二次函数中考题
- 格式:doc
- 大小:179.00 KB
- 文档页数:6
中考热点01二次函数与方程、不等式,求参数范围一、解答题1(2023·浙江嘉兴·统考中考真题)在二次函数y=x2-2tx+3(t>0)中,(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为-2,求出t的值:(3)如果A(m-2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.2(2023·浙江·统考中考真题)已知点-m,0和3m,0在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图像上.(1)当m=-1时,求a和b的值;(2)若二次函数的图像经过点A n,3且点A不在坐标轴上,当-2<m<-1时,求n的取值范围;(3)求证:b2+4a=0.3(2023·浙江杭州·统考二模)在平面直角坐标系中,已知二次函数y=-x2+bx+c(b,c是常数).(1)当b=2,c=3时,求该函数图象的顶点坐标.(2)设该二次函数图象的顶点坐标是(m,n),当该函数图象经过点(1,-3)时,求n关于m的函数解析式.(3)已知b=2c+1,当0≤x≤2时,该函数有最大值8,求c的值.4(2023·浙江宁波·校考三模)如图,已知二次函数y=-x2+bx+c的图像经过点A4,1,点B0,5.(1)求该二次函数的表达式及顶点坐标;(2)点C m,n在该二次函数图像上,当m≤x≤4时,n的最大值为294,最小值为1,请根据图像直接写出m的取值范围.5(2023·浙江舟山·统考三模)在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A1,0.点P在此抛物线上,其横坐标为m.,点B0,3(1)求此抛物线的解析式.(2)若-1≤x≤d时,-1≤y≤8,则d的取值范围是.(3)点P和点A之间(包括端点)的函数图象称为图象G,当图象G的最大值和最小值差是5时,求m的值.6(2023·浙江杭州·统考二模)在平面直角坐标系中,设二次函数y=x2-2ax+1(a是常数).(1)当a=2时,求函数图象的顶点坐标和对称轴.(2)若函数图象经过点(1,p),(-1,q),求证:pq≤4.(3)已知函数图象经过点A(-3,y1),B(a+1,y2),点C(m,y3),若对于任意的4≤m≤6都满足y1>y3> y2,求a的取值范围.7(2023·浙江杭州·统考二模)已知函数y1=x2-m+2x+2m+3,y2=nx+k-2n(m,n,k为常数且n≠0).(1)若y1的图象经过点A-1,3,求该函数的表达式.(2)若函数y1,y2的图象始终经过同一定点M.①求点M的坐标和k的值.②若m≤2,当-1≤x≤2时,总有y1≤y2,求m+n的取值范围.8(2023·浙江杭州·统考二模)已知二次函数y1=ax x-ma≠0.和一次函数y2=ax+b a≠0(1)二次函数y1的图象过1,0点,求二次函数的表达式;,2,2(2)若一次函数y2与二次函数y1的图象交于x轴上同一点,且这个点不是原点.①求证:b=-am;②若两个函数图象的另一个交点为二次函数的顶点,求m的值.9(2023·浙江杭州·杭州市公益中学校考二模)在平面直角坐标系中,当x=-2和x=4时,二次函数y=ax2+bx-2(a,b是常数,a≠0)的函数值相等.(1)若该函数的最大值为1,求函数的表达式,并写出函数图象的顶点坐标;(2)若该函数的图象与x轴有且只有一个交点,求a,b的值.(3)记(2)中的抛物线为y1,将抛物线y1向上平移2个单位得到抛物线y2,当-2≤x≤m时,抛物线y2的最大值与最小值之差为8,求m的值.10(2023·浙江丽水·统考二模)二次函数y=x2+bx+c的图象与x轴交于点A x1,0且x1≠,B x2,0x2.(1)当x1=2,且b+c=-6时,①求b,c的值②当t≤x≤t+2时,二次函数y=x2+bx+c的最小值为2t,求t的值;(2)若x1=3x2,求证:3b-c≤3.211(2023·浙江杭州·统考二模)二次函数y=ax2+bx-1(a,b为常数,a≠0)的图像经过点A1,2.(1)求该二次函数图像的对称轴(结果用含a的代数式示)(2)若该函数图像经过点B3,2;①求函数的表达式,并求该函数的最值.②设M x1,y1,N x2,y2是该二次函数图像上两点,其中x1,x2是实数.若x1-x2=1,求证:y1+y2≤11 212(2023·浙江杭州·统考一模)二次函数y=ax2+bx+c(a≠0)与x轴交于A(1,0),B(m,0)两点.(1)当a=1,b=2时,求m的值.(2)当0<a<2,c=2时,①求证:m>1.②点C x1,y1,D x2,y2在该抛物线上,且x1>x2,x1+x2<2,试比较y1与y2的大小.13(2023·浙江绍兴·统考一模)在平面直角坐标系xOy中,已知抛物线y=x2-2tx+1.(1)求该抛物线的对称轴(用含t的式子表示);(2)若点M t-2,m在抛物线y=x2-2tx+1上,试比较m,n的大小;,N t+3,n(3)P x1,y1是抛物线y=x2-2tx+1上的任意两点,若对于-1≤x1<3且x2=3,都有y1≤y2, ,Q x2,y2求t的取值范围;(4)P t+1,y1是抛物线y=x2-2tx+1上的两点,且均满足y1≥y2,求t的最大值. ,Q2t-4,y214(2023·浙江杭州·模拟预测)在平面直角坐标系中,抛物线y=x2-2mx+m2+1存在两点A m-1,y1,B m+2,y2.