知:(1)圆上的各点到圆心的距离都等于_______;在一个平面内,到圆心的距离等于半径长的点都在______.因此,圆是在一个平面内,所有到一个______的距离等于_______的________组成的图形.(2)要确定一个圆,需要两个基本条件,一个是______,另一个是_______,其中,______确定圆的位置,_____确定圆的大小.2.如下图, (1) 若点O 为⊙O 的圆心,则线段____ __是圆O 线段____ ____是圆O 的弦,其中最长的弦是____ __;__ ____是劣弧;_____ _是半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.B 组1. 一、选择题:1、两个圆的圆心都是O ,半径分别为1r 、2r ,且1r <OA <2r ,那么点A 在( ) A 、⊙1r 内 B 、⊙2r 外 C 、⊙1r 外,⊙2r 内 D 、⊙1r 内,⊙2r 外2、一个点到圆的最小距离为4cm ,最大距离为9cm ,则该圆的半径是( ) A 、2.5 cm 或6.5 cm B 、2.5 cm C 、6.5 cm D 、5 cm 或13cm3.在△ABC 中,∠C=90°,AC=3cm ,BC=4cm ,CM 是中线,以C 为圆心,以3cm长为半径画圆,则对A 、B 、C 、M 四点,在圆外的有_____,在圆上的有_____,在圆内的有_______.4.在△ABC 中,∠C=90°,∠B=60°AC=3cm ,以C 为圆心,r 为半径作⊙C ,如果点B 在圆内,而点A 在圆外,那么r 的取值范围C 组1.在平面直角坐标系内,以原点O 为圆心,5为半径作⊙O ,已知A 、B 、C 三点的坐标分别为A (3,4),B (-3,-3),C (4,10 )。
北师大版九年级数学下册:3.1《圆》教学设计一. 教材分析《圆》是北师大版九年级数学下册第三章的第一节内容。
本节主要介绍圆的定义、圆心和半径的概念,以及圆的性质。
教材通过生活中的实例引入圆的概念,让学生体会圆在实际生活中的应用。
本节内容是后续学习圆的方程、圆与直线的关系等知识的基础,对于学生形成完整的圆的概念,培养空间想象力具有重要意义。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和变换有一定的了解。
但圆作为一个特殊的几何图形,其性质和特点与其它图形有很大不同,需要学生重新认识和理解。
学生的空间想象力各不相同,对于生活中的圆形物体,有的学生可能比较熟悉,有的学生则可能较为陌生。
因此,在教学过程中,需要引导学生将实际生活中的圆形物体与数学中的圆概念相联系,帮助学生建立起圆的概念。
三. 教学目标1.了解圆的定义,掌握圆心和半径的概念。
2.掌握圆的性质,能够运用圆的性质解决实际问题。
3.培养学生的空间想象力,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.圆的定义和性质。
2.圆心和半径的概念。
3.运用圆的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、讨论,自主发现圆的性质。
2.利用多媒体教学,展示生活中的圆形物体,帮助学生建立圆的概念。
3.运用实例讲解,让学生在实际问题中体会圆的性质和应用。
4.采用分组讨论、合作交流的方式,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.圆形物体实物或图片。
3.圆规、直尺等学具。
4.练习题和课后作业。
七. 教学过程1.导入(5分钟)利用多媒体展示生活中的圆形物体,如地球、太阳、硬币等,引导学生关注圆形的特征。
提问:这些物体有什么共同的特点?学生回答后,教师总结:这些物体都是圆形的,今天我们来学习圆的相关知识。
2.呈现(10分钟)教师简要介绍圆的定义,圆心和半径的概念。
通过圆规和直尺演示如何画圆,并引导学生思考圆的性质。
北师大版九年级下册数学第三章《圆》教学设计第三章圆《圆》教学设计说明一、学生起点分析学生的知识技能基础学生在小学已经研究过圆的相关知识,对弦、弧、直径、半径、半圆、等圆的相关概念有初步的了解.但还没有抽象出“平面上到定点的距离等于定长的所有点组成的图形叫做圆”的概念.学生活动经验基础在圆的相关知识的研究过程中,学生已经经历了利用圆规画圆的活动,利用公式求圆的周长和面积,求扇形的弧长和面积等简单的现实问题.感受到了研究圆的必要性和作用,获得了进一步研究圆的相关知识必须的一些数学活动经验的基础.二、教学任务分析本节课的具体研究任务:经历形成圆的概念的过程,经历探索点与圆位置关系的过程.理解圆的概念,理解点与圆的位置关系.一堂数学课,既要让学生获得具体的数学知识,又要让学生在获得知识的过程中,提高数学思维能力,掌握一些数学的分析方法,从而形成一定的数学素养.经历形成圆的概念的过程有两个目标,一是得到圆的概念,这是基础目标;二是经历由生活现象揭示其数学本质的过程,培养抽象思维,这是能力目标.经历探索点与圆位置关系的过程,初步体会定性分析与定量分析之间的关系.为此,本节课的教学目标是:1.