大学生物化学酶.
- 格式:ppt
- 大小:4.88 MB
- 文档页数:7
大学生物化学实验:酶的活性与影响因素一、实验背景酶是一种催化生物反应的蛋白质,广泛存在于生物体内。
本实验旨在探究酶的活性以及影响其活性的因素,进一步了解生物化学反应的基本原理和机制。
二、实验目的1.掌握测量酶活性的方法;2.研究不同因素对酶活性的影响;3.分析酶活性受到限制的原因。
三、实验材料和方法材料:1.酶溶液(如:淀粉酶、脂肪酶等);2.底物(如:淀粉溶液、油脂溶液等);3.反应容器(如试管、比色皿等);4.醋酸纸片或pH计(用于调节反应体系pH值);5.温度控制设备(如恒温水浴槽)。
方法:1.准备不同浓度的底物溶液,并将之加入多个试管中;2.向每个试管中分别加入相同量的酶溶液,混合均匀;3.放置试管于不同温度条件下(如室温、高温、低温等),反应一定时间;4.在反应终止后,通过一定方法(如添加酸性或碱性溶液)使反应停止,并记录结果;5.使用适当的实验方法测量酶的活性指标(如:变色法、气体释放等)。
四、实验结果1.记录不同底物浓度和酶活性的关系;2.比较不同温度对酶活性的影响,并绘制曲线;3.分析其他可能影响酶活性的因素,如pH值等。
五、实验分析与讨论1.根据实验结果分析底物浓度与酶活性之间的关系;2.探讨温度对酶活性产生的影响和机制,并引用相关理论支持实验结果;3.分析其他可能影响酶活性的因素,并提出改进实验方法或控制变量的建议。
六、结论通过本实验可以得出以下结论: 1. 酶活性与底物浓度呈正相关关系; 2. 酶活性在一定范围内随着温度升高而增加,但超过一定温度后酶活性会降低; 3.pH值是影响酶活性的重要因素之一。
七、实验注意事项1.操作时要遵守实验室安全规定,保证个人安全;2.实验过程中需要注意仪器和材料的清洁和消毒;3.严格按照实验步骤操作,避免误差的产生。
以上是关于大学生物化学实验中酶的活性与影响因素的文档内容编写。
根据主题进行了完整描述,包括实验目的、方法、结果分析和结论等部分。
酶
酶的概念
酶是由生物体活细胞产生的具有催化作用的蛋白质,又称为生物催化剂酶促反应的特点和机制
酶促反应的特点
与一般催化剂共性
个性
高效性
专一性
绝对专一性
相对专一性
立体异构专一性
不稳定性
可调控性
由活细胞产生
酶促反应机制
高效性的机制
专一性的机制
诱导契合学说
显著降低反应的活化能
酶的分子组成与结构
酶的分子组成
单纯酶
结合酶
蛋白质部分称酶蛋白
非蛋白质部分称为酶的辅助因子
辅基
辅酶
酶的结构
单体酶
寡聚酶
多酶体系
串联酶
同工酶
酶的必需基团
与酶的活性密切相关的基团
酶的活性中心/活性部分
能与底物特异结合并将底物转化为产物的这一区域酶促反应动力学
底物浓度对酶促反应速度的影响
米氏方程
米氏常数Km的意义
Km和Vmax的测定
酶浓度对酶促反应速度的影响
底物浓度>>酶浓度,酶促反应速度与酶浓度成正比
温度对酶促反应速度的影响
最适温度不是特征常数
激活剂
抑制剂
不可逆抑制剂
专一性不可逆抑制作用
例子:有机磷杀虫剂,解磷定
非专一性不可逆抑制作用
巯基酶中毒,可用二巯基丙醇解毒可逆抑制剂
竞争性
磺胺类药物
非竞争性
反竞争性
酶原激活的实质是使酶分子形成或暴露活性中心的过程
以上内容整理于幕布文档。
生物化学酶集锦(期末考试要求)一、糖代谢1、磷酸葡萄糖激酶PEK:参与糖降解,限速酶。
AMP是PEK的变构激活剂;柠檬酸是变构抑制剂;NADH和脂肪酸也是抑制剂;PH下降时抑制PEK活性,糖降解速率降低。
相对应的糖异生酶是二磷酸果糖磷酸激酶。
2、己糖激酶:参与糖降解,将葡萄糖转化为6--磷酸葡萄糖。
高能荷抑制、高柠檬酸水平抑制。
相对应的糖异生酶为6-磷酸葡萄糖磷酸酯酶。
3、丙酮酸激酶:将PEP转化为丙酮酸或草酰乙酸,参与糖降解,高能荷抑制、高乙酰辅酶A抑制。
相对应的糖异生酶为PEP羧激酶。
4、丙酮酸羧化酶:丙酮酸羧化为草酰乙酸,以生物素为辅酶,辅助因子乙酰辅酶A和镁离子。
5、丙酮酸脱氢酶系:将丙酮酸催化成乙酰辅酶A,有丙酮酸脱氢酶(E1)、二氢硫辛酸转乙酰酶(E2)和二氢硫辛酸脱氢酶(E3)含有硫胺素焦磷酸(TPP)、硫辛酸、CoASH 、FAD、NAD、Mg2+ 等 6种辅助因子。
ATP、NADH、乙酰CoA 和脂肪酸能抑制酶活性。
使E1的一个亚甲基磷酸化而失活;CoA抑制E2,NADH 抑制E3。
AMP、NAD、CoASH能别构激活酶的活性。
