2018-2019淮南市中考必备数学考前押题密卷模拟试卷1-3(共3套)附详细试题答案
- 格式:pdf
- 大小:675.16 KB
- 文档页数:27
中考数学模拟测试卷及答案2018年中考数学模拟测试卷及答案中考考题是每年中考结束后被谈论最多的,因为它是考生进入高中的根本,下面是店铺整理的最新中考模拟试题,希望能帮到你。
2018年中考数学模拟测试卷一、选择题1.-7的倒数是A. B. 7 C. D. -72. 的相反数是( )A.﹣B.3C.﹣3D.3. 在平面直角坐标系中,点P(-8,2012)在第( )象限.A.一B.二C.三D.四4.计算(﹣x2)•x3的结果是( )A. x3B. ﹣x5C. x6D. ﹣x65.在△ABC中,∠C=90°,AB=13,BC=5,则sinA的值是( )A. B. C. D.6..不等式组的整数解的个数是( )A. B. C. D.7.把二次函数配方成顶点式为( )A. B.C. D.8.如图,矩形ABCD中,AB=3,BC=4,点E,F,G,H分别在AB、BC、CD、AD上,若∠1=∠2=∠3=∠4,四边形EFGH的周长是( )A. 5B. 7C. 10D.149.抛物线y = ax2+bx+c向右平移5个单位,再向上平移1个单位,得到的抛物线的解析式为y = -3 (x -1) 2+4,则抛物线y = ax2+bx+c的顶点坐标是A.(6,3)B.(6,5)C.(-4,3)D.(-4,5)10.6个人用35天完成了某项工程的,如果再增加工作效率相同的8个人,那么完成这项工程,前后共用的天数是( )A、30B、40C、60D、6511.求1+2+22+23+ +22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+ +52012的值为( )A.52012﹣1B.52013﹣1C.D.12.下列各点中,在反比例函数图象上的是A.(-1,8)B.(-2,4)C.(1,7)D.(2,4)二、填空题13.求绝对值小于100的所有整数和__________________14.若,则 = .15. 已知 ,则代数式的值是 .16.在离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪的高度为1.5米,那么旗杆的高度为 (用含α的代数式表示)17.若反比例函数y= 的图象经过点(-2,2),则的值为▲ .18.已知抛物线y=x2-3x-4,则它与x轴的交点坐标是 .19.(2011•南京)如图,海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°.为了避免触礁,轮船P与A、B的张角∠APB的最大值为_________________20.某班有女生a人,男生比女生的2倍少5人,则男生有___________________人.三、解答题21.如图,在梯形ABCD中,AD∥BC,AB=DC=AD,BC=AC,求该梯形各内角的度数.22.解不等式组:,并把它的解集在数轴上表示出来.23.如图,已知一次函数y=kx+b的图象经过点(0,4)和(1,6),(1)求这个函数表达式并判断(-3,-2)是否在此函数的图象上;(2)求该函数图像与x轴、y轴围成三角形的面积。
2018-2019学年安徽省淮南市九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.函数y=的自变量x的取值范围是()A.x≠2B.x<2C.x≥2D.x>22.下列各式属于最简二次根式的是()A.B.C.D.3.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>54.方程x2﹣2x+3=0的根的情况是()A.两实根的和为﹣2B.两实根的积为3C.有两个不相等的正实数根D.没有实数根5.如图,⊙O内切于Rt△ABC,点P、点Q分别在直角边BC、斜边AB上,PQ⊥AB,且PQ与⊙O相切,若AC=2PQ,则tan∠B的值为()A.B.C.D.6.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0B.k≠0C.k<1D.k>17.如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a,0)半径为5.如果两圆内含,那么a的取值范围为()A.﹣2≤a≤2B.﹣2<a<2C.0<a<5D.0<a<38.下列图形中,不是中心对称图形的是()A.B.C.D.9.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个10.如图,时针与分针的夹角是()A.75°B.65°C.55°D.45°二.填空题(共10小题,满分30分,每小题3分)11.设a、b是一元二次方程x2+2x﹣7=0的两个根,则a2+3a+b=.12.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O半径为.13.请你写一个以0,﹣2为根的一元二次方程:.14.如图,P是等边△ABC外接圆的弧BC上的一点,BP=6,PC=2,则AP长为.15.计算:()2=.16.如图,AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切与点D,过点B作PD的垂线,与PD的延长线相交于点C,若⊙O的半径为4,BC=6,则PA的长为.17.方程x2﹣5x=0的解是.18.小明用图中所示的扇形纸片作一个圆锥侧面,已知扇形的半径为5cm,弧长是6πcm,那么这个圆锥的高是.19.著名的斐波那契数列1、2、3、5、8、13、21、…,其中的第9个数是.20.从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是.三.解答题(共1小题,满分10分,每小题10分)21.在如图所示的方格中,每个小正方形的边长为1,点A、B、C在方格纸中小正方形的顶点上.(1)按下列要求画图:①过点A画BC的平行线DF;②过点C画BC的垂线MN;③将△ABC绕A点顺时针旋转90°.(2)计算△ABC的面积.四.解答题(共6小题,满分50分)22.计算(1)﹣+(2)()()﹣(﹣)223.(1)解方程:x(x﹣2)+x﹣2=0;(2)用配方法解方程:x2﹣10x+22=024.已知:2x=,求的值.25.如图,△ABC中,∠BAC的平分线AD交BC于D,⊙O过点A,且和BC切于D,和AB、AC分别交于E、F.设EF交AD于G,连接DF.(1)求证:EF∥BC;(2)已知:DF=2,AG=3,求的值.26.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?27.小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:根据二次根式的意义,被开方数x﹣2≥0,解得x≥2;根据分式有意义的条件,x﹣2≠0,解得x≠2.所以,x>2.故选D.2.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.3.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.4.【解答】解:∵△=(﹣2)2﹣4×3<0.∴方程没有实数解.故选:D.5.【解答】解:设⊙O的半径是R,PE=PF=x,BQ=y,连接OD,OG,OF,OE,∵⊙O内切于Rt△ABC,∴∠ODC=∠OEC=90°=∠C,AD=AG,∵OD=OE,∴四边形CDOE是正方形,∴OD=CD=CE=OE=R,同理OG=GQ=FQ=OF=R,则PQ=CP,AC=AQ,∵PQ⊥AB,∠C=90°,∴∠C=∠PQB=90°,∵∠B=∠B,∴△BQP∽△BCA,∴==,∴BC=2BQ=2y,根据BG=BE得:y+R=2y﹣R,解得:y=2R,在Rt△PQB中,由勾股定理得:PQ2+BQ2=BP2,即(2R)2+(R+x)2=(4R﹣R﹣x)2,解得:x=R,即PQ=R+R=R,BQ=2R,tan B===.故选:C.6.【解答】解:∵关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,∴△>0,即(﹣6)2﹣4×9k>0,解得,k<1,∵为一元二次方程,∴k≠0,∴k<1且k≠0.故选:A.7.【解答】解:根据两圆圆心坐标可知,圆心距=|a﹣0|=|a|,因为两圆内含时,圆心距<5﹣3,即|a|<2,解得﹣2<a<2.故选:B.8.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.9.【解答】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选:A.10.