经历形成圆的概念的过程,经历探索点与圆位置关系的过程.2.理解圆的概念,理解点与圆的位置关系.3.经历由生活现象揭示其数学本质的过程,培养抽象思维和归纳概括的能力.4.经历探索点与圆位置关系的过程,让学生体会定量分析对图形性质的判定方法.三、教学设计分析本节课设想了七个教学环节:课前准备——情境引入、动手操作、归结定义、相关概念、点和圆、课堂小结、布置作业.第一环节情境引入(获得信息,体味特点)活动内容:一些学生正在做投圈游戏,他们呈“一”字排开.思考:这样的队形对每一人都公平吗?你认为他们应当排成什么样的队形?活动目的:引导学生发觉:每人到玩具的距离相等时才公正.为抽象出“平面上到定点的距离等于定长的一切点组成的图形叫做圆”的概念做准备.实际教学结果:这个问题的思考过程中,多数学生能够发觉关键前提是每人到玩具的距离相等,对归结圆的定义起到了很好地启发作用.第三环节动手操作活动内容:(1)请大家用自己的方式在草稿纸上画一个圆.要求:①尝试用多种方法;②观察、思考圆的形成过程.(2)教师演示用圆规和绳子画圆.活动目的:增加对圆的感性认知,为抽象出圆的定义做准备.实际教学效果:利用绳子画圆收到了意想不到的效果,绳子一端固定,一端系着粉笔,其长度不会改变,在画出圆的过程中,学生对粉笔与固定点的距离始终没有改变有着强烈的直观认识,反响热烈.第四环节归纳定义活动内容:1.尝试给圆下一个精确的定义,写下来.2.小组讨论,组内互相交流协商、组内统一意见.3.各组派代表上黑板写出本组讨论结果.4.对各组给XXX的定义展开讨论.活动目的:此处留给学生充分的时间去思考、讨论.并培养学生对某个问题作出正确判断、合理决策的能力.使学生完整地经历“表象——本质;粗放——准确”的活动过程,培养学生抓关键条件的能力和缜密描述的能力.实际教学效果:学生发言踊跃,思维得到了有效的激发,多数学生能抓住到定点的距离相等的条件,只是表达还不够准确、完善.第五环节相关概念活动内容:介绍弦、弧、直径、半径、半圆、等圆的相关概念.以教师介绍、学生认知为主.活动目的:丰富对圆的认识.实际教学效果:部分概念学生已有所了解,掌握较为顺利.。
北师大版九年级数学下册:第三章 3.2《圆的对称性》精品教案一. 教材分析北师大版九年级数学下册第三章《圆》是整个初中数学的重要内容,而本节课《圆的对称性》则是这一章节的重点和难点。
教材从圆的轴对称性入手,引导学生探究圆的对称性质,进而推导出圆的直径所在的直线即为圆的对称轴。
本节课通过丰富的实例和生动的活动,让学生深刻理解圆的对称性,并为后续学习圆的性质打下基础。
二. 学情分析九年级的学生已经掌握了八年级数学的大部分内容,对轴对称图形有了一定的认识,能够理解并运用轴对称的性质。
但他们对圆的对称性的理解还不够深入,需要通过本节课的学习,进一步加强对圆对称性质的认识。
同时,学生对圆的相关知识掌握程度不一,需要在教学过程中关注不同学生的学习需求。
三. 教学目标1.理解圆的对称性,掌握圆的对称轴的定义及性质。
2.能够运用圆的对称性解决实际问题。
3.培养学生的观察能力、动手操作能力和推理能力。
四. 教学重难点1.圆的对称性的理解。
2.圆的对称轴的定义及性质的掌握。
五. 教学方法采用问题驱动法、合作探究法和实例分析法,引导学生从实际问题中发现圆的对称性,通过自主探究和合作交流,深入理解圆的对称性质。
六. 教学准备1.准备相关的实例和图片,用于引导学生发现圆的对称性。
2.准备圆规、直尺等学具,让学生动手操作,加深对圆对称性质的理解。
3.准备一些实际问题,用于巩固学生对圆对称性的运用。
七. 教学过程1. 导入(5分钟)通过展示一些具有对称性的图片,如剪纸、建筑等,引导学生对对称性产生兴趣。
然后提出问题:“你们认为什么样的图形才能称为对称图形?”让学生回顾轴对称图形的概念。
2. 呈现(10分钟)呈现圆的轴对称性实例,如圆形的剪纸、钟表等,引导学生观察并描述圆的对称性质。
同时提出问题:“圆有对称轴吗?如果有,在哪里?”让学生思考并讨论。
3. 操练(10分钟)让学生分组,每组用圆规和直尺画出一个圆形,并用折纸的方法找出圆的对称轴。
北师大版数学九年级下册3.1《圆》教案一. 教材分析《圆》这一节主要介绍了圆的定义、圆的性质、以及圆的方程。
这是九年级学生继学习直线、三角形、四边形之后,首次接触到的平面几何中的基本图形。
通过学习圆的相关知识,为学生以后学习圆锥、圆柱等立体几何图形打下基础。
此节内容在教材中的地位和作用非常重要。
二. 学情分析九年级的学生已经具备了一定的几何知识,对平面几何图形有了一定的认识。
但是,圆作为一个新的几何图形,其特殊的性质和方程的求解对于学生来说是一个挑战。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握圆的相关知识。
三. 教学目标1.让学生了解圆的定义和性质,能够运用圆的性质解决一些简单的问题。
2.让学生掌握圆的方程的求解方法,能够运用圆的方程解决一些实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.圆的性质的理解和运用。