(1)求抛物线的对称轴;(用含m的式子表示)(2)记抛物线在A,B之间的部分为图象F(包括A,B两点),y轴上一动点C0,a,过点C作垂直于y轴的直线l与F有且仅有一个交点,求a的取值范围;(3)若点M2,y3也是抛物线上的点,记抛物线在A,M之间的部分为图象G(包括M,A两点),记图形G 上任意一点的纵坐标的最大值与最小值的差为t,若t≥y2-y1,求m的取值范围.15(2022春·九年级课时练习)抛物线y =(k -1)x 2-x +1与x 轴有交点,则k 的取值范围是.16(2020秋·九年级课时练习)抛物线y =x 2+8x -4与直线x =-4的交点坐标是.17(2023·安徽淮北·校考一模)若对称轴为直线x =-2的抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),则一元二次方程ax 2+bx +c =0的根是.18(2021春·九年级课时练习)抛物线y =2x 2+2k -1 x -k (k 为常数)与坐标轴交点的个数是.19(2023·湖北武汉·统考模拟预测)已知二次函数y =ax 2+bx +c a ≠0 的部分图象如图所示,图象过点-1,0 ,对称轴为直线x =1,下列结论:①2a +b =0;②当m ≠-1时,am 2-b m +1 <a ;③若点A -2,y 1 ,点B 12,y 2 ,点C 52,y 3 均在该图象上,则y 1<y 3<y 2;④若关于x 的方程a x +1 x -3 =p p >0 的两根都是整数,则这样的p 值有3个.其中正确的结论有(填序号).20(2023·浙江·校联考三模)已知点x1,y1,x2,y2为二次函数y=-x2图象上的两点(不为顶点),则以下判断正确的是()A.若x1>x2,则y1>y2B.若x1<x2,则y1<y2C.若:x1x2<x22,则y1>y2 D.若x1x2>x22,则y1<y221(2023·浙江杭州·统考二模)已知二次函数y1=(ax+1)(bx+1),y2=(x+a)(x+b),(a,b为常数,且ab≠0),则下列判断正确的是()A.若ab<1,当x>1时,则y1>y2B.若ab>1,当x<-1时,则y1>y2C.若ab<-1,当x<-1时,则y1>y2D.若ab>-1,当x>1时,则y1>y222(2023·浙江杭州·统考二模)点P m,n在二次函数y=ax2-2ax a≠0的图象上,针对n的不同取值,存在点P的个数不同,甲乙两位同学分别得到如下结论:甲:若P的个数为1,则n=-a;乙:若P的个数为2,则n≥-a则下列判断中正确的是()A.甲正确,乙正确B.甲正确,乙错误C.甲错误,乙正确D.甲错误,乙错误23(2023·浙江宁波·校考二模)已知点A x1,y1,B x2,y2在抛物线y=-(x-4)2+m(m是常数)上.若x1<4<x2,x1+x2>8,则下列大小比较正确的是()A.y1>y2>mB.y2>y1>mC.m>y1>y2D.m>y2>y124(2023·统考二模)已知二次函数y=x2+bx+c过点A x1,y1,B x1+t,y2,C x1+2t,y3三点.记m=y2-y1,n=y3-y2,下列命题正确的是()A.若n-m>2,则t<-1B.若n-m<2,则t>-1C.若t>1,则n-m>2D.若t<1,则n-m<225(2023·浙江杭州·统考二模)已知y关于x的二次函数y=2mx2+1-mx-1-m,下列结论中正确的序号是()①当m=-1时,函数图象的顶点坐标为12,12 ;②当m≠0时,函数图象总过定点:③当m>0时,函数图象在x轴上截得的线段的长度大于3 2;④若函数图象上任取不同的两点P1x1,y1、P2x2,y2,则当m<0时,函数在x>14时一定能使y2-y1x2-x1<0成立.A.①②③B.①③④C.②③④D.①②④26(2023·浙江·模拟预测)点A x 1,y 1 ,B x 2,y 2 在抛物线y =ax 2-2ax -3a ≠0 上,存在正数m ,使得-2<x 1<0且m <x 2<m +1时,都有y 1≠y 2,则m 的取值范围是()A.1<m ≤4B.2<m ≤4C.0<m ≤1或m ≥4D.1<m ≤2或m ≥427(2023·浙江·模拟预测)点A x 1,y 1 ,B x 2,y 2 在抛物线y =ax 2-2ax -3(a ≠0)上,存在正数m ,使得-2<x 1<0且m <x 2<m +1时,都有y 1≠y 2,则m 的取值范围是()A.1<m ≤4B.1<m ≤4C.0<m ≤1或m ≥4D.1<m ≤2或m ≥428(2023·浙江宁波·校考一模)已知二次函数y =ax 2+bx +c 的图象经过点A x 1,y 1 ,B 1-m ,n ,C x 2,y 2 ,D m +3,n ,若x 1-2 >x 2-2 ,则下列表达式正确的是()A.y 1>y 2B.y 1<y 2C.a y 1-y 2 >0D.a y 1-y 2 <029(2022·浙江宁波·校考三模)如图,二次函数y =ax 2+bx +c a <0 与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =2,则下列说法中正确的有()①abc <0;②4ac -b 24a>0;③16a +4b +c >0;④5a +c >0;⑤方程ax 2+bx +c =0(a ≠0)其中一个解的取值范围为-2<x <-1.A.1个B.3个C.4个D.5个。