【解答】解:时针30分钟从数字8开始转了30×0.5°=15°,分针30分钟从数字12开始转了30×6°=180°,所以钟面上20:30时的时针与分针的夹角=8×30°+15°﹣180°=75°.故选:A.二.填空题(共10小题,满分30分,每小题3分)11.【解答】解:∵设a、b是一元二次方程x2+2x﹣7=0的两个根,∴a+b=﹣2,∵a是原方程的根,∴a2+2a﹣7=0,即a2+2a=7,∴a2+3a+b=a2+2a+a+b=7﹣2=5,故答案为:5.12.【解答】解:连结OC,设⊙O半径为r,则OC=r,OE=r﹣BE=r﹣2,∵CD⊥AB,∴CE=DE=CD=6,在Rt△OCE中,∵OE2+CE2=OC2,∴(r﹣2)2+62=r2,解得r=10,即⊙O半径为10.故答案为10.13.【解答】解:∵两根和为,两根积为.∴设a=1,据题意得﹣b=0+(﹣2),c=0×(﹣2)∴b=﹣2,c=0∴一个以0,﹣2为根的一元二次方程为x2﹣2x=0.14.【解答】解:在AP上取一点D,使PD=PC,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,AC=BC,∵∠APC=∠ABC=60°,∴△PDC是等边三角形,∴∠PCD=60°,PC=DC=PD=2,∴∠ACD+∠DCB=∠BCP+∠DCB,∴∠ACD=∠BCP,∴△ADC≌△BPC,∴AD=PB=6,∴AP=AD+PD=6+2=8.故答案为:8.15.【解答】解:()2=.故答案为:.16.【解答】解:连接DO解:连接DO,∵PD与⊙O相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴∴∴PA=4故答案为417.【解答】解:直接因式分解得x(x﹣5)=0,解得x1=0,x2=5.18.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=6π,解得r=3,所以圆锥的高==4(cm).故答案为4cm.19.【解答】解:因为数列1,1,2,3,5,8,13,21,…所以a n=a n﹣1+a n﹣2,(n>3)第8个数是13+21=34,第9个数是:21+34=55,故答案为:55.20.【解答】解:3的倍数有3,6,9,则十个数中随机取出一个数,取出的数是3的倍数的概率是.故答案为:.三.解答题(共1小题,满分10分,每小题10分)21.【解答】解:(1)如图,DF、MN、△AB′C′为所作;(2)△ABC的面积=×2×1=1.四.解答题(共6小题,满分50分)22.【解答】解:(1)原式=﹣2+10=;(2)原式=2﹣6﹣(2﹣2+)=﹣4﹣=﹣4.23.【解答】解:(1)∵x(x﹣2)+x﹣2=0,∴(x﹣2)(x+1)=0,则x﹣2=0或x+1=0,解得:x1=2,x2=﹣1;(2)∵x2﹣10x+22=0,∴x2﹣10x+25﹣3=0,则x2﹣10x+25=3,即(x﹣5)2=3,∴x﹣5=±,∴x=5±,即x1=5+,x2=5﹣.24.【解答】解:∵2x====,∴x=,∴1﹣x2=1﹣[()]2=,∴====+=.25.【解答】(1)证明:∵⊙O切BC于D,∴∠4=∠2,又∵∠1=∠3,∠1=∠2,∴∠3=∠4,∴EF∥BC;(2)解:∵∠1=∠3,∠1=∠2,∴∠2=∠3,又∵∠5=∠5,∴△ADF∽△FDG,∴,设GD=x,则,解得x1=1,x2=﹣4,经检验x1=1,x2=﹣4为所列方程的根,∵x2=﹣4<0应舍去,∴GD=1由(1)已证EF∥BC,∴.26.【解答】解:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16﹣2×3﹣2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴PQ=6cm;∴经过2s时P、Q两点之间的距离是6cm;(2)设x秒后,点P和点Q的距离是10cm.(16﹣2x﹣3x)2+62=102,即(16﹣5x)2=64,∴16﹣5x=±8,∴x1=,x2=;∴经过s或sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤时,则PB=16﹣3y,∴PB•BC=12,即×(16﹣3y)×6=12,解得y=4;②当<y≤时,BP=3y﹣AB=3y﹣16,QC=2y,则BP•CQ=(3y﹣16)×2y=12,解得y1=6,y2=﹣(舍去);③<y≤8时,QP=CQ﹣PC=2y﹣(3y﹣22)=22﹣y,则QP•CB=(22﹣y)×6=12,解得y=18(舍去).综上所述,经过4秒或6秒△PBQ的面积为12cm2.27.【解答】解:(1)列表如下:234 22+2=42+3=52+4=633+2=53+3=63+4=744+2=64+3=74+4=8由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率=;(2)这个游戏规则对双方不公平.理由:因为P(和为奇数)=,P(和为偶数)=,而≠,所以这个游戏规则对双方是不公平的.。
安徽省淮南市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·崇阳模拟) 对于两个数,M=2008×20092009,N=2009×20082008.则()A . M=NB . M>NC . M<ND . 无法确定2. (2分)(2019·温州) 某露天舞台如图所示,它的俯视图是()A .B .C .D .3. (2分)(2019·河池模拟) 两三角形的相似比是 ,则面积之比是()A .B .C .D .4. (2分)如图所示,⊙O中,OA⊥BC,垂足为H,∠AOB=50°,则圆周角∠ADC的度数是()A . 50°B . 25°C . 100°D . 40°5. (2分)下列说法不正确的是()A . 对顶角相等B . 过任意一点可作已知直线的一条平行线C . 两点之间线段最短D . 过一点有且只有一条直线与已知直线垂直6. (2分)(2017·双桥模拟) 估计5﹣介于()A . 4与1之间B . 1与2之间C . 2与3之间D . 3与4之间7. (2分) (2017七下·江东期中) 甲、乙、丙、丁四人一起到冷饮店去买红豆与奶油两种棒冰.四人购买的数量及总价如表所示.但其中有一人把总价算错了,则此人是()甲乙丙丁红豆棒冰(支)3694奶油棒冰(支)42117总价(元)18205129A . 甲B . 乙C . 丙D . 丁8. (2分)若函数的解析式为y= ,则当x=2时对应的函数值是()A . 4B . 3C . 2D . 09. (2分)如图,在菱形ABCD中,E,F分别是AB,AC的中点,如果EF=2,那么菱形ABCD周长是()A . 4B . 8C . 12D . 1610. (2分)(2019·重庆模拟) 如图已知斜坡AB长米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE.若修建的斜坡BE的坡度为,休闲平台DE的长是()米A . 20B . 15C .D .11. (2分)不等式组的最小正整数解为()A . 1B . 2C . 3D . 412. (2分)已知AB和CD分别是半圆O的直径和弦,AD和BC的夹角为a,则S△CDE: S△ABE等于()A . Sin2aB . cos2aC . tan2aD . sina二、填空题 (共6题;共6分)13. (1分)(2019·河南模拟) 计算=________.14. (1分)(2018·黄冈) 实数16 800 000用科学计数法表示为________.15. (1分)(2018·高邮模拟) 在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是________.16. (1分)如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC 于点Q,PR⊥BR于点R,则PQ+PR的值是________.17. (1分) (2017八下·长春期末) 某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图象如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a的值为________.18. (1分)(2019·沈阳模拟) 如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM= HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为________.