6、柠檬酸合酶:草酰乙酸与乙酰CoA合成柠檬酸,三羧酸循环的限速酶。
ATP、NADH和琥珀酰CoA是抑制剂;ADP是激活剂。
此外,草酰乙酸与乙酰CoA浓度对其有影响。
7、异柠檬酸脱氢酶:异柠檬酸先脱氢成草酰琥珀酸再脱羧成α--酮戍二酸。
有两种酶,一种以NAD为辅酶,另一种以NADP为辅酶。
对NAD专一的酶位于线粒体中,是三羧酸循环重要的酶。
受ATP抑制。
8、α--酮戍二酸脱氢酶复合酶:α--酮戍二酸脱氢为琥珀酰-CoA。
由α--酮戍二酸脱氢酶、转琥珀酰酶和二氢硫辛酸脱氢酶组成。
也需要硫胺素焦磷酸(TPP)、硫辛酸、CoASH 、FAD、NAD、Mg2+ 等 6种辅助因子。
同样受到产物NADH、琥珀酰--CoA及ATP、GTP的反馈抑制。
9、琥珀酰--CoA合成酶:由琥珀酰--CoA生成琥珀酰。
酶(enzyme):生物催化剂,除少数RNA外几乎都是蛋白质。
酶不改变反应的平衡,只是通过降低活化能加快反应的速度。
脱脯基酶蛋白:酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分。
全酶:具有催化活性的酶,包括所有必需的亚基,辅基和其它辅助因子。
酶活力单位:酶活力单位的量度。
1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25oC,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量。
比活(specific activity):每分钟每毫克酶蛋白在25oC下转化的底物的微摩尔数。
比活是酶纯度的测量。
活化能(activation energy):将1mol反应底物中所有分子由其态转化为过度态所需要的能量。
活性部位(active energy):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。
活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。
酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用。
共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。
许多酶催化的基团转移反应都是通过共价方式进行的。
靠近效应(proximity effect):非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态。
初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。
米氏方程:表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:υ=υmax[s]/(Km+[s])米氏常数:对于一个给定的反应,异至酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度。
一、名词解释1 核酶答案: 具有催化活性的RNA。
2 酶答案: 酶是生物体内活细胞合成的一种生物催化剂。
3 酶的竞争性抑制剂答案: 抑制剂与底物化学结构相似,能与底物竞争占据酶的活性中心,形成EI复合物,而阻止ES复合物的形成从而抑制了酶的活性。
4 辅基答案: 与酶蛋白结合牢固,催化反应时,不脱离酶蛋白,用透析、超滤等方法不易与酶蛋白分开。
5 辅酶答案: 与酶蛋白结合松散,催化反应时,与酶蛋白可逆结合,用透析、超滤等方法易与酶蛋白分开。
6 酶的活性中心答案: 酶与底物结合,并参与催化的部位。
7 酶原答案: 没有催化活性的酶前体8 米氏常数答案: 酶促反应速度为最大反应速度一半时的底物浓度。
9 酶的激活剂答案: 能提高酶活性,加速酶促反应进行的物质。
10 酶的抑制剂答案: 虽不引起蛋白质变性,但能与酶分子结合,使酶活性下降,甚至完全丧失活性,这种使酶活性受到抑制的特殊物质,称为酶的抑制剂。
11 酶的不可逆抑制剂答案: 与酶的必需基团共价结合,使酶完全丧失活性,不能用透析、超滤等物理方法解除的抑制剂。
12 酶的可逆抑制剂答案: 能与酶非共价结合,但可以用透析、超滤等简单的物理方法解除,而使酶恢复活性的抑制剂。
13 酶的非竞争性抑制剂答案: 抑制剂与底物化学结构并不相似,不与底物抢占酶的活性中心,但能与酶活性中心外的必需基团结合,从而抑制酶的活性。
