09理论力学期末A答 天津大学
- 格式:doc
- 大小:459.50 KB
- 文档页数:5
诚信应考,考试作弊将带来严重后果!本科生期末测试1 《 理论力学 I 》注意事项:1. 开考前请将密封线内各项信息填写清楚; 2. 所有答案请直接答在试卷上; 3.考试形式:(闭)卷;4. 本试卷共 ( 六 )大题,满分100分,考试时间120分钟。
题 号 一二 三 四 五 六 总分 得 分一、 判断题 (正确打“√”,错误打“×”,将答案填在下表中,每小题1分,共10分) 题号 1 2 3 4 5 6 7 8 9 10 答案 XXX√√XX√√√1. 力在两个坐标轴上的投影与力沿这两个坐标轴方向进行分解得到的分力的意义是相同的。
2. 力偶无合力的意思是说力偶的合力为零。
3. 质点系惯性力系的主矢与简化中心的选择有关,而惯性力系的主矩与简化中心的选择无关。
4. 平面力系向某点简化之主矢为零,主矩不为零。
则此力系可合成为一个合力偶,且此力系向任一点简化之主矩与简化中心的位置无关。
5. 某瞬时刚体上各点的速度矢量都相等,而各点的加速度矢量不相等,因此该刚体不是作平动。
6. 两齿轮啮合传动时,传动比等于主动轮与从动轮的转速比,若主动轮转速增大,则传动比也随之增大。
7. 若刚体内各点均作圆周运动,则此刚体的运动必是定轴转动。
8. 不管质点做什么样的运动,也不管质点系内各质点的速度为何,只要知道质点系的质量,质点系质心的速度,即可求得质点系的动量。
9. 质点系的内力不能改变质点系的动量与动量矩。
10. 刚体受到一群力作用,不论各力作用点如何,此刚体质心的加速度都一样。
姓名 学号学院 专业班级 座位号( 密 封 线 内 不 答 题 ) ……………………………密………………………………………………封………………………………………线……………………………………得分oyxFF'c 二、 单项选择题(8小题,每题2分,共16分,将答案填在下表中。
)题号 1 2 3 4 5 6 7 8 答案 ADAADBBC1. 二力平衡条件的使用范围是( )A . 刚体 B. 刚体系统 C. 变形体 D. 任何物体或物体系统 2. 不经计算,可直接判定出图示桁架中零力杆的根数为( )。
理论力学一、单选题1. 质点M 的质量为m ,受有二个力F 和R 的作用,产生水平向左的加速度a ,质点M 的运动微分方程为( ) MC aA.R F x m -=&&B.R F x m -=-&&C.F R x m -=&&D.F R x m -=-&&[答案]:A2. 重为W 的货物由电梯载运下降,当电梯加速下降、匀速下降及减速下降时,货物对地板的压力分别为R 1、R 2、R 3,它们之间的关系为( )A.R 1 = R 2 = R 3B.R 1 > R 2 > R 3C.R 1 < R 2 < R 3D.R 1 < R 3 > R 2[答案]:C3. 质量为m 的小球,放在倾角为 α 的光滑面上,并用平行于斜面的软绳将小球固定在图示位置。
如斜面与小球均以a 的加速度向左运动,则小球受到斜面的约束力为( )A.cos sin mg ma αα-B.cos sin mg ma αα+C.cos mg αD.sin ma α[答案]:B4. 提升矿石用的传送带与水平面成倾角α。
设传送带与矿石之间的摩擦系数为f ,为保持矿石不在带上滑动,则所需的加速度a 至少为多大( )A.)sin cos (αα+=f g aB.)sin cos (αα-=f g aC.αcos gf a =D.αsin g a =[答案]:B5. 质量为m 的物块A ,置于物块B 上,如图所示。
A 与B 间的摩擦系数为f ,为保持A 与B 一起以加速度a 水平向右运动。
则所需的加速度a 至少为多大( )A.gB.2gC.2gfD.gf[答案]:D6. 汽车重P ,以匀速v 驶过拱桥,在桥顶处曲率半径为R ,在此处桥面给汽车的约束力大小为( )A.PB.gRPv P 2+ C.gR Pv P 2- D.gRPv P - [答案]:C7. 质量为m 的物体M 在地面附近自由降落,它所受的空气阻力的大小为F R = Kv 2,其中K 为阻力系数,v 为物体速度,该物体所能达到的最大速度为( )A.Kmg v = B.mgK v = C.Kg v = D.gK v =[答案]:A8. 在图示圆锥摆中,球M 的质量为m ,绳长l ,若α角保持不变,则小球的法向加速度为( )A.αsin gB.a g cosC.