2.圆的方程的求解方法和应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过思考和讨论来理解和掌握圆的相关知识。
2.采用实例教学法,通过具体的实例来引导学生理解和运用圆的性质和方程。
3.采用分组合作学习的方式,让学生在合作中思考,在思考中学习。
六. 教学准备1.准备相关的教学PPT,包括圆的定义、性质、方程等内容。
2.准备一些实际的例子,用于引导学生理解和运用圆的相关知识。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一些实际生活中的例子,如自行车轮子、地球等,引导学生对圆有一个直观的认识,激发学生的学习兴趣。
2.呈现(10分钟)介绍圆的定义和性质,让学生理解圆的基本特征,并通过PPT展示一些相关的定理和推论。
3.操练(10分钟)让学生分组讨论,每组选择一个实际的例子,运用所学的圆的性质来解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)让学生独立完成一些练习题,巩固对圆的性质的理解和运用。
5.拓展(5分钟)介绍圆的方程的求解方法,让学生了解如何通过圆的方程来解决实际问题。
北师大版九年级数学下册:3.1《圆》教学设计一. 教材分析《圆》是北师大版九年级数学下册第3章的第1节内容,本节主要让学生掌握圆的定义、圆的性质及圆的标准方程。
通过本节的学习,为学生后续学习圆的相关的几何问题打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和方程有一定的了解。
但圆作为一个特殊的几何图形,其定义和性质与直线、射线有很大的不同,需要学生进行一定的转换和理解。
同时,圆的标准方程涉及到根号下的表达式,对学生来说也是一个挑战。
三. 教学目标1.理解圆的定义,能描述圆的基本性质。
2.掌握圆的标准方程,并能进行简单的应用。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.圆的定义及其性质的理解。
2.圆的标准方程的推导和应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生通过自主学习、合作探讨,掌握圆的相关知识。
六. 教学准备1.PPT课件2.圆的模型或实物3.数学笔记本七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾平面几何的基本知识,如点、线、面的性质,为学习圆的定义和性质做铺垫。
2.呈现(10分钟)利用PPT课件展示圆的模型或实物,引导学生观察和描述圆的特点,从而引出圆的定义。
接着,通过PPT呈现圆的性质,如圆的直径、半径、圆心等,让学生理解并能够运用这些性质解决实际问题。
3.操练(10分钟)让学生分组讨论,每组选取一个圆,尝试推导出圆的标准方程。
讨论结束后,各组汇报推导过程,教师进行点评和指导。
4.巩固(10分钟)布置一些有关圆的练习题,让学生独立完成,检验学生对圆的定义和性质的掌握程度。
教师在过程中进行个别辅导,帮助学生解决问题。
5.拓展(10分钟)引导学生思考圆在实际生活中的应用,如车轮、圆桌等,让学生举例说明圆的性质和方程在实际问题中的作用。
6.小结(5分钟)教师引导学生总结本节课所学内容,让学生复述圆的定义、性质和标准方程,检查学生的学习效果。
教学设计圆一、教材分析圆是(北师版)《数学》九年级下册第三章第一节内容,本章主要研究圆的性质及与圆有的关的应用;本节课要求经历形成圆的概念的过程,经历探索点与圆位置关系的过程,理解圆的概念,理解点与圆的位置关系。
一堂数学课,既要让学生获得具体的数学知识,又要让学生在获得知识的过程中,提高数学思维能力,掌握一些数学的分析方法,从而形成一定的数学素养.经历形成圆的概念的过程有两个目标,一是得到圆的概念,这是基础目标;二是经历由生活现象揭示其数学本质的过程,培养抽象思维,这是能力目标.经历探索点与圆位置关系的过程,初步体会定性分析与定量分析之间的关系.二、教学目标1.经历圆的形成过程,理解圆的相关概念及它们之间的关系;2.经历定性描述点与圆的位置关系,定量刻画点与圆的位置关系的过程,发展学生几何直观和逻辑推理能力;3.运用点与圆的位置关系的性质解决问题,发展学生数学建模能力。
三、教学重、难点教学重点:理解圆的概念,理解点与圆的位置关系。
教学难点:用集合的观点研究圆的概念。