三、解答题 (共8题;共91分)19. (10分)(2013·成都) 化简.20. (10分)(2013·湖州) 如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB 的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.21. (15分)(2019·南京模拟) 某公司欲招聘一名公务人员,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如表所示:应试者面试笔试甲8690乙9283(1)如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取?(2)如果公司认为作为公务人员面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?22. (10分)(2019·随州) 若一个两位数十位、个位上的数字分别为,我们可将这个两位数记为,易知;同理,一个三位数、四位数等均可以用此记法,如 .(1)【基础训练】解方程填空:①若,则 ________;②若,则 ________;③若,则 ________;(2)交换任意一个两位数的个位数字与十位数字,可得到一个新数,则一定能被________整除,一定能被________整除, +++6一定能被________整除;(请从大于5的整数中选择合适的数填空)(3)【探索发现】北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532-235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为________;②设任选的三位数为(不妨设),试说明其均可产生该黑洞数.________23. (15分) (2017八下·通州期末) 在平面直角坐标系中,已知一次函数与相交于点,且与轴交于点.(1)求一次函数和的解析式;(2)当时,求出的取值范围.24. (10分) (2015八下·绍兴期中) 楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)25. (10分)(2013·镇江) 如图,抛物线y=ax2+bx(a>0)经过原点O和点A(2,0).(1)写出抛物线的对称轴与x轴的交点坐标;(2)点(x1,y1),(x2,y2)在抛物线上,若x1<x2<1,比较y1,y2的大小;(3)点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式.26. (11分)已知如图,在直角坐标系xOy中,点A,点B坐标分别为(﹣1,0),(0,),连结AB,OD 由△A OB绕O点顺时针旋转60°而得.(1)求点C的坐标;(2)△AOB绕点O顺时针旋转60°所扫过的面积;(3)线段AB绕点O顺时针旋转60°所扫过的面积.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共91分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
2018年中考数学考前押题试卷1一、选择题(本大题共12小题,共36.0分)1.下列各数中,最小的数是A. B. C. 0 D. 12.如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是A. B. C. D.3.下列图形既是轴对称图形,又是中心对称图形的是A. B. C. D.4.地球绕太阳公转的速度约为,则110000用科学记数法可表示为A. B. C. D.5.如图,已知,则的度数是A. B. C. D.6.下列运算正确的是A. B.C. D.7.十九大以来,中央把扶贫开发工作纳入“四个全面”战略并着力持续推进,据统计2015年的某省贫困人口约484万,截止2017年底,全省贫困人口约210万,设过两年全省贫困人口的年平均下降率为x,则下列方程正确的是A. B.C. D.8.如图,在平面直角坐标系中,点P是反比例函数图象上一点,过点P作垂线,与x轴交于点Q,直线PQ交反比例函数于点M,若,则k的值为A.B.C.D.9.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有个黑子.A. 37B. 42C. 73D. 12110.二次函数的部分图象如图,图象过点,对称轴为直线,下列结论;;;当时,y的值随x值的增大而增大,其中正确的结论有A. 1个B. 2个C. 3个D. 4个11.如图,河流的两岸互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得,然后沿河岸走了130米到达B处,测得则河流的宽度CE为A. 80B.C.D.12.若a使关于x的不等式组至少有三个整数解,且关于x的分式方程有正整数解,a可能是A. B. 3 C. 5 D. 8二、填空题(本大题共4小题,共12.0分)13.因式分解:______.14.一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为______15.定义新运算:对于任意有理数a、b都有,等式右边是通常的加法、减法及乘法运算比如:则,则______.16.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分时,,则______.三、解答题(共52分)17.先化简,再求值:,其中.18.19.“共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图:摩拜单车;B:ofo单车;C:请根据图中提供的信息,解答下列问题:求出本次参与调查的市民人数;将上面的条形图补充完整;若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩托单车出行?20.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.设定价减少x元,预订量为y台,写出y与x的函数关系式;若每台手机的成本是1200元,求所获的利润元与元的函数关系式,并说明当定价为多少时所获利润最大;若手机加工成每天最多加工50000台,且每批手机会有的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?21.如图,在中,,以AB为直径的分别交于点D、的延长线与的切线AF交于点F.求证:;已知,求的直径22.如图1,在等腰中,,点E在AC上且不与点A、C重合,在的外部作等腰,使,连接AD,分别以为邻边作平行四边形ABFD,连接AF.求证:是等腰直角三角形;如图2,将绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:;如图3,将绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且在的下方时,若,求线段AE的长.23.如图1,二次函数的图象过点,顶点B的横坐标为1.求这个二次函数的表达式;点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;如图3,一次函数的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线,垂足为点M,且M在线段OC上不与O、C重合,过点T作直线轴交OC于点若在点T运动的过程中,为常数,试确定k的值.答案和解析【答案】1. A2. C3. D4. B5. D6. D7. C8. D9. C10. A11. C12. C13.14.15. 116. 417. 解:,当时,原式.18. 解:原式.19. 解:本次参与调查的市民人数人;品牌人数为人品牌人数为人,补全图形如下:人,答:估计该区有3000名市民选择骑摩拜单车出行.20. 解:根据题意:;设所获的利润元,则;所以当降价400元,即定价为元时,所获利润最大;根据题意每天最多接受台,此时,解得:.所以最大量接受预订时,每台定价元.21. 证明:如图,连接BD.为的直径,,.是的切线,,即..,..如图,连接AE,,设,::4,,在中,,即,..22. 解:如图四边形ABFD是平行四边形,,,,,,,是等腰直角三角形;如图2,连接交BC于K.四边形ABFD是平行四边形,,,,,,,,,,在和中,,≌,,,是等腰直角三角形,.如图3,当时,四边形ABFD是菱形,设AE交CD于H,依据,可得AE垂直平分CD,而,,中,,.23. 解:二次函数的图象过点,顶点B的横坐标为1,则有解得二次函数,由得,,,直线AB解析式为,设点以A、B、P、Q为顶点的四边形是平行四边形,当AB为对角线时,根据中点坐标公式得,则有,解得或和当AB为边时,根据中点坐标公式得解得或或.故答案为或或或.设,可以设直线TM为,则,由解得,,,时,.当时,点T运动的过程中,为常数.【解析】1. 