αtan gD.αtan c g[答案]:C9. 起重机起吊重量25=Q kN 的物体,要使其在25.0=t s 内由静止开始均匀的加速到0.6m/s 的速度,则重物在起吊时的加速度和绳子受的拉力为( )A.2.4 m/s 2;25.38kNB.0.15 m/s 2;31.12kNC.2.4 m/s 2;31.12kND.0.15 m/s 2;25.38kN[答案]:C10. 已知A 物重N 20=P ,B 物重N 30=Q ,滑轮C 、D 不计质量,并略去各处摩擦,则绳水平段的拉力为( )A.30NB.20NC.16ND.24N[答案]:D11. 图示均质圆轮,质量为m ,半径为r ,在铅垂图面内绕通过圆盘中心O 的水平轴以匀角速度ω转动。
2011~2012 学年度第 二 学期《 理论力学 》试卷(A 卷)一、填空题(每小题 4 分,共 28 分)1、如图1.1所示结构,已知力F ,AC =BC =AD =a ,则CD 杆所受的力F CD =( ),A 点约束反力F Ax =( )。
2、如图1.2 所示结构,,不计各构件自重,已知力偶矩M ,AC=CE=a ,A B ∥CD 。
则B 处的约束反力F B =( );CD 杆所受的力F CD =( )。
1.1 1.23、如图1.3所示,已知杆OA L ,以匀角速度ω绕O 轴转动,如以滑块A 为动点,动系建立在BC 杆上,当BO 铅垂、BC 杆处于水平位置时,滑块A 的相对速度v r =( );科氏加速度a C =( )。
4、平面机构在图1.4位置时, AB 杆水平而OA 杆铅直,轮B 在水平面上作纯滚动,已知速度v B ,OA 杆、AB 杆、轮B 的质量均为m 。
则杆AB 的动能T AB =( ),轮B 的动能T B =( )。
1.3 1.45、如图1.5所示均质杆AB 长为L ,质量为m,其A 端用铰链支承,B 端用细绳悬挂。
当B 端细绳突然剪断瞬时, 杆AB 的角加速度 =( ),当杆AB 转到与水平线成300角时,AB 杆的角速度的平方ω2=( )。
6、图1.6所示机构中,当曲柄OA 铅直向上时,BC 杆也铅直向上,且点B 和点O 在同一水平线上;已知OA=0.3m,BC=1m ,AB=1.2m,当曲柄OA 具有角速度ω=10rad/s 时,则AB 杆的角速度ωAB =( )rad/s,BC 杆的角速度ωBC =( )rad/s 。
AB1.57、图1.7所示结构由平板1、平板2及CD 杆、EF 杆在C 、D 、E 、F 处铰接而成,在力偶M 的作用下,在图上画出固定铰支座A 、B 的约束反力F A 、F B 的作用线方位和箭头指向为( )(要求保留作图过程)。
1.7二、单项选择题(每小题 4 分,共28 分)1、如图2.1所示,四本相同的书,每本重均为P ,设书与书间的摩擦因数为0.1,书与手间的摩擦因数为0.25,欲将四本书一起抱起,则两侧手应加的压力至少大于( )。
天津大学智慧树知到“土木工程”《理论力学》网课测试题答案(图片大小可自由调整)第1卷一.综合考核(共15题)1.如图所示,两重物M1和M2的质量分别为m1和m2,二重物系在不计重量的软绳上,绳绕过定滑轮,滑轮半径为r,质量为M,则此滑轮系统之动能为()。
A.B.C.D.2.F=100N,方向如图所示,若将F沿图示x,y方向分解,则x向分力大小为()。
A.86.6NB.70.7NC.136.6ND.25.9N3.点沿直线运动,其速度v=t²-20。
已知当t=0时,y=-15m。
则t=3s时,点的位移为()。
A.6mB.-66mC.-57mD.-48m4.静定桁架就是在载荷作用下形状保持不变的桁架。
()A.错误B.正确5.质点A、B、C分别作曲线运动如图所示。
若各质点受力F与其速度v的夹角均保持不变,则作匀速运动的质点是()。
A.AB.BC.CD.A和B6.图示两均质轮的质量皆为m,半径皆为R,用不计质量的绳绕在一起,两轮角速度分别为ω1和ω2,则系统动能为()。
A.B.C.D.7.同一运动的质点,在不同的惯性参考系中运动,其运动的初始条件是不同。
() A.错误 B.正确8.图示三铰刚架中,若将作用于构件BC 上的力F 沿其作用线移至构件AC 上,则A 、B 、C 处约束力的大小()。
A.都不变B.都改变C.只有C 处改变D.只有C 处不变9.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
() A.错误 B.正确10.已知动点的运动方程为x=t ²,y=2t ⁴。