四、教学过程环节一、回顾旧知,引出概念问题:(1)小明等四位同学正在做投圈游戏,他们呈“一”字型排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形?相信这个问题难不倒大家,这个游戏不公平,他们应该以目标物为圆心站成一个圆形,说起圆,大家并不陌生,对于圆的知识你知道哪些?(2)请同学们仔细回忆初中几何学习的历程,想一想我们已经学习了哪些平面几何对象,又是如何研究的.【学生回忆,教师有条理地板书(如图1)】(3)之前我们研究的都是直线形图形,遵循了从简单到复杂、从一般到特殊的研究思路,从今天起,我们将开启曲线图形的学习之旅,从最简单的曲线图形——圆展开研究. 请同学们展望一下:在本章中将要研究哪些内容以及如何研究呢?根据几何研究的基本套路,学生猜测将研究圆的定义、性质、判定,圆的有关计算,以及圆与其他图形.【设计意图】上述过程借助学生的最近发展区,创设情境引入概念;从已有知识出发,通过回忆旧知,寻找新知的生长点;通过对旧知研究内容的梳理,为新知建构找到方向.其中第(3)小问从生活素材中抽象并判断圆,引发认知冲突,从而明确本课的学习任务,让学生感受到进一步研究的必要性.环节二、动手操作,生成概念探究活动1:探究活动一,请用圆规在草稿纸上,画一个圆.画圆时,需要注意什么?“固定点”“固定长”通过刚才的画图,你能用自己的语言描述出圆的定义吗?(学生抽象、概括及用语言表达,教师给出圆的符号表示)【设计意图】学生经历了画圆的过程,切身体会到了圆是怎么产生的.这种通过直观感知,用运动的观点(可类比“角”的生成)进行抽象概括的方法,自然能建构起圆的描述性定义.同时,在师生的补充中不断完善概念,强调“在平面内”及“圆”指的是“圆周”,并根据圆的定义,纠正了学生的认知偏差.追问:通过画圆的过程思考一下,要想确定一个圆,需要知道哪些条件.【设计意图】此处的追问为了顺势引出同心圆、等圆的概念,教给学生发现新结论的研究方法.探究活动2:阅读理解(识圆一,了解圆的有关概念)。
图北师大版数学九年级下册第三章 圆 教学案【学习目标】1、理解圆的描述定义,了解圆的集合定义.2、经历探索点与圆的位置关系的过程,以及如何确定点和圆的三种位置关系【重点难点】重点:会确定点和圆的位置关系.。
难点:初步渗透数形结合和转化的数学思想,并逐步学会用数学的眼光和运动、集合的观点去认识世界、解决问题.【学法指导】自主探究、认真完成教学案的问题,并把自己的疑问写出来,最后小组交流并解决。
【自主学习】(自学课本P65---P 67思考下列问题) 1、举例说出生活中的圆。
2、车轮为什么做成圆形?3、你是怎样画圆的?你能讲出形成圆的方法有多少种吗?【合作探究】(由自主学习第四题归纳总结下列概念)1、圆的集合定义 (集合的观点)2、圆的运动定义:_______________ (运动的观点)圆心: 半径:3、圆的表示方法:以点O 为圆心的圆,记作“ ”,读作“ ”.4、同时从圆的定义中归纳:(1)圆上各点到 (圆心)的距离都等于 半径); (2)到定点的距离等于 的点都在同一个圆上.5、与圆的有关概念?讨论圆中相关元素的定义.如图,你能说出弦、直径、弧、半圆的定义吗?弦: ; 直径: ; 弧: ;弧的表示方法: ;半圆: ; 等圆:等弧“ 优弧: 劣弧: ;6、点和圆的位置关系:在平面内任意取一点P ,点与圆有哪几种位置关系?若⊙O 的半径为r ,点P 到圆心O 的距离为d ,那么: 点P 在圆 d r点P 在圆 d r点P 在圆 d r【训练案】1、设AB=3cm ,作图说明满足下列要求的图形: (1)到点A 和点B 的距离都等于2cm 的所有点组成的图形;(2)到点A 和点B 的距离都小于2cm 的所有点组成的图形。
⇔⇔⇔2、正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A ;点C在⊙A ;点D在⊙A 。
3、已知⊙O的半径为5cm.(1)若OP=3cm,那么点P与⊙O的位置关系是:点P在⊙O ;(2)若OQ= cm,那么点Q与⊙O的位置关系是:点Q在⊙O上;(3)若OR=7cm,那么点R与⊙O的位置关系是:点R在⊙O【课堂小结】通过本节课学习,你有哪些收获?课题: 3.2圆的对称性【学习目标】1、探索圆的对称性,能找出圆的对称轴。
北师大版九年级数学下册:3.1《圆》教案一. 教材分析北师大版九年级数学下册3.1《圆》是学生在学习了直线、射线、线段的基础上,进一步对圆的概念、性质和圆与其他几何图形的关系进行探讨。
本节课的内容包括圆的定义、圆的半径和直径、圆的周长和面积等,这些都是基础知识,对于学生来说比较抽象,需要通过实例和操作来理解和掌握。
二. 学情分析九年级的学生已经具备了一定的几何基础,对直线、射线、线段等概念有一定的了解。
但是,圆的概念比较抽象,学生可能难以理解。
因此,在教学过程中,需要通过实例和操作来帮助学生理解和掌握圆的概念。
同时,学生对于实际操作和图形观察比较感兴趣,可以利用这一点来提高学生的学习兴趣。
三. 教学目标1.知识与技能:理解圆的定义,掌握圆的半径和直径的性质,会计算圆的周长和面积。
2.过程与方法:通过实例和操作,培养学生的观察能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.圆的定义和性质。
2.圆的周长和面积的计算。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等,通过引导学生观察、思考、讨论,激发学生的学习兴趣,培养学生的观察能力、思维能力和创新能力。
六. 教学准备1.准备相关的实例和图片,用于引导学生观察和理解圆的概念。
2.准备圆的模型或图片,用于讲解圆的性质。
3.准备圆的周长和面积的计算公式,用于讲解和练习。