2023年九年级数学中考专题:二次函数综合压轴题(面积问题)1.如图,二次函数25y ax bx =++的图象经过点(1,8),且与x 轴交于A 、B 两点,与y 轴交于点C ,其中点(1,0)A -,M 为抛物线的顶点.(1)求二次函数的解析式; (2)求MCB △的面积;(3)在坐标轴上是否存在点N ,使得BCN △为直角三角形?若存在,求出点N 的坐标;若不存在,请说明理由.2.如图,抛物线212y x bx c =-++(b 、c 为常数)经过()4,0A 和()0,4B 两点,其顶点为C .(1)求该抛物线的表达式及其顶点坐标;(2)若点M 是拋物线上第一象限的一个动点.设ABM 的面积为S ,试求S 的最大值; (3)若抛物线222y mx mx m =-++与线段AB 有两个交点,直接写出m 的取值范围. 3.如图,抛物线22(0)y ax ax c a =-+>与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点A 的坐标为(1,0),3OC OA -=.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上是否存在一点P ,使得PBC 的面积等于ABC 面积的三分之二?若存在,求出此时OP 的长;若不存在,请说明理由.(3)将直线AC 绕着点C 旋转45︒得到直线l ,直线l 与抛物线的交点为M (异于点C ),求M 点坐标.4.如图1,抛物线24y ax bx a =+-经过()10A -,,()04C ,两点,与x 轴交于另一点B .(1)求抛物线和直线BC 的解析式;(2)如图2,点P 为第一象限抛物线上一点,是否存在使四边形PBOC 面积最大的点P ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图3,若抛物线的对称轴EF (E 为抛物线顶点)与直线BC 相交于点F ,M 为直线BC 上的任意一点,过点M 作MN EF ∥交抛物线于点N ,以E ,F ,M ,N 为顶点的四边形能否为平行四边形?若能,请求出点N 的坐标;若不能,请说明理由. 5.如图,抛物线24y ax bx =+-与x 轴交于点()2,0A -,()4,0B ,与y 轴交于点C ,顶点为D .(1)求抛物线的解析式和顶点D 的坐标;(2)动点P ,Q 以相同的速度从点O 同时出发,分别在线段,OB OC 上向点B ,C 方向运动,过点P 作x 轴的垂线,交抛物线于点E . ①当四边形OQEP 为矩形时,求点E 的坐标;①过点E 作EM BC ⊥于点M ,连接,PM QM ,设BPM △的面积为1S ,CQM 的面积为2S ,当PE 将BCE 的面积分成1:3两部分时,请直接写出12S S 的值. 6.如图,抛物线2(0)y ax bx c a =++≠与x 轴相交于A ,B 两点,抛物线的对称轴为直线=1x -,其中点A 的坐标为(3,0)-.(1)求点B 的坐标;(2)已知1a =,C 为抛物线与y 轴的交点,求抛物线的解析式; (3)若点P 在抛物线上,且4POCBOCSS=,求点P 的坐标;(4)设点Q 是线段AC 上的动点,过点Q 作QD y 轴交抛物线于点D ,求线段QD 长度的最大值.7.如图,在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()30A -,,()10B ,两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △的面积最大时,求点P 的坐标;(3)Q 是x 轴上一动点,M 是第二象限内抛物线上一点,若以A ,C ,M ,Q 为顶点的四边形是平行四边形,直接写出点Q 的坐标.8.如图,直线132y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c =-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.9.如图,已知抛物线与x 轴交于()1,0A - 、()4,0B 两点,与y 轴交于点()0,3C .(1)求抛物线的解析式; (2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使PAB 的面积等于ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,抛物线26y ax bx =++与x 轴交于点()6,0B ,()2,0C -,与y 轴交于点A ,点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,PAB 的面积最大?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE x ∥轴交抛物线于点E ,连接DE .是否存在点P ,使PDE △为等腰直角三角形?若存在,求点P 的坐标;若不存在,请说明理由.11.如图,直线l :112y x =-+与x 轴,y 轴分别交于点B ,C ,经过B ,C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A .