解:,最小的数为,故选:A.根据正实数大于一切负实数,0大于负实数,两个负数绝对值大的反而小解答即可本题考查的是实数的大小比较,任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2. 解:从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:C.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3. 解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4. 解:将110000用科学记数法表示为:.故选:B.科学记数法的表示形式为的形式,其中为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定a的值以及n的值.5. 解:如图,延长的边与直线b相交,,,由三角形的外角性质,可得,故选:D.延长的边与直线b相交,然后根据两直线平行,同旁内角互补求出,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键.6. 解:,故此题错误;B.,故此题错误;C.,故此题错误;D.,正确.故选:D.按照整式的加法、整式的乘法、完全平方公式和平方差公式,分别计算,再判断.此题考查整式的运算,掌握各运算法则和运算公式是关键.7. 解:设过两年全省贫困人口的年平均下降率为x,根据题意得:,故选:C.等量关系为:2015年贫困人口下降率年贫困人口,把相关数值代入计算即可.本题考查由实际问题抽象出一元二次方程;得到2年内变化情况的等量关系是解决本题的关键8. 解:如图,连接.由题意;,,故选:D.根据反比例函数系数k的几何意义即可解决问题;本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9. 解:第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,第7、8图案中黑子有个,故选:C.观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,,据此规律可得.本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10. 解:由图象可得,,,,故错误;抛物线的对称轴为直线,,即,故本结论正确;当时,,,即,故本结论错误;对称轴为直线,当时,y的值随x值的增大而增大,当时,y随x的增大而减小,故本结论错误;故选:A.由图象可得,根据抛物线的对称轴为直线,则有;观察函数图象得到当时,函数值小于0,则,即;由于对称轴为直线,根据二次函数的性质得到当时,y随x的增大而减小;本题考查了二次函数图象与系数的关系:二次函数,二次项系数a决定抛物线的开口方向和大小,当时,抛物线向上开口;当时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时即,对称轴在y轴左;当a与b异号时即,对称轴在y轴右;常数项c决定抛物线与y轴交点抛物线与y轴交于;抛物线与x轴交点个数由决定,时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点.11. 解:过点C作交AB于点F.,四边形AFCD是平行四边形.,,设,,,,,解得:,,故选:C.过点C作交AB于点F,易证四边形AFCD是平行四边形再在直角中,利用三角函数求解.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、构造合适的直角三角形是解题的关键.12. 解:,不等式组整理得:,由不等式组至少有三个整数解,得到,,分式方程去分母得:,解得:,分式方程有正整数解,且,,只有选项C符合.故选:C.将不等式组整理后,由不等式组至少有三个整数解确定出a的范围,再由分式方程有正整数解确定出满足条件a的值,进而求出之积.此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13. 解:,,.先提取公因式y,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14. 解:根据题意,摸到的不是红球的概率为,故答案为:.将黄球和绿球的个数除以球的总个数即可得.本题考查了概率公式:随机事件A的概率事件A可能出现的结果数除以所有可能出现的结果数.15. 解:根据题意得:,去括号得:,移项合并得:,解得:.故答案为:1.利用题中的新定义列出所求式子,解一元一次方程即可得到结果.本题考查了解一元一次方程,解决本题的关键是根据新定义得到方程.16. 解:如图,过B作于P,连接BE,交FH于N,则,四边形ABCD是正方形,,,平分,又,≌,,,,≌,,,由折叠得:,垂直平分BE,是等腰直角三角形,,,,,中,,,,故答案为:4.作辅助线,构建全等三角形,先证明,利用是等腰直角三角形,即可求得的长,中,依据勾股定理可得,根据,即可得到.本题考查翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.17. 根据分式的除法和加法可以化简题目中的式子,然后将代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18. 直接利用负指数幂的性质和零指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19. 根据B品牌人数及其所占百分比可得总人数;总人数分别乘以A、D所占百分比求出其人数即可补全图形;总人数乘以样本中A的百分比即可得.本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据.20. 根据题意列代数式即可;根据利润单台利润预订量,列出函数表达式,根据二次函数性质解决定价为多少时所获利润最大;根据题意列式计算每天最多接受的预订量,根据每天最多接受的预订量列方程求出最大量接受预订时每台售价即可.本题主要考查了函数实际应用问题,涉及到列代数式、求函数关系式、二次函数的性质、一元一次方程应用等知识,弄清题意,找出数量关系是解决问题的关键.21. 首先连接BD,由AB为直径,可得,又由AF是的切线,易证得然后由,证得:;首先连接AE,设,由勾股定理可得方程:求得答案.本题主要考查了切线的性质、三角函数以及勾股定理,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用是解答此题关键.22. 依据,即可证明是等腰直角三角形;连接交BC于K,先证明≌,再证明是等腰直角三角形即可得出结论;当时,四边形ABFD是菱形,先求得中,,即可得到.本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23. 利用待定系数法即可解决问题.当AB为对角线时,根据中点坐标公式,列出方程组解决问题当AB为边时,根据中点坐标公式列出方程组解决问题.设,由,可以设直线TM 为,则,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.第21页,共21页。
数学试题 第1页(共6页) 数学试题 第2页(共6页)绝密★启用前|2019年安徽中考押题密卷数 学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.−2的相反数的倒数是 A .2B .2-C .12-D .122.下列运算正确的是 A .624a a a -= B .235()a a =C .235a a a ⋅=D .623a a a ÷=3.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为 A .28.3×107吨B .2.83×108吨C .0.283×1010吨D .2.83×109吨4.如图所示是倒置的实心圆台,其俯视图是A .B .C .D .5.下列各式因式分解正确的A .a 2+4ab +4b 2=(a +4b )2B .2a 2−4ab +9b 2=(2a −3b )2C .3a 2−12b 2=3(a +4b )(a −4b )D .a (2a −b )+b (b −2a )=(a −b )(2a −b )6.一台饮水机成本价为a 元销售价比成本价高22%,因库存积压需降价促销,按销售价的80%出售,售价为b 元,则A .b =(1+22%)(1+80%)a 元B .b =(1+22%)·80%·a 元C .b =(1+22%)(1−80%)a 元D .b =(1+22%+80%)a 元7.若关于x 的一元二次方程(a ﹣1)x 2﹣2x +1=0有实数根,则整数a 的最大值为 A .0B .