则其轨迹方程为()。
A.x=t ²-t B.y=2t C.y-2x ²=0 D.y+2x ²=011.物体作定轴转动的运动方程为φ=4t -3t ²(φ以rad 计,t 以s 计)。
则此物体内,转动半径r=0.5m 的一点,在t=1s 时的速度和切向加速度为()。
A.2m/s ,20m/s ² B.-1m/s ,-3m/s ² C.2m/s ,8.54m/s ² D.0m/s ,20.2m/s ²12.半径为R 质量为m 的均质圆盘由铰支座和绳约束,铰O 与质心C 位于水平,则剪断绳后,并OC 转至与水平成90°时圆盘的角速度为()。
理论力学期末考试A、B及其标答华中农业大学本科课程考试试卷考试课程与试卷类型:理论力学A 姓名:学年学期:2007-2008-1 学号:考试时间:2008-1-23 班级:一、判断题(每题2分,共20分。
正确用√,错误用×,填入括号内。
)1、动平衡的刚体,一定是静平衡的;但静平衡的刚体,不一定是动平衡的。
()2、质点系有几个虚位移就有几个自由度。
()3、若在作平面运动的刚体上选择不同的点作为基点时,则刚体绕不同基点转动的角速度是不同的。
()4、已知质点的质量和作用于质点的力,质点的运动规律就完全确定。
()5、质点系中各质点都处于静止时,质点系的动量为零。
于是可知如果质点系的动量为零,则质点系中各质点必都静止。
()6、凡是力偶都不能用一个力来平衡。
()7、任意空间力系一定可以用一个力和一个力偶来与之等效。
()8、两个作曲线运动的点,初速度相同,任意时刻的切向加速度大小也相同,则任意时刻这两点的速度大小相同。
()9、对于做平面运动的平面图形,若其上有三点的速度方向相同,则此平面图形在该瞬时一定作平动或瞬时平动。
()10、若质点的动量发生改变,则其动能也一定发生变化。
()二、选择题(每题3分,共30分。
请将答案的序号填入划线内。
)1、曲柄OA 以匀角速度ω转动,当系统运动到图1所示位置(OA 平行O 1B 、AB 垂直OA )时,有A V B V ,A a B a ,AB ω 0,AB α 0。
① 等于;② 不等于。
图1 图22、边长为l 的均质正方形平板,位于铅垂平面内并置于光滑水平面上,如图2所示,若给平板一微小扰动,使其从图示位置开始倾倒,平板在倾倒过程中,其质心C 点的运动轨迹是。
① 半径为l /2的圆弧;② 抛物线;③ 椭圆曲线;④ 铅垂直线。
3、半径为R 的圆盘沿倾角为?的斜面作纯滚动,在轮缘上绕以细绳并对轮作用水平拉力F (如图3所示)。
当轮心C 有位移r d 时,力F 的元功是____________。
理论力学复习题一、画出下列各物系中整体的受力图。
答案:二、直角构件受力F =150N ,力偶M =21Fa 作用。
a =50cm ,θ =30º。
求该力系对B 点的合力矩。
答案:图示力及力偶对B 点力矩的代数和为,()3750BM M =-=-∑F Ncm三、图示结构,杆重不计。
F P =2kN ,L 1=3m ,L 2=4m 。
试求A 、C 处的约束力。
答案:取整体为研究对象,受力如图示()0=∑F M A03211=⋅-⋅P C F L F L 得:kN 3=C F∑=0yF 0C Ay P F F F +-= 1kN Ay F =- 0xF=∑ 0Ax F =四、已知动点的运动方程为t x =,22t y =(x 、y 以m 计,t 以s 计),求其轨迹方程及t =1 s 时的速度、加速度。
答案:(1)由运动方程t x =,22t y =,消去t ,即得动点的轨迹:y – 2x 2=0,v x =1 m/s ,v y =4 m/s ,a =4 m/s 2五、物体作定轴转动的运动方程为ϕ=4t -3t 2(ϕ 以rad 计,t 以s 计)。
试求 t =0时,此物体内r =0.5 m 的一点的速度和法向加速度的大小。
答案:由定轴转动的运动方程ϕ=4t -3t 2,得到定轴转动物体的角速度与角加速度,46t ω=-,6ε=-。
速度和加速度分别为,23v r t ω==-;22n 82436a r t t ω==-+。
t =0时,速度,v =2 m/s ,法向加速度,n 8a =m/s 2。
六、在图示结构中,略去构架的自重。
已知: a ,P F。
试求: A 、B 、C 处的约束力及杆AB 的内力。