七. 教学过程1.导入(5分钟)通过展示生活中的圆形物体,如硬币、车轮等,引导学生观察和思考:什么是圆?圆有哪些特点?2.呈现(10分钟)讲解圆的定义和性质,引导学生理解圆的概念。
展示圆的半径和直径的性质,让学生通过观察和操作,理解半径和直径的关系。
3.操练(10分钟)让学生分组合作,用圆规和直尺画圆,测量圆的半径和直径,计算圆的周长和面积。
通过实际操作,让学生加深对圆的概念的理解。
4.巩固(10分钟)出示一些有关圆的练习题,让学生独立完成,检查学生对圆的概念和计算方法的掌握情况。
一、教学目标1理解圆的描述定义,了解圆的集合定义•2、经历探索点与圆的位置关系的过程,以及如何确定点和圆的三种位置关系二、教学重点和难点重点:点与圆的位置关系难点:用集合的观点研究圆的概念三、教学过程(一)情境引入:一些学生正在做投圈游戏,他们呈“一”字排开•思考:这样的队形对每一人都公平吗?你认为他们应当排成什么样的队形?(二)探究新知:【探究一】圆的定义及相关概念1. 请大家用自己的方式在学案上画一个圆2.尝试给圆下一个准确的定义,写下来定义1:当一条线段绕着在平面内旋转一周时,它的另一个端点所形成的图形就是- 一个圆。
定义:圆可以看成是到的距离等于的所有点组成的图形。
就是圆心, 就是半径,以0为圆心的圆记作,读作3•相关概念:弦、弧、直径、半径、半圆、等圆的相关概念半径:•连接圆心和圆上的的线段叫做半径,例如上图中的弦:连接圆上的线段叫做弦,例如上图中的直径:经过的叫做直径,例如上图中的弧: 圆上叫做圆弧,简称弧」及其所对的 组成的图形叫做弓形的两个圆叫做等圆同心圆: 的两个圆叫做同心圆等弧:在中,的弧叫做等弧【探究二】点和圆的位置关系O O 是一个半径为r 的圆,在圆内、圆上、圆外分别取一点,(1) 在平面内任意取一点 P,点与圆有几种位置关系?分别是什么?答:有 ____________ 种,分别是 _____________________ —___ __________ (2) 若0 O 的半径为r ,点P 到圆心0的距离为d ,那么:已知线段PQ=2cm 画图说明满足下列要求的图形: ⑴到点P 的距离等于1cm 的所有点组成的图形; ⑵到点Q 的距离等于1.5cm 的所有点组成的图形 ⑶到点P 、Q 的距离都等于1cm 的所有点组成的图形 ⑷到点P 、Q 的距离都等于1.5cm 的所有点组成的图形 ⑸到点P 、Q 的距离都小于1.5cm 的所有点组成的图形⑹到点P 的距离小于2cm,且到点Q 的距离大于2cm 的所有点组成的图形P ------------------- ■ Q P --------------------- - QP ------------------- h QP --------------------1 Q P ------------------- 1 Q(四)巩固训练1、小明和小华正在练习投铅球,小明投了5.2m ,小华投了6.7m ,他们投的球分别落在下图中哪个区域内?上图中的 弓形:由 等点P 在圆 d r点P 在圆 d r点P 在圆_ d r (三)尝试与交流2、已知O 0的面积为25 no(1 )若PO=5.5,则点P 在_ _;(2 )若PO=4则点P在_ _;(3)若PO= _ _,则点P在O 0上。
第三章圆1 圆【知识与技能】1.了解圆的有关概念.2.掌握点和圆的三种位置关系.【过程与方法】1.通过在生活中抽象圆和用圆的知识解决实际问题的过程,体验数学知识来源于生活及数学学习探究的方法.2.经历观察、操作、推理等数学活动,发展合情推理及有条理的表达能力.【情感态度】经历形成圆的概念及点与圆的位置关系的过程,养成学生良好的学习习惯和独立思考的精神.【教学重点】圆的概念及点和圆的位置关系.【教学难点】圆的概念的形成过程和点与圆的位置关系的探索过程一、情景导入,初步认知在小学,我们已经学过一些圆的知识,实际生活中,圆形物体的例子很多.请同学们欣赏图片(教师出示有关圆的图片).生活离不开圆,圆是我们的好朋友.这一章我们将系统对圆进行研究,这节课我们一起来学习圆的有关概念.【教学说明】体验所学内容与现实世界的密切联系,引起学生对学习内容的注意,激发学生的学习兴趣.二、思考探究,获取新知1.圆的概念在平面内,圆是到定点的距离等于定长的所有的点组成的图形.这个定点就是圆心,定长是半径.以点O为圆心的圆,记作⊙O,读作“圆O”.2.圆的有关概念(1)连接圆上任意两点的线段叫做弦,如图线段AC,AB;(2)经过圆心的弦叫做直径,如图线段AB;(3)圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作AC”读作“圆弧AC”或“弧AC”.大于半圆的弧(如图所示)ABC叫做优弧,小于半圆的弧(如图所示)AC或BC叫做劣弧;(4)圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;(5)能够重合的圆称为等圆;(6)在同圆或等圆中,能够互相重合的弧,称为等弧3.点和圆的位置关系如上图所示,设⊙O的半径为r,点到圆心的距离为d. 则有:点在圆外,d>r;点在圆上,d=r;点在圆内,d<r.【教学说明】整个过程为学生提供了充分的从事数学研究和交流的机会,使学生主动观察、讨论、概括得到新知,亲历了“做数学”的过程.