﹣1C .1D .28.2019年5月26日上午7时18分,2019怀宁“蓝莓之乡”国际马拉松赛在高河镇鸣枪开跑.在这次马拉松长跑比赛中,抽取了10名女子选手,记录他们的成绩(所用的时间)如下:关于这组数据,下列说法不正确的是A .这组样本数据的中位数是186B .这组样本数据的众数是195C .这组样本数据的平均数超过170D .这组样本数据的方差小于309.如图,平行四边形ABCD 中,60,B G ∠=是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF ,下列说法不正确的是A .四边形CEDF 是平行四边形B .当CE AD ⊥时,四边形CEDF 是矩形C .当120AEC ∠=时,四边形CEDF 是菱形D .当AE ED =时,四边形CEDF 是菱形10.如图,边长为4个单位长度的正方形ABCD 的边AB 与等腰直角三角形EFG 的斜边FG 重合,△EFG以每秒1个单位长度的速度沿BC 向右匀速运动(保持FG ⊥BC ),当点E 运动到CD 边上时△EFG 停止运动.设△EFG 的运动时间为t 秒,△EFG 与正方形ABCD 重叠部分的面积为S ,则S 关于t 的数学试题 第3页(共6页) 数学试题 第4页(共6页)函数大致图象为A .B .C .D .第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分)11.不等式2x﹣2<4x +12的解集是___________.12.如图,,PA PB 分别切⊙O 于点,A B ,若70P ∠=︒,点C 为⊙O 上任一动点,则C ∠的大小为___________.13.如图,已知直线y x b =+与x、y 轴分别交于A 、B 两点,与反比例函数6(0)y x x=>交于点C ,AB BC =,则点B 的坐标是___________.14.如图,将一个直角的顶点P 放在矩形ABCD 的对角线BD 上滑动,并使其一条直角边始终经过点A ,另一条直角边与边BC 相交于点E ,且AD =8,DC =6,则APPE=___________.三、(本大题共2小题,每小题8分,满分16分)15.计算:11|2|()2cos302--+-.16.《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八。
2024年安徽省淮南市中考模拟数学试题一、单选题1.2024-的倒数是( )A .2024-B .2024C .12024-D .120242.我国经济结构和区域布局继续优化,粮食产量13700亿斤,创历史新高,把数据13700亿用科学记数法表示为( )A .111.3710⨯B .120.13710⨯C .1213.710⨯D .121.3710⨯ 3.下列运算正确的是( )A .2325a a a +=B .3412a a a ⋅=C .()326328x y x y -=-D .()222a b a b +=+ 4.如图是由8个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,则这个几何体的主视图是( )A .B .C .D .5.如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB 与CD 平行,入射光线l 与出射光线m 平行.若入射光线l 与镜面AB 的夹角14010'∠=︒,则6∠的度数为( )A .10040'︒B .9980'︒C .9940'︒D .9920'︒6.如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S =V ( )A .B .C .12D .167.如图是一个正方形纸板,阴影部分是由4段以正方形边长的一半为半径的弧所围成的,这些弧所在圆的圆心分别是正方形的顶点或中心,这样的图形被称为斯坦因豪斯图形.若将一根针随机投掷到该正方形纸板上,则针尖落在阴影区域的概率是( )A .12B .13C .14 D .158.如图,在平面直角坐标系xOy 中,直线y x =与反比例函数4(0)y x x=>交于点A ,将直线y x =沿y 轴向上平移b 个单位长度,交x 轴于点C ,若2BC OA =,则b 的值为( )A .1.5B .2C .2.5D .39.如图,正方形ABCD 的对角线交于点O ,E 是正方形外一点,且BE CE ⊥,连接OE .若6BC =,13CE BC =,则OE 的长为( )A .5B .4C .D .610.如图,在ABC V 中,8AB AC ==,30A ∠=︒,点P 为AC 边上一动点,PD AB ⊥于点D ,PE BC ⊥于点E ,连接DE ,则以DE 为边长的正方形DEGF 的面积的最小值为( )A .8B .C .16-D .8+二、填空题11.16的算术平方根是.12.如图,直线2y x =与y kx b =+相交于点()1,2P ,则关于x 的方程2kx b x +=的解是.13.如图,四边形ABCD 是正方形,点E 在BC 边上,点F 在CD 的延长线上,满足BE DF =,连接EF 与对角线BD 交于点G ,连接AF ,AG ,若AF =AG 的长为.14.如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,点D 为AB 上一点,点P 在AC 上,且1CP =,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ . (1)当点D 是AB 的中点时,DQ 的最小值为;(2)当CD AB ⊥,且点Q 在直线CD 上时,AQ 的长为.三、解答题15.计算:101(π3)2tan604-⎫⎛--++︒ ⎪⎝⎭. 16.如图是44⨯的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作ABC ∠的角平分线;(2)在图2中过点C 作一条直线l ,使点A ,B 到直线l 的距离相等.17.某公园中的一条小路使用六边形、正方形、三角形三种地砖按照如图方式铺设,图1为有1块六边形地砖时,正方形地砖有6块,三角形地砖有6块;图2为有2块六边形地砖时,正方形地砖有11块,三角形地砖有10块;….(1)按照规律,每增加一块六边形地砖,正方形地砖会增加______块,三角形地砖会增加______块;(2)若铺设这条小路共用去a 块六边形地砖,分别用含a 的代数式表示正方形地砖、三角形地砖的数量;(3)当25a =时,求此时正方形地砖和三角形地砖的总数量.18.五四青年节来临之际,某校开展主题为“探寻红色记忆,传承五四精神”的团日活动.学校准备组织全体同学乘坐大巴到红色教育基地接受革命传统教育.经调查发现,如果每辆大巴乘坐38名学生,则有18名学生没座位;如果每辆大巴坐40名学生,则有一辆车空出20个座位.请问该校共有多少名学生?19.图1是某型号挖掘机,该挖掘机是由基座、主臂和伸展臂构成.图2是某种工作状态下的侧面结构示意图(MN 是基座的高,MP 是主臂,PQ 是伸展臂,EM QN ∥).已知基座高度MN 为1m ,主臂MP 长为5m ,测得主臂伸展角37PME ∠=︒. (参考数据:3344sin 37tan 37sin 53tan 535453︒≈︒≈︒≈︒≈,,,).(1)求点P 到地面的高度;(2)当挖掘机挖到地面上的点时,113MPQ ∠=︒,求QN .20.如图,O e 是四边形ABCD 的外接圆,AC 是O e 的直径,BE DC ⊥,交DC 的延长线于点,E CB 平分ACE ∠.(1)求证:BE 是O e 的切线;(2)若2cos ,105BAD AC ∠==,求CE 的长.21.某学校在学生的课余时间安排一些课外社团活动,一共分为四种:唱歌,跳舞,相声,以及体育活动.开展了一段时间后,为了咨询学生对活动的满意度,学校决定从全校参与社团的800名学生中抽取部分学生进行调查,以其结果作为参考标准.现绘制了两幅统计图如下:根据以上信息,回答下列问题:(1)填空:选择跳舞的人数为______,选择相声人数的百分率为______.(2)扇形统计图中“唱歌”的学生人数所对应的圆心角度数为______.(3)请你估计全校参加社团的学生中对相声、唱歌满意的总人数.(4)老师在唱歌的同学中选出了6名唱歌较为优秀者参加学校组织的才艺比赛,其中男生2人,女生4人.比赛需要进行抽签两两上场来配合比赛.请你通过列表或者画树状图的方法求第一次抽签时抽到一男一女的概率.22.在Rt ABC △中,90ACB ∠=︒,tan ABC a ∠=,D 是BC 上一点(不与点B ,C 重合),连接AD ,过点C 作CE AD ⊥于点E ,连接BE 并延长,交AC 于点F .(1)如图1,当1a =时,①求证:45ECD ∠<︒;②求证:BE CD EF CF=; (2)如图2,若D 是BC 的中点,求tan CEF ∠的值(用含a 的代数式表示).23.如图,已知直线443y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线24y ax bx =++经过A ,C 两点,且与x 轴的另一个交点为B ,对称轴为直线=1x -.(1)求抛物线的表达式;(2)D 是第二象限内抛物线上的动点,设点D 的横坐标为m ,求四边形ABCD 面积S 的最大值及此时D 点的坐标;(3)若点P 在抛物线对称轴上,点Q 为任意一点,是否存在点P 、Q ,使以点A ,C ,P ,Q 为顶点的四边形是以AC 为对角线的菱形?若存在,请直接写出P ,Q 两点的坐标,若不存在,请说明理由.。