解:(1)取整体为研究对象∑=0xF0=Ax F (1)()∑=0F M A03P =-aF aF B (2)()∑=0F M B02P =+aF aF Ay (3) (2)取AC 为研究对象()∑=0F M C 0=--Ay Ax aF aF aF (4)∑=0xF0=++-Cx Ax F F F (5) 0=∑yF0=+Cy Ay F F (6)由(1)、(3)得 0=Ax F ,P 2F F Ay -=。
理论力学单选1. 半径为20cm 的圆盘,在水平面内以角速度1rad/s ω=绕O 轴转动。
一质量为5kg 的小球M ,在通过O 轴的直径槽内以t l 5=(l 以cm 计,t 以s 计)的规律运动,则当1s t =时小球M 的动能的大小为(###)A.250kgcm 2/s 2B.125kgcm 2/s 2C.62.5kgcm 2/s 2D.225kgcm 2/s 2[答案]:B2. 杆OA 长L ,以匀角速度ω绕O 轴转动,其A 端与质量为m ,半径为r 的均质小圆盘的中心铰接,小圆盘在固定圆盘的圆周上做纯滚动,若不计杆重,则系统的动能为(###)A.22112mL ω B.2212mL ω C.2234mL ω D.2214mL ω [答案]:C3. 均质直角杆OAB ,单位长度的质量为ρ,两段皆长R 2,图示瞬时以εω、绕O 轴转动。
则该瞬时直角杆的动能是(###)A.325R ρω B.3213R ρω C.3243R ρω D.32203R ρω [答案]:D4. 质量为m 的均质杆OA ,长l ,在杆的下端固结一质量亦为m ,半径为2/l 的均质圆盘,图示瞬时角速度为ω,角加速度为ε,则系统的动能是(###)A.2213ml ωB.226524ml ω C.2294ml ω D.226548ml ω [答案]:D5. 在竖直平面内的两匀质杆长均为L ,质量均为m ,在O 处用铰链连接,B A 、两端沿光滑水平面向两边运动。
已知某一瞬时O 点的速度为0v ,方向竖直向下,且θ=∠OAB 。
则此瞬时系统的动能是(###)A.2023cos mv θB.2026cos mv θC.2023sin mv θD.2026sin mv θ[答案]:A6. 一滚轮由半径不同的两盘固结而成,重Q 。
用柔索拖动,柔索一端的速度为v ,滚轮则沿粗糙水平面只滚不滑,设滚轮绕质心C 的回转半径为ρ,则系统的动能为(###)A.2222()Qv g R r ρ-B.2222()Qv r g R r - C.2222()2()Qv r g R r ρ+- D.2222()()Qv r g R r ρ+- [答案]:C7. 半径为r 的均质圆盘,质量为1m ,固结在长r 4,质量为2m 的均质直杆上。
理论力学部分第一章静力学基础一、是非题(每题3分,30分)1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()9. 力偶只能使刚体发生转动,不能使刚体移动。
()10.固定铰链的约束反力是一个力和一个力偶。
()二、选择题(每题4分,24分)1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
6.关于约束的说法正确的是 。
① 柔体约束,沿柔体轴线背离物体。
② 光滑接触面约束,约束反力沿接触面公法线,指向物体。
理论力学期末测试试题1-1、自重为P=100kN的T字形钢架ABD,置于铅垂面内,载荷如下列图.其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m.试求固定端A的约束力.解:取T型刚架为受力对象,画受力图其中耳一;q •次-3(ikN工已二“产看十骂—F£m6<r = 0工弓=0 ^-?-Fcos600 = 0一.一^ A必-W-Fi/十外必60F + F疝g= 0i^ = 3164kN 为二SOQkNMi= - IlSSkNm1-2如下列图,飞机机翼上安装一台发动机,作用在机翼OA上的气动力按梯形分布:解:q i=60kN/m, q2 =40kN/m ,机翼重P i=45kN ,发动机重P2 =20kN ,发动机螺旋桨的反作用力偶矩M=18kN.m .求机翼处于平衡状态时,机翼根部固定端.所受的力.幅研究机翼.把梯形教荷分解为一三角形载荷与一轮修救荷,其合力分利为Fja = y(^)- q2) , 9 = 90 kN,F k2= 9 * = 36° kN分别作用在矩赛.点3m与4.5 m处,如下列图,由= 口,F山=01Y = 0, F% - K - P# 1 中k=0SM0(F1 = Q t Mo - 3.6P| — 4.2尸工一M + 3F RI + 4.