(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD ①x 轴交l 于点D ,PE ①y 轴交l 于点E ,求PD PE +的最大值;(3)若点P 在直线l 下方的抛物线上,F 为直线l 上的点,以A ,B ,P ,F 为顶点的四边形能否构成平行四边形?若能,直接写出点F 的坐标;若不能,请说明理由. 12.已知顶点为()1,5A 的抛物线2y ax bx c =++经过点()5,1B ,(1)求抛物线的解析式;(2)设C ,D 分别是x 轴、y 轴上的两个动点.①当四边形ABCD 的周长最小时,在图1中作直线CD ,保留作图痕迹并直接写出直线CD 的解析式;①点()(),>0P m n m 是直线y x =上的一个动点,Q 是OP 的中点,以PQ 为斜边按图2所示构造等腰Rt PQR △.在①的条件下,记PQR 与COD △的公共部分的面积为S ,求S 关于m 的函数关系式,并求S 的最大值.13.抛物线24y x x =-与直线y x =交于原点O 和点B , 与x 轴交于另一点A , 顶点为D .(1)填空: 点B 的坐标为___________, 点D 的坐标为___________.(2)如图1 , 连结OD P ,为x 轴上的动点, 当以O D P ,,为顶点的三角形是等腰三角形时, 请直接写出点P 的坐标;(3)如图2, M 是点B 关于拋物线对称轴的对称点, Q 是拋物线上的动点, 它的横坐标为 (05)m m <<, 连结MQ BQ MQ ,,与直线OB 交于点E . 设BEQ 和BEM △的面积分别为1S 和2S , 设12S t s =, 试求t 关于m 的函数解析式并求出t 的最值. 14.如图,二次函数的图象经过点()10A -,,()30B ,,()03C -,,直线22y x =-与x 轴、y 轴交于点D ,E .(1)求该二次函数的解析式(2)点M 为该二次函数图象上一动点.①若点M 在图象上的B ,C 两点之间,求DME 的面积的最大值. ①若MED EDB ∠∠=,求点M 的坐标.15.如图,在平面直角坐标系中,抛物线24y ax bx =+-与x 轴交于()2,0A -,B 两点,其对称轴直线2x =与x 轴交于点D .(1)求该抛物线的函数表达式为______;(2)如图1,点P 为抛物线上第四象限内的一动点,连接CD ,PB ,PC ,求四边形BDCP 面积最大值和点P 此时的坐标;(3)如图2,将该抛物线向左平移得到抛物线y ',当抛物线y '经过原点时,与原抛物线的对称轴相交于点E ,点F 为抛物线y '对称轴上的一点,点M 是平面内一点,若以点A ,E ,F ,M 为顶点的四边形是以AE 为边的菱形,请直接写出满足条件的点M 的坐标______.16.如图,已知抛物线2y x bx c =++与x 轴交于点()21,0A m -和点()2,0B m +,与y 轴交于点C ,对称轴轴为直线=1x -.(1)求抛物线的解析式;(2)点P 是直线AC 上一动点,过点P 作PQ y ∥轴,交抛物线于点Q ,以P 为圆心,PQ 为半径作P ,当P 与坐标轴相切时,求P 的半径;(3)直线()340y kx k k =++≠与抛物线交于M ,N 两点,求AMN 面积的最小值.17.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于两点()1,0A -和()3,0B ,与y 轴交于点C ,抛物线上有一动点P ,抛物线的对称轴交x 轴于点E ,连接EC ,作直线BC .(1)求抛物线的解析式;(2)若点P 为直线BC 上方抛物线上一动点时,连接,PB PC ,当23EBC PBC S S =△△时,求点P 坐标;(3)如果抛物线的对称轴上有一动点Q ,x 轴上有一动点N ,是否存在四边形PQCN 是矩形?若存在,在横线上直接写出点N 的坐标,若不存在,请说明理由. 18.如图,直线122y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c=-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求三角形ACM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90︒得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围(直接写出结果即可).参考答案:1.(1)245y x x =-++; (2)15(3)存在,点N 的坐标为(5,0)-或(0,5)-或(0,0).2.(1)2142y x x =-++,91,2⎛⎫⎪⎝⎭(2)S 的最大值为4 (3)2m ≥或1249m -<≤-3.(1)抛物线的解析式为2=23y x x -- (2)不存在这样的点P , (3)M 点坐标是(45),或315()24-,4.(1)抛物线的解析式:234y x x =-++;直线BC 的解析式为4y x =-+;(2)当()26P ,时,四边形PBOC 面积最大; (3)能,点N 的坐标为52124⎛⎫ ⎪⎝⎭,或724⎛- ⎝或724⎛- ⎝.5.(1)2142y x x =--,91,2D ⎛⎫- ⎪⎝⎭.(2)①(-;①1215S S =或1279S S =6.(1)(1,0) (2)223y x x =+- (3)(4,21)或()4,5- (4)947.(1)224233y x x =--+(2)3(2P -,5)2(3)(5,0)-或(1,0)-8.