2018精编中考数学押题试卷含答案一套题号一二三总分得分考生注意:本卷共25题;试卷满分150分,考试时间100分钟;一、选择题(本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,有且只有一个选项是正确的,请将正确选项的代号填在括号里。
)下列函数中是二次函数的是( )A. y=2(x-1)B. y=(x-1)^2-x^2C. y=a(x-1)^2D. y=2x^2-1下列方程中,有实数根的是( )A. √(x-1)+1=0B. x+1/x=1C. 2x^4+3=0D. 2/(x-1)=-1如果△ABC∽△DEF,A、B分别对应D、E,且AB:DE=1:2,那么下列等式一定成立的是( )A. BC:DE=1:2B. △ABC的面积:△DEF的面积=1:2C. ∠A的度数:∠D的度数=1:2D. △ABC的周长:△DEF的周长=1:2在△ABC中,点D、E分别在AB、AC的延长线上,下列不能判定DE//BC的条件是( )A. EA:AC=DA:ABB. DE:BC=DA:ABC. EA:EC=DA:DBD. AC:EC=AB:DB下列关于向量的说法中,不正确的是( )A. 3(a-b)=3a-3bB. 若|a|=3|b|,则a=3b 或a=-3bC. 3|a|=|3a|D. m(n a)=(mn)a下列四个命题中,真命题是( )A. 相等的圆心角所对的两条弦相等B. 圆既是中心对称图形也是轴对称图形C. 平分弦的直径一定垂直于这条弦D. 相切两圆的圆心距等于这两圆的半径之和二、填空题(本大题共12小题,每小题4分,共48分,请将结果直接写在横线上。
)已知5a=4b,那么(a+b)/b=______.已知线段AB长是2厘米,P是线段AB上的一点,且满足AP^2=AB⋅BP,那么AP长为______厘米.点A(-1,m)和点B(-2,n)都在抛物线y=(x-3)^2+2上,则m与n的大小关系为m______n(填“<”或“>”).如果二次函数y=x^2-8x+m-1的顶点在x轴上,那么m=______.如图,在梯形ABCD中,AB//DC,AD=2,BC=6,若△AOB的面积等于6,则△AOD的面积等于______.在Rt△ABC中,∠C=〖90〗^∘,如果cos∠A=2/3,那么cot∠A=______.在Rt△ABC中,∠BAC=〖90〗^∘,AD⊥BC,垂足为点D,如果AC=6,AB=8,那么AD的长度为______.如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=______.将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”,它们的“等距”是1,那么它们周长的差是______.如图,在边长为2的菱形ABCD中,∠D=〖60〗^∘,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于______.已知⊙O_1的半径为4,⊙O_2的半径为R,若⊙O_1与⊙O_2相切,且O_1 O_2=10,则R的值为______.如图,在△ABC中,∠ACB=〖90〗^∘,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为______.三、解答题(本大题共7小题,共78.0分)(10分)计算:(√3 cot〖45〗^∘)/(cos〖30〗^∘)+1/(2cos 〖60〗^∘+1)-tan〖60〗^∘×sin〖60〗^∘.(10分)已知:如图,Rt△ABC中,∠ACB=〖90〗^∘,sinB=3/5,点D、E分别在边AB、BC上,且AD:DB=2:3,DE⊥BC.(1)求∠DCE的正切值;(2)如果设AB=a,CD=b,试用a、b表示AC.(10分)如图,已知OC是⊙O半径,点P在⊙O的直径BA的延长线上,且OC⊥PC,垂足为C.弦CD垂直平分半径AO,垂足为E,PA=6.求:(1)⊙O的半径;(2)求弦CD的长.(10分)如图,港口B位于港口A的南偏东〖37〗^∘方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东〖45〗^∘方向上,这时,E处距离港口A有多远?(参考数据:sin〖37〗^∘≈0.60,cos〖37〗^∘≈0.80,tan〖37〗^∘≈0.75)(12分)如图,△ABC中,AB=AC,过点C作CF//AB 交△ABC的中位线DE的延长线于F,联结BF,交AC 于点G.(1)求证:AE/AC=EG/CG;(2)若AH平分∠BAC,交BF于H,求证:BH是HG和HF的比例中项.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax^2+bx+c(a>0)与x轴相交于点A(-1,0)和点B,与y 轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.(14分)已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上的一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求△ABF的面积;(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.答案和解析【答案】1. D2. D3. D4. B5. B6. B7. 9/58. (√5-1)9. <10. 1711. 212. (2√5)/513. 4.814. 1/315. 6√316. 7/517. 6或14cm18. 25/819. 解:原式=(√3×1)/(√3/2)+1/(2×1/2+1)-√3×√3/2=2+1/2-3/2=1.20. 解:(1)∵∠ACB=〖90〗^∘,sinB=3/5,∴AC/AB=3/5,∴设AC=3a,AB=5a.则BC=4a.∵AD:DB=2:3,∴AD=2a,DB=3a.∵∠ACB=〖90〗^∘即AC⊥BC,又DE⊥BC,∴AC//DE.∴DE/AC=BD/AB,CE/CB=AD/AB.∴DE/3a=3a/5a,CE/4a=2a/5a.∴DE=9/5 a,CE=8/5 a,∵DE⊥BC,∴tan∠DCE=DE/CE=9/8.(2)∵AD:DB=2:3,∴AD:AB=2:5,∵AB=a,CD=b,∴AD=2/5 a,DC=-b,∵AC=AD+DC,∴AC=2/5 a-b.21. 解:(1)设OC=x,∵弦CD垂直平分半径AO,∴OE=1/2 OA=1/2 x,∵PC⊥OC,CD⊥OP,∴∠PCO=∠CEO=〖90〗^∘,∴∠P+∠COP=〖90〗^∘,∠ECO+∠COP=〖90〗^∘,∴∠P=∠ECO,∴△CEO∽△PCO,∴CO/OE=OP/OC,∴x/(1/2 x)=(6+x)/x,x=6则⊙O的半径为6;(2)由(1)得:OC=6,OE=3,由勾股定理得:CE=√(6^2-3^2 )=3√3,∵CD⊥OA,∴CD=2CE=6√3.22. 解:如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,∠A=〖37〗^∘,∵tan〖37〗^∘=CH/AH,∴AH=CH/(tan〖37〗^∘)=x/(tan〖37〗^∘),在Rt△CEH中,∵∠CEH=〖45〗^∘,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH//BD,∴AH/HD=AC/CB,∵AC=CB,∴AH=HD,∴x/(tan〖37〗^∘)=x+5,∴x=(5⋅tan〖37〗^∘)/(1-tan〖37〗^∘)≈15,∴AE=AH+HE=15/(tan〖37〗^∘)+15≈35km,∴E处距离港口A有35km.23. 证明:(1)∵CF//AB,DE是中位线,∴四边形BCFD是平行四边形,∴DE=EF,∴AE/AC=DE/DF=EF/BC=EG/CG,即AE/AC=EG/CG;(2)连接CH,∵AH平分∠BAC,∴∠BAH=∠CAH,在△ABH与△ACH中{■(AB=AC@∠BAH=∠CAH@AH=AH)┤,∴△ABH≌△ACH,∴∠HCG=∠DBH=∠HFC,∵∠GHC=∠CHF,∴△GHC∽△CHF,∴HC/HF=GH/CH,∴HC^2=HG⋅HF,∵BH=HC,∴BH^2=HG⋅HF,即BH是HG和HF的比例中项.24. 