$F R1 = 0解得For = 0T F Q,=- 3S5 k\, M0 二-1 626 kN * m1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,q=10kN/m , F=50kN , M=6kN.m ,各尺寸如图.求固定端A处及支座C的约束力.6 m 1 i m } I m !M 先研究构架EBD如图(b),由WX= 0, F小-F sin30' = 0E Y = 0.F HJ + F3 - F mfi30 = 02A什⑺=0T F2 T - M + 2F = 0 解得= 25 kN. = 87.3 kN. F/ =-44 kN 再研究AB梁如图(a).由解:XX = 04 -如* 6 sinJO* * F旭一Fn, = 0XV - 0,为-1 6 (xx3tf . F* 二UEM八F) - 0, - 2 * -j * & * fl coeJO -白产皿"0懈得F〞 = 40 kN. F A I= 113 3 kN. M A= 575,S kN - m it愿也可先研究EBD,求得F*之后.再研究整体,求a处反力।这样祈减少平街方程数■但计算鼠并未明髭减少,1-4:如下列图结构, a, M=Fa, F1 F2 F,求:A, D处约束力.以上修为明究时聚.受力如下列图.广%-0 加-:'=. T工… 4・%七.二工9口 : 0 A<P -I %'二昌1'二小l nF吗一:F /=F1-5、平面桁架受力如下列图. ABC为等边三角形,且AD=DB .求杆CD的内力.H 翌体受力如图Q).由工M A(F)=0,方,/\ *F\B"4B - F - 1■心・sinbU- - Q 6蹲得Fw 一§F⑸.反将桁架微升.研究右边局部,如图化)所 \ __________________示,由人汽J^*Wf)= g Fft* ■ DB * sinfiO f+ F.nc , flH - F , £)P - sinGO,= 0 %⑻解樗Ffp = -|F/再研究节点匚,如图(cl由尔工K =①(Ftr- F在加曲,=0 代〞的EV = 0, -(F CF +F C¥)m&S0,- F QJ = Q *3 57ffl解得Fm =一与F t) 866F(压)本剧晟筒单的解法是.菖先断定QE杆为零杆,再觎取&BDF来研兆,只由一个方覆LM a(f> =.,即可健出R* ,读者不妨一试.1-6、如下列图的平面桁架,A端采用钱链约束,B端采用滚动支座约束, 各杆件长度为1m.在节点E和G上分别作用载荷F E=10kN, F G=7 kN.试计算杆1、2和3的内力.解:取圣体.求支庄为束力.工…小口口小0%+品一3%A取= 9kN / = SLN用盘面法,取疗架上边局部,s城■ g一月1 y〔峪3.“ 一/.」二9▽5=.&+鸟/疝16.“ 一鸟二0 E氏=0 F{\H 十巴83600 —.^ = l04kN(aj ^=l.l?kN 但弓।牛iilkNlji】2-1图示空间力系由6根桁架构成.在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45o角.A EAK= A FBM.等腰三角形EAK , FBM和NDB在顶点A, B和D处均为直角,又EC=CK=FD=DM .假设F=10kN ,求各杆的内力.解节点受力分别如图所开:,对节点八,由工X —0, F1 sin45 - % sin45 = 0+ F sin45' = 0£Y " F3= 0, —F] C3s45 —F± COH45-F cos45 - 0解得Fi = F:= -5kN〔压〕, F3=一7.07 kN〔压〕再对节点B,由SX ~ 0, F$ stn45* - F< sin45, ; 0EV = 0. Fi sin45 - F3 = 0三2 士0, 一居a>s45 - F? crt?45" - F6 co^45' = 0 解得F4 = 5 kN〔拉〕,R=5卜^1〔拉〕,5& =- 10 kN〔压〕2-2杆系由钱链连接, 位于正方形的边和对角线上,如下列图.在节点D沿对角线LD方向作用力F D.在节点C沿CH边铅直向下作用力F.如钱链B, L和H是固定的,杆重不计, 求各杆的内力.