(1)03A (,),20B -(,),60C (,),抛物线解析式为:2134y x x =-++; (2)3a =时,四边形ABCM 面积最大,其最大值为754,此时M 的坐标为153,4⎛⎫⎪⎝⎭;(3)当3m -≤≤-33m ≤≤时,线段O A ''与抛物线只有一个公共点.9.(1)239344y x x =-++(2)334y x =-+(3)存在,点P 的坐标为:()13,3P ,23P ⎫-⎪⎪⎝⎭,33P ⎫-⎪⎪⎝⎭10.(1)21262y x x =-++(2)153,2P ⎛⎫ ⎪⎝⎭(3)点P 坐标为()46,或()55.11.(1)2512y x x =-+ (2)3(3)13,2⎛⎫- ⎪⎝⎭或1(1,)212.(1)21119424y x x =-++(2)①4y x =-+;①当02m <≤时,218PQRSm =;当823m <≤时,27448S m m =-+-;当843m ≤≤时,21244S m m =-+;S 的最大值为:47答案第3页,共3页 13.(1)()5,5;()2,4-;(2)点P的坐标为()或()-或()4,0或()5,0; (3)()2150566t m m m =-+<<,当52m =时,t 的最大值为2524.14.(1)该二次函数的解析式是()()21323y x x x x =+-=--;(2)①DME 的面积的最大值为52;①点M的坐标为⎝⎭或()12--.15.(1)214433y x x =-- (2)PBDC S 四边形的最大值为17,此时点P 的坐标为()3,5-(3)⎛ ⎝⎭或⎛ ⎝⎭或⎛- ⎝⎭或8,⎛- ⎝⎭16.(1)223y x x =+-(2)2或4(3)817.(1)2=23y x x --(2)⎝⎭或⎝⎭ (3)存在,⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭18.(1)()0,2A ,()2,0B -,()4,0C ,211242y x x =-++ (2)2,()2,2(3)34m -≤≤-或32m -+≤。
中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(55题)一 、单选题1.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =--- 下列说法正确的是( ) A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-32.(2023·广西·统考中考真题)将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线是( )A .2(3)4y x =-+B .2(3)4y x =++C .2(3)4y x =+-D .2(3)4y x =--3.(2023·湖南·统考中考真题)如图所示 直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,则下列说法正确的是( )A .b 恒大于0B .a b 同号C .a b 异号D .以上说法都不对4.(2023·辽宁大连·统考中考真题)已知抛物线221y x x =--,则当03x ≤≤时 函数的最大值为( )A .2-B .1-C .0D .25.(2023·四川成都·统考中考真题)如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点 下列说法正确的是( )A .抛物线的对称轴为直线1x =B .抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C .A B 两点之间的距离为5D .当1x <-时 y 的值随x 值的增大而增大6.(2023·河南·统考中考真题)二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.(2023·内蒙古通辽·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()()1020x ,,, 其中101x << 下列四个结论:①0abc < ①0a b c ++> ①230b c +< ①不等式22cax bx c x c ++<-+的解集为02x <<.其中正确结论的个数是( )A .1B .2C .3D .48.(2023·四川自贡·统考中考真题)经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x为自变量)与x 轴有交点,则线段AB 长为( ) A .10B .12C .13D .159.(2023·四川达州·统考中考真题)如图,拋物线2y ax bx c =++(,,a b c 为常数)关于直线1x =对称.下列五个结论:①0abc > ①20a b += ①420a b c ++> ①2am bm a b +>+ ①30a c +>.其中正确的有( )A .4个B .3个C .2个D .1个10.(2023·四川泸州·统考中考真题)已知二次函数223y ax ax =-+(其中x 是自变量) 当03x <<时对应的函数值y 均为正数,则a 的取值范围为( ) A .01a <<B .1a <-或3a >C .30a -<<或0<<3aD .10a -≤<或0<<3a11.