解:(1)∵抛物线y=ax^2+bx+c(a>0)的对称轴为直线x=1,而抛物线与x轴的一个交点A的坐标为(-1,0)∴抛物线与x轴的另一个交点B的坐标为(3,0)设抛物线解析式为y=a(x+1)(x-3),即y=ax^2-2ax-3a,当x=0时,y=-3a,∴C(0,-3a);(2)∴AB=4,OC=3a,∴S_(△ACB)=1/2 AB⋅OC=6a,∴6a=6,解得a=1,∴抛物线解析式为y=x^2-2x-3;(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,∵点G与点C,点F与点A关于点Q成中心对称,∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,∴OF=2m+1,HF=1,当∠CGF=〖90〗^∘时,∵∠QGH+∠FGH=〖90〗^∘,∠QGH+∠GQH=〖90〗^∘,∴∠GQH=∠HGF,∴Rt△QGH∽Rt△GFH,∴GH/FH=QH/GH,即3/1=m/3,解得m=9,∴Q的坐标为(9,0);当∠CFG=〖90〗^∘时,∵∠GFH+∠CFO=〖90〗^∘,∠GFH+∠FGH=〖90〗^∘,∴∠CFO=∠FGH,∴Rt△GFH∽Rt△FCO,∴GH/FO=FH/CO,即3/(2m+1)=1/3,解得m=4,∴Q的坐标为(4,0);∠GCF=〖90〗^∘不存在,综上所述,点Q的坐标为(4,0)或(9,0).25. 解:(1)如图,∵矩形ABCD,∴∠BAD=∠ABF=〖90〗^∘,∴∠ABD+∠ADB=〖90〗^∘,∵A、P、F在一条直线上,且PF⊥BD,∴∠BPA=〖90〗^∘,∴∠ABD+∠BAF=〖90〗^∘,∴∠ADB=∠BAF,∵tan∠ADB=AB/AD=2/4=1/2,∴tan∠BAF=BF/AB=1/2,∴BF=1,∴S_(△ABF)=1/2⋅AB⋅BF=1/2×2×1=1.(2)如图1中,∵PF⊥BP,∴∠BPF=〖90〗^∘,∴∠PFB+∠PBF=〖90〗^∘,∵∠ABF=〖90〗^∘,∴∠PBF+∠ABP=〖90〗^∘,∴∠ABP=∠PFB,又∵∠BAP=∠FPE∴△BAP∽△FPE,∴AB/PF=BP/EF,∵AD//BC,∴∠ADB=∠PBF,∴tan∠PBF=tan∠ADB=1/2,即PF/BP=1/2,∵BP=2√5-x,∴PF=1/2(2√5-x),∴2/((2√5-x)/2)=(2√5-x)/y,∴y=((2√5-x)^2)/4((2√5)/5≤x<2√5).(3)①当点F在线段BC上时,如图1-1中,∵∠FPB=∠BCD=〖90〗^∘,∴∠1+∠2=〖90〗^∘,∠1+∠3=〖90〗^∘,∴∠2=∠3,∵∠4=∠5,∠4+∠7=〖90〗^∘,∠5+∠6=〖90〗^∘,∴∠6=∠7,∴△PEF∽△PCD,∴PF/PD=EF/CD,∴(1/2(2√5-x))/x=(((2√5-x)^2)/4)/2,整理得:x^2-2√5 x+4=0,解得x=√5±1.②如图2中,当点F在线段BC的延长线上时,作PH ⊥AD于H,连接DF.由△APH∽△DFC,可得AH/DC=PH/CF,∴(4-(2√5)/5 x)/2=(√5/5 x)/(√5/2(2√5-x)-4),解得x=(7√5-√145)/5或(7√5+√145)/5(舍弃),综上所述,PD的长为√5±1或(7√5-√145)/5.【解析】1. 解:A、y=2x-2,是一次函数,B、y=(x-1)^2-x^2=-2x+1,是一次函数,C、当a=0时,y=a(x-1)^2不是二次函数,D、y=2x^2-1是二次函数.故选:D.依据二次函数的定义进行判断即可.本题主要考查的是二次函数的定义,掌握二次函数的特点是解题的关键.2. 解:A、由题意√(x-1)=-1<0,方程没有实数根;B、去分母得到:x^2-x+1=0,△<0,没有实数根;C、由题意x^4=-3/2<0,没有实数根,D、去分母得到:x=-1,有实数根,故选D.A、移项根据二次根式的性质即可判断;B、去分母后,化为整式方程即可判断;C、根据乘方的意义即可判断;D、去分母化为整式方程即可判断;本题考查了无理方程,解题的关键要注意是否有实数根,有实数根时是否有意义,用到的知识点是根的判别式.3. 解:A、BC与EF是对应边,所以,BC:DE=1:2不一定成立,故本选项错误;B、△ABC的面积:△DEF的面积=1:4,故本选项错误;C、∠A的度数:∠D的度数=1:1,故本选项错误;D、△ABC的周长:△DEF的周长=1:2正确,故本选项正确.故选D.根据相似三角形对应边成比例,相似三角形面积的比等于相似比的平方,周长的比等于相似比对各选项分析判断即可得解.本题考查对相似三角形性质的理解:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4. 解:A.∵EA:AC=AD:AB,∴DE//BC,选项A能判定DE//BC;B.∵DE:BC=DA:AB,∴DE//BC,选项B不能判定DE//BC;C.∵EA:EC=DA:DB,∴DE//BC,选项C能判定DE//BC;D.∵AC:EC=AB:DB,∴DE//BC,选项D能判定DE//BC.故选:B.根据平行线分线段成比例定理对各个选项进行判断即可.本题考查平行线分线段成比例定理,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.5. 解:A、正确.根据去括号法则可得结论;B、错误.因为|a|=3|b|,模相等,平面向量不一定共线,故结论错误;C、正确.根据模的性质即可判断;D、正确.根据数乘向量的性质即可判断;故选:B.根据平面向量、模、数乘向量等知识一一判断即可;本题考查平平面向量、模、数乘向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.6. 解:A、错误.应该是在同圆或等圆中,相等的圆心角所对的两条弦相等;B、正确;C、错误.此弦非直径时,平分弦的直径一定垂直于这条弦;D、错误.应该是外切两圆的圆心距等于这两圆的半径之和;故选:B.根据轴对称图形、垂径定理、两圆相切的条件等知识一一判断即可;本题考查命题与定理,垂径定理,两圆相切的性质、轴对称图形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7. 解:∵5a=4b,∴a=4/5 b,∴(a+b)/b=(4/5 b+b)/b=9/5.故答案为:9/5.利用已知将原式变形进而代入求出答案.此题主要考查了比例的性质,正确得出a,b之间关系是解题关键.8. 解:∵P是线段AB上的一点,且满足AP^2=AB⋅BP,∴P为线段AB的黄金分割点,且AP是较长线段,∴AP=(√5-1)/2 AB=2×(√5-1)/2=(√5-1)厘米.故答案为(√5-1).根据黄金分割点的定义,知AP是较长线段,得出AP=(√5-1)/2 AB,代入数据即可得出AP的长.本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的(√5-1)/2倍.9. 解:∵二次函数的解析式为y=(x-3)^2+2,∴该抛物线开口向上,对称轴为x=3,在对称轴y的左侧y随x的增大而减小,∵-1>-2,∴m<n.故答案为:<.由在抛物线y=(x-3)^2+2可知抛物线开口向上,且对称轴为x=3,根据二次函数的性质即可判定.题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.10. 解:∵二次函数y=x^2-8x+m-1的顶点在x轴上,∴(4ac-b^2)/4a=(4(m-1)-(-8)^2)/4=0,即4m-68=0,∴m=17.故答案为:17.由二次函数的顶点在x轴上结合二次函数的性质,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了二次函数的性质,牢记二次函数的顶点坐标为(-b/2a,(4ac-b^2)/4a)是解题的关键.11. 解:∵AD//BC,AD=2,BC=6,∴△ADO∽△CBO,∴OD/OB=AD/BC=1/3,∴S_(△AOD)=1/3 S_(△AOB)=2.故答案为2.由AD//BC,AD=2,BC=6,可得OD/OB=AD/BC=1/3,推出S_(△AOD)=1/3 S_(△AOB),即可解决问题;本题考查相似三角形的判定和性质、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12. 