三、运用新知,深化理解1.判断:(1)直径是弦. ()(2)弦是直径. ()(2)半圆是弧,但弧不一定是半圆. ()(3)半径相等的两个半圆是等弧. ()(4)长度相等的两条弧是等弧. ()(5)周长相等的圆是等圆. ()(6)面积相等的圆是等圆. ()(7)优弧一定比劣弧长. ()解析:根据圆的有关概念可得,(1)直径是弦;(2)弦不一定经过圆心,所以不一定是直径; (3)弧不一定是直径分成的弧,所以弧不一定是半圆;(4)半径相等就表明这两个圆是等圆,所以半径相等的两个半圆是等弧;(5)等弧指长度形状都相等,同圆或等圆中长度相等的两条弧是等弧;(6)根据周长公式,周长相等则直径相等,所以周长相等的圆是等圆;(7)根据面积公式,面积相等则半径相等,所以面积相等的圆是等圆;(8)必须在同圆或等圆中进行比较.答案:√×√√×√√×2.如图,半圆的直径AB= .2,所以直径为2答案:22 3.点A 在以O 为圆心,3cm 为半径的⊙O 内,则点A 到圆心O 的距离d 的范围是 .解析:根据点和圆的位置关系判定.答案:0≤d <3 .4. ⊙O 的半径为5,圆心O 的坐标为(0,0),点P 的坐标为(4,2),则点P 与⊙O 的位置关系是 ( )A.点P 在⊙O 内B.点P 在⊙O 上C.点P 在⊙O 外D.点P 在⊙O 上或⊙O 外解析:比较OP 与半径r 的关系.∵OP=2242 =25,OP 2=20,r 2=25,∴OP <r ,∴点P 在⊙O 内.答案:A【教学说明】学生运用新知及时巩固,使每个学生都有收获;感受成功的喜悦,让自己同时肯定以前探索活动的意义.四、师生互动,课堂小结1.这节课你学习了哪些知识?学习了哪些 数学思想方法?2.你是运用怎样的方法来获得这些知识的?3.通过今天的学习你有什么收获?1.作业:教材“习题3.1”中第2、3题.2.完成练习册中本课时的练习.本节课的概念较多,学生易混淆概念,所以应在这方面多讲解、 练习.。
九(下)第三章 圆一、点的轨迹 1、集合:(1)圆:圆可以看作是到定点的距离等于定长的点的集合; (2)圆的外部:可以看作是到定点的距离大于定长的点的集合; (3)圆的内部:可以看作是到定点的距离小于定长的点的集合 2、轨迹: (1)、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; (2)、到线段两端点距离相等的点的轨迹是:线段的中垂线; (3)、到角两边距离相等的点的轨迹是:角的平分线; (4)、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; (5)、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线二、点与圆的位置关系:1、点在圆内 d<r 点C 在圆内2、点在圆上 d=r 点B 在圆上3、点在此圆外 d>r 点A 在圆外三、直线与圆的位置关系:1、直线与圆相离 d>r 无交点2、直线与圆相切 d=r 有一个交点3、直线与圆相交 d<r 有两个交点A四、圆与圆的位置关系:1、外离(图1) 无交点 d>R+r2、外切(图2) 有一个交点 d=R+r3、相交(图3) 有两个交点 R-r<d<R+r4、内切(图4) 有一个交点 d=R-r5、内含(图5) 无交点 d<R-r五、垂径定理:1、垂径定理:垂直于弦的直径平分弦且平分弦所对的弧2、推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,若AB ∥CD则 弧AB=弧CD图2图1图4图5BD六、圆心角、圆周角 定理:1、圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论也即:①∠AOB=∠DOE ②AB=DE ③OC=OF ④弧BA=弧ED由 ① 推出②③④ 或 由② 推出 ①③④2、圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半即:∵∠AOB 和∠ACB 是弧AB所对的圆心角和圆周角∴∠AOB=2∠ACB3、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等即:在⊙O 中,∵∠C 、∠D 都是弧AB 所对的圆周角∴∠C=∠D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在⊙O 中,∵AB 是直径 或 ∵∠C=90°∴∠C=90°∴AB 是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 即:在△ABC 中,∵OC=OA=OB ∴△ABC 是直角三角形或∠C=90°七、弦切角定理:弦切角定理:弦切角等于所夹弧所对的圆周角推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
课题:圆【学习目标】1、理解圆的描述定头,了解圆的集合定义.2、经历探索点与圆的位置关系的过程,以及如何确定点和圆的三种位置关系【重点难点】重点:会确定点和圆的位置关系.。