(2023·四川凉山·统考中考真题)已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是( )A .<0abcB .420a b c -+<C .30a c +=D .20am bm a ++≤(m 为实数)12.(2023·四川南充·统考中考真题)抛物线254y x kx k =-++-与x 轴的一个交点为(,0)A m 若21m -≤≤,则实数k 的取值范围是( ) A .2114k -≤≤ B .k ≤214-或1k ≥ C .5k -≤≤98D .5k ≤-或k ≥9813.(2023·安徽·统考中考真题)已知反比例函数()0ky k x=≠在第一象限内的图象与一次函数y x b =-+的图象如图所示,则函数21y x bx k =-+-的图象可能为( )A .B .C .D .14.(2023·四川广安·统考中考真题)如图所示 二次函数2(y ax bx c a b c =++、、为常数 0)a ≠的图象与x 轴交于点()()3,0,1,0A B -.有下列结论:①0abc > ①若点()12,y -和()20.5,y -均在抛物线上,则12y y < ①50a b c -+= ①40a c +>.其中正确的有( )A .1个B .2个C .3个D .4个15.(2023·四川遂宁·统考中考真题)抛物线()20y ax bx c a =++≠的图象如图所示 对称轴为直线2x =-.下列说法:①0abc < ①30c a -> ①()242a ab at at b -+≥(t 为全体实数) ①若图象上存在点()11,A x y 和点()22,B x y 当123m x x m <<<+时 满足12y y =,则m 的取值范围为52m -<<-.其中正确的个数有( )A .1个B .2个C .3个D .4个16.(2023·四川眉山·统考中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的一个交点坐标为()1,0 对称轴为直线=1x - 下列四个结论:①<0abc ①420a b c -+< ①30a c += ①当31x -<<时20ax bx c ++< 其中正确结论的个数为( )A .1个B .2个C .3个D .4个17.(2023·浙江宁波·统考中考真题)已知二次函数2(31)3(0)y ax a x a =-++≠ 下列说法正确的是( ) A .点(1,2)在该函数的图象上 B .当1a =且13x -≤≤时 08y ≤≤ C .该函数的图象与x 轴一定有交点D .当0a >时 该函数图象的对称轴一定在直线32x =的左侧 18.(2023·新疆·统考中考真题)如图,在平面直角坐标系中 直线1y mx n =+与抛物线223y ax bx =+-相交于点A B .结合图象 判断下列结论:①当23x -<<时 12y y > ①3x =是方程230ax bx +-=的一个解①若()11,t - ()24,t 是抛物线上的两点,则12t t < ①对于抛物线 223y ax bx =+- 当23x -<<时 2y 的取值范围是205y <<.其中正确结论的个数是( )A .4个B .3个C .2个D .1个19.(2023·山东东营·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点A B 与y 轴交于点C 对称轴为直线=1x - 若点A 的坐标为()4,0-,则下列结论正确的是( )A .20a b +=B .420a b c -+>C .2x =是关于x 的一元二次方程()200ax bx c a ++=≠的一个根D .点()11,x y ()22,x y 在抛物线上 当121x x >>-时120y y <<20.(2023·四川乐山·统考中考真题)如图,抛物线2y ax bx c =++经过点(1,0)(,0)A B m -、 且12m << 有下列结论:①0b < ①0a b +> ①0a c <<- ①若点1225,,,33C y D y ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭在抛物线上,则12y y >.其中 正确的结论有( )A .4个B .3个C .2个D .1个21.(2023·湖南岳阳·统考中考真题)若一个点的坐标满足(),2k k 我们将这样的点定义为“倍值点”.若关于x 的二次函数()()212y t x t x s =++++(,s t 为常数 1t ≠-)总有两个不同的倍值点,则s 的取值范围是( ) A .1s <- B .0s < C .01s << D .10s -<<22.(2023·山东烟台·统考中考真题)如图,抛物线2y ax bx c =++的顶点A 的坐标为1,2m ⎛⎫- ⎪⎝⎭与x 轴的一个交点位于0合和1之间,则以下结论:①0abc > ①20b c +> ①若图象经过点()()123,,3,y y -,则12y y > ①若关于x 的一元二次方程230ax bx c ++-=无实数根,则3m <.其中正确结论的个数是( )A .1B .2C .3D .423.(2023·湖南·统考中考真题)已知0m n >> 若关于x 的方程2230x x m +--=的解为()1212,x x x x <.关于x 的方程2230x x n +--=的解为3434,()x x x x <.