解:∵在Rt△ABC中,∠C=〖90〗^∘,cos∠A=AC/AB=2/3,∴设AC=2x,则AB=3x,∴由勾股定理得到:BC=√(AB^2-AC^2 )=√(9x^2-4x^2 )=√5 x,∴cot∠A=AC/BC=2x/(√5 x)=(2√5)/5;故答案是:(2√5)/5.设AC=2x,则AB=3x,由勾股定理求得BC的长度,继而由三角形函数的定义求得cot∠A的值.此题主要考查了锐角三角函数关系,正确记忆锐角三角函数关系是解题关键.13. 解:∵∠BAC=〖90〗^∘,AB=8,AC=6,∴BC=√(AB^2+AC^2 )=10,∵AD⊥BC,∴6×8=AD×10,解得:AD=4.8.故答案为:4.8.首先利用勾股定理得出BC的长,再利用三角形面积求法得出AD的长.此题主要考查了勾股定理以及三角形面积求法,得出BC的长是解题关键.14. 解:连接AG,设正方形的边长为a,AC=√(a^2+a^2 )=√2 a,∵AC/CF=(√2 a)/a=√2,CG/AC=2a/(√2 a)=√2,∴AC/CF=CG/AC,∵∠ACF=∠ACF,∴△ACF∽△GCA,∴∠AGB=∠CAF,∴tan∠CAF=tan∠AGB=AB/BG=a/3a=1/3,故答案为:1/3设正方形的边长为a,求出AC的长为√2 a,再求出△ACF与△GCA中夹∠ACF的两边的比值相等,根据两边对应成比例、夹角相等,两三角形相似,即可判定△ACF与△GCA相似,进而得出tan∠CAF=tan∠AGB=1/3.本题主要利用两边对应成比例,夹角相等两三角形相似的判定和相似三角形对应角相等的性质,求出两三角形的对应边的比值相等是解本题的关键.15. 解:设等边三角形△ABC和△DEF的边长分别为a、b,点O为位似中心,作OH⊥BC交EF于G,如图,根据题意,△ABC与△DEF的位似图形,点O、E、B 共线,在Rt△OEG中,∠OEG=〖30〗^∘,EG=1/2 b,∴OG=EG/√3=√3/6 b,同理得到OH=√3/6 a,而OH-OG=1,∴√3/6 a-√3/6 b=1,∴a-b=2√3,∴3(a-b)=6√3.故答案为6√3.设等边三角形△ABC和△DEF的边长分别为a、b,点O为位似中心,作OH⊥BC交EF于G,如图,利用位似的性质得到点O、E、B共线,根据等边三角形的性质得∠OEG=〖30〗^∘,EG=1/2 b,利用含30度的直角三角形三边的关系得到OG=EG/√3=√3/6 b,同理得到OH=√3/6 a,再利用OH-OG=1得到√3/6 a-√3/6 b=1,然后计算3(a-b)即可.本题考查了含30度角的直角三角形的性质:在直角三角形中,〖30〗^∘角所对的直角边等于斜边的一半.也考查了等边三角形的性质和位似的性质.16. 解:如图,作GH⊥BA交BA的延长线于H,EF交BG于O.∵四边形ABCD是菱形,∠D=〖60〗^∘,∴△ABC,△ADC度数等边三角形,AB=BC=CD=AD=2,,∴AH=1/2 AG=1/2,HG=√3/2,在Rt△BHG中,BG=√((√3/2 )^2+(5/2 )^2 )=√7,∵△BEO∽△BGH,∴BE/BG=OB/BH,∴BE/√7=(√7/2)/(5/2),∴BE=7/5,故答案为7/5.如图,作GH⊥BA交BA的延长线于H,EF交BG于O.利用勾股定理求出BG,再根据△BEO∽△BGH,可得BE/BG=OB/BH,由此即可解决问题;本题考查菱形的性质、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形、相似三角形解决问题,属于中考填空题中的压轴题.17. 解:当⊙O_1和⊙O_2内切时,⊙O_2的半径为10+4=14cm;当⊙O_1和⊙O_2外切时,⊙O_2的半径为10-4=6cm;故答案为:6或14cm.⊙O_1和⊙O_2相切,有两种情况需要考虑:内切和外切.内切时,⊙O_2的半径=圆心距+⊙O_1的半径;外切时,⊙O_2的半径=圆心距-⊙O_1的半径.主要是考查两圆相切与数量关系间的联系,一定要考虑两种情况.18. 解:由折叠可得,∠DCE=∠DFE=〖90〗^∘,∴D,C,E,F四点共圆,∴∠CDE=∠CFE=∠B,又∵CE=FE,∴∠CFE=∠FCE,∴∠B=∠FCE,∴CF=BF,同理可得,CF=AF,∴AF=BF,即F是AB的中点,∴Rt△ABC中,CF=1/2 AB=5,由D,C,E,F四点共圆,可得∠DFC=∠DEC,由∠CDE=∠B,可得∠DEC=∠A,∴∠DFC=∠A,又∵∠DCF=∠FCA,∴△CDF∽△CFA,∴CF^2=CD×CA,即5^2=CD×8,∴CD=25/8,故答案为:25/8.根据D,C,E,F四点共圆,可得∠CDE=∠CFE=∠B,再根据CE=FE,可得∠CFE=∠FCE,进而根据∠B=∠FCE,得出CF=BF,同理可得CF=AF,由此可得F是AB的中点,求得CF=1/2 AB=5,再判定△CDF∽△CFA,得到CF^2=CD×CA,进而得出CD的长.本题主要考查了折叠问题,四点共圆以及相似三角形的判定与性质的运用,解决问题的关键是根据四点共圆以及等量代换得到F是AB的中点.19. 直接利用特殊角的三角函数值代入求出答案.此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.20. (1)设AC=3a,AB=5a.则BC=4a.想办法求出DE、CE,根据tan∠DCE=DE/CE即可解决问题;(2)根据AC=AD+DC,只要求出AD、DC即可解决问题;本题考查平面向量、锐角三角函数、平行线的性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,属于中考常考题型.21. (1)设OC=x,证明△CEO∽△PCO,得CO/OE=OP/OC,代入x可得结论;(2)由勾股定理得CE的长,根据垂径定理可得CD的长.本题考查了垂径定理,线段垂直平分线的性质,相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.22. 如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,可得AH=CH/(tan〖37〗^∘)=x/(tan〖37〗^∘),在Rt △CEH中,可得CH=EH=x,由CH//BD,推出AH/HD=AC/CB,由AC=CB,推出AH=HD,可得x/(tan 〖37〗^∘)=x+5,求出x即可解决问题.本题考查了解直角三角形的应用--方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.23. (1)根据平行四边形的判定得出四边形BCFD是平行四边形,进而利用相似比解答即可;(2)根据全等三角形的判定得出△ABH≌△ACH,进而利用全等三角形的性质证明△GHC∽△CHF,再根据相似三角形的性质证明即可.本题主要考查相似三角形的判定与性质,熟练掌握三角形相似判定方法是解题的关键.24. (1)先利用抛物线的对称性得到B(3,0),则可设交点式y=a(x+1)(x-3),然后展开即可得到C点坐标;(2)利用三角形面积公式得到6a=6,然后求出a即可得到抛物线解析式;(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,利用中心对称的性质得QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,则OF=2m+1,HF=1,讨论:当∠CGF=〖90〗^∘时,证明Rt△QGH∽Rt△GFH,利用相似比得到3/1=m/3,解方程求出m即可得到此时Q的坐标;当∠CFG=〖90〗^∘时,证明Rt△GFH∽Rt △FCO,利用相似比得到3/(2m+1)=1/3,解方程求出m即可得到此时Q的坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、中心对称的性质和相似三角形的判定与性质;会利用待定系数法求抛物线解析式;灵活应用相似比表示线段之间的关系;理解坐标与图形的性质;会利用分类讨论的思想解决数学问题.25. (1)首先证明∠ADB=∠BAF,由tan∠ADB=AB/AD=2/4=1/2,推出tan∠BAF=BF/AB=1/2,可得BF=1,根据S_(△ABF)=1/2⋅AB⋅BF计算即可;(2)首先证明△BAP∽△BAP,可得AB/PF=BP/EF,由AD//BC,推出∠ADB=∠PBF,tan∠PBF=tan∠ADB=1/2,即PF/BP=1/2,由BP=2√5-x,可得PF=1/2(2√5-x),代入比例式即可解决问题;(3)分两种情形分别求解:①当点F在线段BC上时,如图1-1中;②如图2中,当点F在线段BC的延长线上时,作PH⊥AD于H,连接DF.寻找相似三角形,构建方程即可解决问题;本题考查四边形综合题.相似三角形的判定和性质、锐角三角函数、矩形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。