求解TY = 0,SZ = 0,求二 0,F| 4M5* + Fj + F. sn45 = 0 厕 4,30 图解得 Fi = F D (1C),F $ =F J =二 Ji F 虱电然后研究节点c ,由SX = 0, - Fj - F*W cut45' - 0v3 £Y = ar -Fj - Fi — sin45 = 0心SZ = 0h - F, - F - F4言=0得 Fj = 7年户口,匕=-/5匹口. Fs M- (F + \2F D )2-3 重为R=980 N,半径为r =100mm 的滚子A 与重为P 2 = 490 N 的板B 由通过定滑轮 C 的柔绳相连.板与斜面的静滑动摩擦因数f s =0.1 o 滚子A 与板B 间的滚阻系数为8C 为光滑的.求各杆的内力. 先研究节点D,由- F)cts?45 + F 口 au45 - 0=0.5mm,斜面倾角a =30o,柔绳与斜面平行,柔绳与滑轮自重不计,钱链 拉动板B 且平行于斜面的力 F 的大小.〔l i 设闻拄口有向下漆动慧等.取国校DFsu 话出—凡-H-3=0EFf =❶ /一 Fcosfl = 0一% /Vine 7- co*?i 算豉圄杜.有向匕浪动越势.虢S ]社“ 三H 』二UJ£ 一%】R l J 'O U _EF F - 0 及-Fai%一.又Mn>« =的&- /J(siii 口 \ — u.凶 81J JI ,13.jp."系怩平衍叶F4五河n 日一)co* 6}工A4 尸I 五m n 8一 3 cow R'\-3/c - 0 1氏-A& =0 工尸j 二.尸M -FCQ博.二.只浪不滑3t.应点 门“用=¥斗型8那么上之£ y K 同理一圆柱.有向上填动趋势时得二二三 K 间柱匀速蛇淳时. f一 R2-4两个均质杆AB 和BC 分别重P i 和P 2 ,其端点A 和C 用球较固定在水平面, 另一端B 由 球镀链相连接,靠在光滑的铅直墙上,墙面与 AC 平行,如下列图.如 AB 与水平线的交角 为45o, / BAC=90.,求A 和C 的支座约束力以及墙上点B 所受的压力.解先研究AB 杆,受力如图(b),由। n 投阅柱.有向下滚动越舜O题4.27-SMjF)三0, 一几,QA = 0 得1 0 再取AB、CD两杆为一体来研究,受力如图(月海茉:由EM AC(F)= 0t(P[ + Pj) <WG45_F N* AB 热in45 —0XX = 0,九十 % = 0工My(F)= 0, Fc - AC - pj • AC = 0 LNZ 〞开工+如一2】一丹=0(F) —0, -(F AT+ FQ • OA - Fc y *- AC= 0工M塞2 K = 0, % + % + Fn = 0解得Fx = y(Pi + Pj)»Fer =.产值=2^P:t町=Pi +yp2>F o= 0,%=-2(P[ + 尸口3-1:如下列图平面机构中,曲柄OA=r,以匀角速度°转动.套筒A沿BC杆滑动.BC=DE ,且BD=CE=l.求图示位置时,杆BD的角速度和角加速度.解:].动点:滑块T 动系:贰广杆绝对运动:国周运动〔.点〕相对运动:直线运动〔£「二)j|iij V V V&加速度4_ 3/十&*)疝13伊_ J5诏r(/+r)耳cos30Q ST?收属/(/ + r)cz w= 1—1=----- 不 ------w BD 3 户3-2 图示钱链四边形机构中, O i A = O2B =100mm ,又QO2 = AB,杆O〔A以等角速度=2rad/s绕轴01转动.杆AB上有一套筒C,此套筒与杆CD相较接.机构的各部件都在同一铅直面内.求当①二60o时杆CD的速度和加速度.〔15分〕解取CD杆上的点C为动点,AB杆为动系,时动点作速度分析和加速度分析,如图S〕、〔b〕所示,图中式中口月=〔八一4 •田二0一2 ir〕/s5 - 0iA • J = 0*4 m/s2 解出杆CD的速度.加速度为G =-UA coep = 0. I mA&3 = since;= 0,3464 m/s2«1aAM1Al1V!4-1:如下列图凸轮机构中,凸轮以匀角速度3绕水平.轴转动,带动直杆AB沿铅直线上、下运动,且O, A, B共线.凸轮上与点A接触的点为A',图示瞬时凸轮轮缘线上' '点A的曲率半径为 A ,点A的法线与OA夹角为e , OA=l.求该瞬时AB的速度及加速度.〔15 分〕绝对运动: 相对运动: 奉连道处:2.速度大小 方向 1, 二、Ja 】iH=「WkmH I丫3,加速度 比=凡."'+ %r 门 大小9炉『『、;"2 方向 / /4-2:如下列图,在外啮合行星齿轮机构中,系杆以匀角速度 定,行星轮半径为r,在大轮上只滚不滑.