则下列结论正确的是( ) A .3124x x x x <<<B .1342x x x x <<<C .1234x x x x <<<D .3412x x x x <<<24.(2023·湖北随州·统考中考真题)如图,已知开口向下的抛物线2y ax bx c =++与x 轴交于点(60),对称轴为直线2x =.则下列结论正确的有( ) ①0abc < ①0a b c -+>①方程20cx bx a ++=的两个根为1211,26x x ==-①抛物线上有两点()11,P x y 和()22,Q x y 若122x x <<且124x x +>,则12y y <.A .1个B .2个C .3个D .4个25.(2023·浙江杭州·统考中考真题)设二次函数()()(0,,y a x m x m k a m k =--->是实数),则( ) A .当2k =时 函数y 的最小值为a - B .当2k =时 函数y 的最小值为2a - C .当4k =时 函数y 的最小值为a - D .当4k =时 函数y 的最小值为2a -26.(2023·湖南·统考中考真题)已知()()111222,,,P x y P x y 是抛物线243y ax ax =++(a 是常数 )0a ≠上的点 现有以下四个结论:①该抛物线的对称轴是直线2x =- ①点()0,3在抛物线上 ①若122x x >>-,则12y y > ①若12y y =,则122x x +=-其中 正确结论的个数为( )A .1个B .2个C .3个D .4个27.(2023·山东聊城·统考中考真题)已知二次函数()20y ax bx c a =++≠的部分图象如图所示 图象经过点()0,2 其对称轴为直线=1x -.下列结论:①30a c +> ①若点()14,y - ()23,y 均在二次函数图象上,则12y y > ①关于x 的一元二次方程21ax bx c ++=-有两个相等的实数根 ①满足22ax bx c ++>的x 的取值范围为20x -<<.其中正确结论的个数为( ).A .1个B .2个C .3个D .4个28.(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点” 如:(1,3),(2,6),(0,0)A B C --等都是三倍点” 在31x -<<的范围内 若二次函数2y x x c =--+的图象上至少存在一个“三倍点”,则c 的取值范围是( ) A .114c -≤< B .43c -≤<-C .154c -<<D .45c -≤<29.(2023·广东·统考中考真题)如图,抛物线2y ax c =+经过正方形OABC 的三个顶点A B C 点B 在y 轴上,则ac 的值为( )A .1-B .2-C .3-D .4-30.(2023·湖北·统考中考真题)拋物线2(0)y ax bx c a =++<与x 轴相交于点()()3010A B -,,,.下列结论: ①0abc < ①240b ac -> ①320b c += ①若点()()122P m y Q m y -,,,在抛物线上 且12y y <,则1m ≤-.其中正确的结论有( ) A .1个B .2个C .3个D .4个31.(2023·黑龙江齐齐哈尔·统考中考真题)如图,二次函数()20y ax bx c a =++≠图像的一部分与x 轴的一个交点坐标为()3,0 对称轴为直线1x = 结合图像给出下列结论: ①0abc > ①2b a = ①30a c +=①关于x 的一元二次方程220(0)ax bx c k a +++=≠有两个不相等的实数根①若点()1,m y ()22,y m -+均在该二次函数图像上,则12y y =.其中正确结论的个数是( )A .4B .3C .2D .132.(2023·湖北鄂州·统考中考真题)如图,已知抛物线()20y ax bx c a =++≠的对称轴是直线1x = 且过点()1,0- 顶点在第一象限 其部分图象如图所示 给出以下结论:①0ab < ①420a b c ++> ①30a c +>①若()11,A x y ()22,B x y (其中12x x <)是抛物线上的两点 且122x x +>,则12y y > 其中正确的选项是( )A .①①①B .①①①C .①①①D .①①①33.(2023·山东枣庄·统考中考真题)二次函数2(0)y ax bx c a =++≠的图象如图所示 对称轴是直线1x = 下列结论:①0abc < ①方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3 ①若()1230,,,2y y ⎛⎫⎪⎝⎭是抛物线上的两点 那么12y y < ①1120a c +> ①对于任意实数m 都有()m am b a b +≥+ 其中正确结论的个数是( )A .5B .4C .3D .234.(2023·湖北十堰·统考中考真题)已知点()11,A x y 在直线319y x =+上 点()()2233,,,B x y C x y 在抛物线241y x x =+-上 若123y y y ==且123x x x <<,则123x x x ++的取值范围是( )A .123129x x x -<++<-B .12386x x x -<++<-C .12390x x x -<++<D .12361x x x -<++<35.