14 酶活力答案: 指酶加速化学反应的能力,也称酶活性。
15 比活力答案: 每毫克酶蛋白所含的酶活力单位数(U/mg),也称比活性或简称比活。
二、填空题1酶的化学本质大部分是,因而酶具有蛋白质的性质和结构。
答案: 蛋白质,理化性质,各级结构2 目前较公认的解释酶作用机制的学说分别是、、和。
答案: 邻近与定位效应,底物变形,酸碱催化,共价催化3当酶的空间结构遭破坏时,酶的也被破坏,酶的活性。
答案: 活性中心,丧失4酶能与结合,并将其转化成,这一区域称为酶的。
答案: 底物,产物,活性中心5酶所催化的反应称为,在酶催化反应中,被酶催化的物质称为,反应生成物称为,酶所具有的催化能力称为。
酶名词解释生物化学酶是生物体内的一类特殊蛋白质,它在维持生命活动过程中起着重要的催化作用。
生物化学研究的目标之一就是揭示酶催化的机理及其在生命体内的功能。
本文将从酶的起源、结构、功能和调控等方面对酶进行详细解释。
酶的起源可以追溯到较古老的生命形式,最早的酶可能是蛋白质的特殊结构具备了催化功能。
随着生命的进化,酶不断发展演化,形成了各种不同的催化机制和功能类型。
如今,酶的催化机理主要有两种类型:锁定键合理论和过渡态理论。
锁定键合理论认为酶通过与底物特异性结合形成氢键、电荷相互作用等稳定的键合关系,从而改变反应物的构象,降低反应的活化能,推动化学反应的进行。
过渡态理论则认为酶使底物在催化中生成的过渡态更加稳定,从而加速反应的进行。
不同的酶具有不同的催化机制,通过这些机制,酶能够催化各种生物反应,例如水解、合成、氧化还原等。
酶的结构是其催化功能的基础。
酶与其他蛋白质一样,由氨基酸残基组成,并通过肽键连接形成多肽链。
酶的氨基酸序列决定了其三维结构,而三维结构则决定了酶的功能。
酶的三维结构通常具有特定的空间构型,其中包括活性中心和底物结合位点。
活性中心是酶催化功能的核心部位,通常由几个氨基酸残基组成,能够与底物形成特定的键合关系。
底物结合位点则是酶与底物结合的地方,通过与底物特异性的相互作用增加反应发生的几率。
酶的催化效率受其结构稳定性的影响,一些辅因子如金属离子、辅酶等也能够影响酶的催化活性。
酶在生物体内扮演着十分重要的角色。
生物体内的化学反应通常需要较高的温度和较长的时间才能进行,但酶可以在相对温和的条件下加速反应速率。
这使得生物体内的代谢能够在体温下进行,避免了过高的能量损耗。
酶介导的反应也具有高效、高选择性和高专一性的特点,能够避免无效和副反应的发生。
另外,酶还能够通过调控其活性来适应生物体内的不同环境和需求。
这包括转录水平上的调控,如基因表达的调控,以及翻译后修饰的调控,如磷酸化、乙酰化等。
酶的活性调控能够使生物体对外界环境变化做出快速适应,并在不同的生理条件下维持正常的生命活动。
酶的名词解释生物化学
酶是一类特殊的蛋白质,它们可以作为生物体内的催化剂,能够有效地加速进行生物化学反应。
酶把反应速率提高了几十到几百倍,因此被称为生命的“活性铁板”。
酶是生物大分子,可以把复杂的化学反应变成一个被极少量的酶结合起来的高度特异的过程。
它们可以加快蛋白质水解、DNA复制、脱氧核糖核酸(RNA)合成、生物发酵、脂肪氧化、糖原水解等过程。
酶的名词解释是指酶的物理和化学性质,以及它们在生物体内所扮演的作用。
它们是由一种或多种特定的氨基酸构成的大分子,每种氨基酸都具有特定的三维空间结构。
酶有固定定型( enzymes )和非固定定型( enzymes-like )两种。
固定定型酶(例如酶I和酶II)是一种结构固定的定型酶,它的三维结构在物理和化学活性方面受到特定氨基酸序列的控制,酶的活性受限于它的三角构象。
非定型酶( enzyme-like )是一种基于三角结构的非定型因子,它们可以在无任何氨基酸序列控制的情况下活性被调节,这使得它们更容易调节和控制反应速率。
酶还具有特殊的促进作用,能有效地加速化学反应的发生。
酶的促进作用使反应条件在较低的温度和pH值下就可以发生。
酶也可以把化学反应的活性分子与底物的结合过程变的更有效,活性分子的活性被大大提高,从而实现极快的反应速率。
酶的生物化学反应具有极大的重要性,它们是生物体中进行细胞代谢过程的关键因素。
细胞代谢所必不可少的酶,比如蛋白酶、脂肪酶、糖酶和酸性磷酸酶,都是非常重要的生物化学反应因子。
他们都具有巨大的作用,能够促进化学反应,提高反应速率,有效地将复杂的物质变成更简单的物质,同时提供能量支持,使生物有活力发挥其作用。