难点:初步渗透数形结合和转化的数学思想,并逐步学会用数学的眼光和运动、集合的观点去认识世界、解决问题.【学法指导】自主探究、认真完成教学案的问题,并把自己的疑问写出来,最后小组交流并解决。
【自主学习】(自学课本P65---P67思考下列问题)1、举例说出生活中的圆。
2、车轮为什么做成圆形3、你是怎样画圆的你能讲出形成圆的方法有多少种吗【合作探究】(由自主学习第四题归纳总结下列概念)1圆的集合定义(集合的观点)2、圆的运动定义:_____________________________________________ (运动的观点)圆心:----------------------------- 半径:_____________________________3、圆的表示方法:以点O为圆心的圆,记作“ ____________________ ”,读作a ”4、同时从圆的定义中归纳:(1)圆上各点到_____________ (圆心)的距离都等于_______ 半径);(2)到定点的距离等于_____________ 的点都在同一个圆上.弧^i ;弧的表示半圆 -------------------------- ;等圆等弧^τζ----------------------- 优弧: 劣弧: ------------------------- ;6、点和圆的位置关系:在平面内任意取一点P,置关系若C)O 的半径为r, 点P 到圆心0的距离为d,那么:<=>点P 在圆【训练案】的距离都等于2cm 的所有点组成的图形;(2)到点A 和点B 的距离都点与圆有哪几种位<=>点P 在圆1、设AB 二3cm,作图说明满足下列要求的图形:(1)到点A 和点BP小于2cm的所有点组成的图形。
2、正方形ABCD的边长为2cm,以A为圆心2cm为半径作C)A,则点B在C)A_;点0在G)A _______ ;点。
在。
A _______ o3、已知C)O的半径为5cm.⑴若0P=3cm,那么点P与G)O的位置关系是:点P在C)O ____ ; (2)若OQ二____ cm,那么点Q与00的位置关系是:点Q在G)O上;(3)若0R=7cm,那么点R与OO的位置关系是:点R在00 ___________ 【课堂小结】通过本节课学习,你有哪些收获课题:圆的对称性【学习目标】1、探索圆的对称性,能找出圆的对称轴。
2、能运用其对称性推出在同一个圆中,圆心角、弧、弦之间的关系。
【重点难点】重点:在同一个圆中,圆心角、弧、弦之间的关系的推导。
难点:运用在同一个圆中,圆心角、弧、弦之间的关系解决问题。
【学法指导】自主探究、认真完成教学案的问题,并把自己的疑问写出来,最后小组交流并解决。
【旧知链接】1>在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这样的图形叫做_______________________________________ 图形,这条直线叫做_________________ O2、中心对称图形是【自主学习】1∙通过对折圆,圆是轴对称图形吗如果是,它的对称轴是什么你能找到多少条对称轴(自学课本P 70-P72思考下列问题)由此得出:2. 一个圆绕它的圆心旋转180°,与原来的图形重合吗那旋转任意一个角度,还能与原图形重合吗由此得出:3•认识弧、弦、直径这些与圆有关的概念⑴圆弧:如图:优弧:__________________ 劣弧:____________________如图:弦:_________________________(3)直径:如图:直径:______________________【合作探究】1、按照下列步骤进行小组活动:⑴在两张透明纸片上,分别作半径相等的00和C)O(2)在G)O和C)O中,分别作相等的圆心角ZAOB. Z A o B ,连接AB、A B⑶将两张纸片叠在一起,使C)O与Oo重合(如图)(4)固定圆心,将其中一个圆旋转某个角度,使得OA与OA重合在操作的过程中,你有什么发现_______________________________________2、上面的命题反映了在同圆或等圆中,圆心角、弧、弦的关系,对于这三个量之间的关系,你还有什么思考你能够用文字语言把你的发现表达出来吗3、圆心角、弧、弦之间的关系:____________________________________________4、试一试:如图,已知C)0、C)O半径相等,AB、CD分别是00、Θ 0的两条弦填空:(1)若AB=CD,则(2)若AB二CD,则(3)若ZAOB=ZCO D,则5、在圆心角、弧、弦这三个量中,角的大小可以用度数刻画,弦的大小可以用长度刻画,那么如何来刻画弧的大小呢弧的大小:圆心角的度数与它所对的弧的度数相等【训练案】1>判断:(1)直径是弦,弦是直径。
()(2 )、半圆是弧,弧是半圆。
()(3)周长相等的两个圆是等圆。
()(4 )、长度相等的两条弧是等弧。
()(5)同一条弦所对的两条弧是等弧。
()(6)、在同圆中,优弧一定比劣弧长。
()3.一条弦把圆分成仁3两部分,则劣弧所对的圆心角为 ____________________ o4.C)O 中,直径AB//CD 弦,壮度数= 60。