设 A 和B 是行星轮缘 上的两点,点 A 在O 1O 的延长线上,而点 B 在垂直于o 1o 的半径上.求:点 A 和B 的加速度.解:2.选基点为〔〕亓*二后.*疗;口 +疗;. 大小0 *忒0 1时 方向“ J JJi7A ~ a ? +^C?I .轮I 作平面运动,瞬心为「沿"轴投勉乙8々4 * ■献i 1+ .1绕O i 转动.大齿轮固S 二「" 直线运动 曲线运动 定购林动 功系:凸轮. C 凸轮外边瘴〕〔.轴〕大小,方向?% ="g =仃口+ "什=fuclaii——=闺.㈢11 -4-3: 动.摇杆OC铅直,〔科氏加速度〕如下列图平面机构, AB长为1,滑块A可沿摇杆OC的长槽滑OC以匀角速度3绕轴O转动,滑块B以匀速v 1沿水平导轨滑动.图示瞬时AB与水平线OB夹角为300.求:此瞬时AB杆的角速度及角加速度.〔20分〕* *沿】:方向投彩大小方句V4B COS30J LD F福:速度分析1-杆.〞作平面运动,族点为瓦V A = V S - y AP2.动点:滑块.心动系:〞抨沿£方向强彩以一=1■沿吃方向表恁% ; gin 30" -4?os 对15-1如下列图均质圆盘,质量为m 、半径为R,沿地面纯滚动,角加速为3.求圆盘对图中A,C 和P 三点的动量矩. 平行轴定理:4二=一十/嫉 一或点P 为睡心 3hL ? = ^^R-\ L e =mP 2it 〕\ 1相?\"= -15-2 〔动量矩定理〕:如下列图均质圆环半径为 r,质量为m,其上焊接刚杆 OA,杆加生度介册 0f Ai = = 3VJtv 2AB点「为眉心上匚二J屯+ 1师;-G长为r,质量也为m.用手扶住圆环使其在OA水平位置静止.设圆环与地面间为纯滚动.独汰庵一方「.斗管力加玛所示建丸平为走动微分方程2f -月—+Y2由朱加R先K熹法瑞拽彩到水平强错乱两个才向20 r3"悟105-3 11-23 〔动量矩定理〕均质圆柱体的质量为m,半径为r,放在倾角为60o的斜面上, 一细绳绕在圆柱体上,其一端固定在A点,此绳和A点相连局部与斜面平行,如下列图.如圆柱体与斜面间的东摩擦因数为f=1/3,求圆柱体的加速度.〔15〕(15)解:解IW柱受力与运动分析如图.平而运动徽分方程为nta〔;= mg sin60* 一尸一Fj,.=F\ —fiig CQt^ff』社- 〔F=—广〕『式中F = /Fv» ac - fQ解得口c=O.355q5-4 11-28 〔动量矩定理〕均质圆柱体A和B的质量均为m,半径均为r, 一细绳缠在绕固定轴.转动的圆柱A上,绳的另一端绕在圆柱B上,直线绳段铅垂,如下列图.不计摩擦.求:〔1〕圆柱体B下落时质心的加速度;〔2〕假设在圆柱体A上作用一逆时针转向力偶矩M,试问在什么条彳^下圆柱体B的质心加速度将向上.〔15分〕解:解“〕两轮的受力与运动分析分别如用w.1 2 ET™r=近]对E轮,有以轮与直樊和切点为基点,明轮心B的加速度〃工,M t s4解得5g〔2〕再分别对两卷作受力与运动分析如图〔b〕对内轮,有fflaa =ntg -Ppj~2 tfrr~afj —rFj2依然存运动学关系dj}二皿用+的日J但Q.i中也B〕令< 0,可解得31柱体B的质心加速度向上的条件:M〉217UJT6-1:轮O的半径为R1 ,质量为ml,质量分布在轮缘上;均质轮C的半径为R2 , 质量为m2 ,与斜面纯滚动,初始静止.斜面倾角为.,轮.受到常力偶M驱动. 求: 轮心C走过路程s时的速度和加速度.〔15分〕韩:轮C1月轮0扶同作为一个质点系九一a『w 一阁7j = o石—,血人"吊斗!岫甘&岫对网」言必二% =9 1V :3/聚TH得J弘口日=-^―〔+3JJL〕旭〕中二二¥ =:羡居迎日一式G〕是函数关系式.两端计『求导,得-〔Jffij + 访看网收=M -Kin H - 鸟2 例U 尸―- :〔加1+.%啊〕局6-2均质杆 OB=AB=l,质量均为 m,在铅垂面内运动,AB 杆上作用一不变的力偶矩M,系统初始静止,不计摩擦.求当端点 A 运动到与端点 .重合时的速度. 〔15分〕解:由于A 京不离并地面,那么,EAO= /BOA.牝=可=H嫌同:是否可以利用求寻求此蜓时的商和速段? 〔H 与行没 有必然联系,角度不是时间的函数.〕6-3:重物m,以v 匀速下降,钢索刚度系数为 k .求轮D 突然卡住时,钢索的最大张 力.〔15分〕1J 上口『9-"将『〔1-E 穹 2/ V itt由「二心〞;有6-4均质杆 AB 的质量m=4kg,长l=600mm,均匀圆盘B 的质量为6kg,半径为r=600mm, 作纯滚动.