,则ZBOD= ______ 。
5.在00中,弦AB的长恰好等于半径,弦AB所对的圆心角为________________ 【课堂小结】通过本节课学习,你有哪些收获课题:垂径定理(选学)【学习目标】1、掌握垂径定理,并会应用垂径定理进行简单的计算;2、掌握与垂径定理有关的推论,并能应用这一推论解决问题。
【重点难点】重点:垂径定理的掌握及运用.难点:垂径定理的探索和证明【学法指导】自主探究、认真完成教学案的问题,并把自己的疑问写出来,最后小组交流并解决。
【旧知链接】1、如图,AB是00的 ________ ; CD是G)O ; OO中优弧有_________ ;劣弧有____________ O2.在____________________ 圆或 _______________________ 圆中,能够叫等弧。
【自主学习】k用纸剪一个圆,沿着圆的任意一条直径所在的直线对折,你发现了什么2、如图,AB是00的一条弦.作直径CD,使CD丄AB, 垂足为M.D⑴ 此图是轴对称图形吗如果是,其对称轴是什么(2)你能发现图中有那些等量关系吗说一说你的理由。
由此得出:垂径定理: ____________________________________________________ 符号语言:∙.∙CD是G)O的_________ , AB是C)O的 ________ ,且CD ____ AB与MO______ o 也可以表示为:① ② ③3、看下列图形,是否能使用垂径定理【合作探究】1、探索垂径定理的逆定理;如图,AB 是C )O 的弦(不是直径),作一 条平分AB 的直径CD,交AB 于点M.利用圆纸片动手做一做,然后回 答:(1)右图是轴对称图形吗如果是,其对称轴是什么(2)你能发 现图中有那些等量关系说一说你的理由。
—’口② CD 丄AB由此得出:垂径定理的逆定理:【训练案】K证明:垂径定理。
2、如右图所示,一条公路的转弯处是一段圆弧(即图中CD, 点O是CD 的圆心),其中CD=600m, E为CD上一点,且OE 丄CD,垂足为F, EF=90 m.求这段弯路的半径.【课堂小结】通过本节课学习,你有哪些收获课题:圆周角与圆心角的关系(1)【学习目标】1、认识圆周角,经历探索圆周角和圆心角的关系的过程,理解和掌握圆周角定理;2.能应用圆周角与圆心角的关系、直径所对的圆周角的特征解决相关问题。
【重点难点】重点:探索圆心角、弧、弦之间关系定理并利用其解决相关问题。
难点:圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明。
【学法指导】自主探究、认真完成教学案的问题,并把自己的疑问写出来,最后小组交流并解决。
【旧知链接】1 圆心角的定义。
2、在同圆或等圆中,圆心角的度数和它所对的弧的度数的关系:【自主学习】(自学、对学、探索圆周角的定义和特征)仁圆周角定义:__________________________________________________________ 2判定下列各角哪些是圆周角3、圆周角特征:角的顶点________________ 上,两边是圆的__________________圆心角特征:角的顶点是____________________ ,两边是圆的______________ 【合作探究】1、探究一条弧所对的圆周角与它所「对的圆心角之间的关系。
(自学、对学、小组交流画出所有的情况进行分析)由此得出圆周角定理:_____________________________________2、(1 )如图,在OO 中,Z B0C=50。
,则Z BAC.=(2)如图,点A, B, C是G)O上的三点,则ZBOC= ______________AC二40° ,则ZOBC= _________________(3)如图,ZBr3、(思考与探索)(1)、如瓦BC所对的圆心角看乡少个BC所对的圆周角有多少个请在图中画出BC所对的圆心角和圆周角。
(2)观察上图,在画出的无数个圆周角中,这些圆周角与圆心角有什么关系由此得出什么:在同圆或等圆中,______________________________________________ O【训练案】k 如图,点A、B、C、D在G)O上,点A与点D在点B、C所在直线的同侧,ZBAC=350(1)Z BDC= _______ 。
理由是__________________________________________(2)Z BOC= _______ 。
理由是__________________________________________OO O2、如图,A, B, C, D是00上的四点,且ZBCD=Ir求ZBOD (BCD所对的圆心角)和ZBAD的大小。
【课堂小结】通过本节课学习,你有哪些收获课题:圆周角与圆心角的关系(2)【学习目标】掌握圆周角定理几个推论,会熟练运用推论解决问题.;认识圆内接四边形,掌握圆内接四边形的性质。
【重点难点】重点:圆周角定理几个推论的应用.难点:应用圆心角与圆周角的关系解决问题。