弹簧刚度为 k=2N/mm,不计套筒A 及弹簧的质量.连杆在与水平面成 30o 角时无 初速释放.求〔1〕当AB 杆达水平位置而接触弹簧时,圆盘与连杆的角速度;〔2〕弹簧的最大压缩量 max o 〔 15分〕彝:卡住前E 二些 s* kF - kS SJ - mg - 2.45kN卡隹后取点物平街位苜1为更力加弹性力的 搴势T ; 一"解U〕该系统初始静tL.动能为杆达水平位置时.B 点是33杆的速度瞬心,网盅的角速度3H = 0,设杆的角速度为那么业,山幼能近理,得\ * ;配%品-0 = mg * ~ 5in341,解得连杆的角速度号〞:4;殳巴丝⑵AB杆达水平位置接触赢亚,统的动能为“,弹簧达到最大压缩量bz.的瞬时,系魂再次鄢止.动能丁;:= 0.由72 - 7】二五得0 _ [■闻]品=-J 6ra«二+ mJ片0 W *■解得1AM= 87.1 mm。
期末理论力学试题及答案期末理论力学试题及答案解析试题一:1. 一个物体以初速度v0自由下落,垂直下拉力下滑同一个垂直塔壁的高度为h,又该物体以速度v1向右飞出塔壁。
已知物体的质量为m,请问下列哪个式子成立?A) mv0^2 = mv1^2 - 2mg | B) mv0^2 = mv1^2 | C) m(v0^2 - v1^2) =2mg | D) mv0^2 = 2mg - mv1^2答案:A解析:根据题意,物体在塔壁处获得了向右的动量,所以向右的动量等于离开之前的动能减去重力做的功。
由动能定理可得A 选项成立。
2. 一个质量为m的物体以速度v做圆周运动,其半径为r。
已知圆周运动的角频率为ω,那么任意时间t物体的加速度大小是多少?A) ω^2r | B) ωv | C) ω^2r^2 | D) ωr答案:A解析:加速度是速度对时间的导数,而速度的大小是v = ωr,所以加速度的大小为a = ωv = ω(ωr) = ω^2r。
因此 A 选项成立。
3. 力学中,牛顿第一定律描述了物体的运动状态。
请问以下哪个选项是牛顿第一定律的陈述?A) 作用力等于物体的质量乘以加速度 | B) 物体的加速度等于作用力除以质量 | C) 物体的运动状态保持不变除非受到外力作用 | D) 物体间作用的力总是相互作用答案:C解析:牛顿第一定律又称为惯性定律,它表明物体的运动状态在没有外力作用时保持不变,也就是物体静止或匀速直线运动。
因此 C 选项是牛顿第一定律的陈述。
4. 一物体质量为m1,速度为v1,另一物体质量为m2,速度为v2。
两物体之间发生弹性碰撞后,物体1速度变为v1',物体2速度变为v2'。
已知碰撞前后两物体的动量相等且碰撞前两物体相向而行,请问以下哪个选项是正确的?A) m1v1 + m2v2 = m1v1' + m2v2' | B) m1v1 = m2v2' | C) v1 + v2 = v1' + v2' | D) m1v1' + m2v2' = 0答案:A解析:根据动量守恒定律,碰撞前后系统动量的总和保持不变。
二、图示系统,与OA杆铰接的滑套A带动BD杆沿水平滑道移动,BD杆与作纯滚动的轮铰接。
OA杆与轮半径r等长,倾角为ϕ,其角速度ωO为常量。
求轮D的角速度和角加速度。
匀质滑轮O半径为r、重Q3,匀,不计绳的质量及轴承处的摩擦。
试求:ED铅直段绳子的张力。
四、图示系统由两根等长绳悬挂,已知:物块
A 重为P 1, 杆BC 重为P 2。
若系统从图示θ位置无初速地开始释放,试用动静法求运动开始瞬时,接触面间的摩擦系数为多大,才能使物块A 不在杆上滑动。
解:[整体]系统平动
∑=0i X 0sin )(21=+-+θP P F F g gA
其中: g a P F g a P F g gA /,/21== 代入得:θsin g a =
∑=0)(i X A , θθθcos sin cos 1P F F gA m ==
∑=0i Y , θθ211cos sin P F P N gA =-= θθθθtg )cos /(cos sin /211==P P N F m
∴ θtg ≥f
五、图式机构中各杆与滑块的自重不计,连接处摩擦不计。
已知:曲柄
OA =15cm ,其上作用矩为m N 6.0⋅=M 力偶,AB =20cm ,BD =30cm ,在图示位置OA ⊥AB ,BD ⊥BO 1,
α=600。
试用虚位移原理求机构处于平衡时,水平力F 的大小。
N 3=F。