(2023·湖北黄冈·统考中考真题)已知二次函数2(0)y ax bx c a =++<的图象与x 轴的一个交点坐标为(1,0)-对称轴为直线1x = 下列论中:①0a b c -+= ①若点()()()1233,,2,,4,y y y -均在该二次函数图象上,则123y y y << ①若m 为任意实数,则24am bm c a ++≤- ①方程210ax bx c +++=的两实数根为12,x x 且12x x <,则121,3x x <->.正确结论的序号为( )A .①①①B .①①①C .①①①D .①①36.(2023·四川·统考中考真题)已知抛物线2y ax bx c =++(a b c 是常数且a<0)过()1,0-和()0m ,两点 且34m << 下列四个结论:0abc >① 30a c +>② ③若抛物线过点()1,4,则213a -<<- ④关于x 的方程()()13a x x m +-=有实数根,则其中正确的结论有( )A .1个B .2个C .3个D .4个二 多选题37.(2023·湖南·统考中考真题)如图,抛物线2y ax bx c =++与x 轴交于点()3,0,则下列结论中正确的是( )A .0a >B .0c >C .240b ac -<D .930a b c ++=三 填空题38.(2023·内蒙古·统考中考真题)已知二次函数223(0)y ax ax a =-++> 若点(,3)P m 在该函数的图象上 且0m ≠,则m 的值为________.39.(2023·山东滨州·统考中考真题)要修一个圆形喷水池 在池中心竖直安装一根水管 水管的顶端安一个喷水头 使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高 高度为3m 水柱落地处离池中心3m 水管长度应为____________.40.(2023·湖南郴州·统考中考真题)抛物线26y x x c =-+与x 轴只有一个交点,则c =________.41.(2023·上海·统考中考真题)一个二次函数2y ax bx c =++的顶点在y 轴正半轴上 且其对称轴左侧的部分是上升的 那么这个二次函数的解析式可以是________.42.(2023·吉林长春·统考中考真题)2023年5月8日 C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场 穿过隆重的“水门礼”(寓意“接风洗尘” 是国际民航中高级别的礼仪).如图① 在一次“水门礼”的预演中 两辆消防车面向飞机喷射水柱 喷射的两条水柱近似看作形状相同的地物线的一部分.如图① 当两辆消防车喷水口A B 的水平距离为80米时 两条水柱在物线的顶点H 处相遇 此时相遇点H 距地面20米 喷水口A B 距地面均为4米.若两辆消防车同时后退10米 两条水柱的形状及喷水口A ' B '到地面的距离均保持不变,则此时两条水柱相遇点H '距地面__________米.43.(2023·福建·统考中考真题)已知抛物线22(0)y ax ax b a =-+>经过()()1223,,1,A n y B n y +-两点 若,A B 分别位于抛物线对称轴的两侧 且12y y <,则n 的取值范围是___________.44.(2023·内蒙古赤峰·统考中考真题)如图,抛物线265y x x =-+与x 轴交于点A B 与y 轴交于点C 点()2,D m 在抛物线上 点E 在直线BC 上 若2DEB DCB ∠=∠,则点E 的坐标是____________.45.(2023·湖北武汉·统考中考真题)抛物线2y ax bx c =++(,,a b c 是常数 0c <)经过(1,1),(,0),(,0)m n 三点 且3n ≥.下列四个结论:①0b <①244ac b a -<①当3n =时 若点(2,)t 在该抛物线上,则1t >①若关于x 的一元二次方程2ax bx c x ++=有两个相等的实数根,则103m <≤. 其中正确的是________(填写序号).46.(2023·四川宜宾·统考中考真题)如图,抛物线2y ax bx c =++经过点()30A -,顶点为()1,M m - 且抛物线与y 轴的交点B 在()02-,和()03-,之间(不含端点),则下列结论:①当31x -≤≤时 0y ≤①当ABM 33 3a = ①当ABM 为直角三角形时 在AOB 内存在唯一点P 使得PA PO PB ++的值最小 最小值的平方为1893+其中正确的结论是___________.(填写所有正确结论的序号)四 解答题47.(2023·浙江宁波·统考中考真题)如图,已知二次函数2y x bx c =++图象经过点(1,2)A -和(0,5)B -.(1)求该二次函数的表达式及图象的顶点坐标.y≤-时请根据图象直接写出x的取值范围.(2)当248.(2023·浙江温州·统考中考真题)一次足球训练中小明从球门正前方8m的A处射门球射向球门的路线呈抛物线.当球飞行的水平距离为6m时球达到最高点此时球离地面3m.已知球门高OB为2.44m 现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析若射门路线的形状最大高度均保持不变,则当时他应该带球向正后方移动多少米射门才能让足球经过点O正上方2.25m处?49.(2023·湖北武汉·统考中考真题)某课外科技活动小组研制了一种航模飞机.通过实验 收集了飞机相对于出发点的飞行水平距离x (单位:m )以 飞行高度y (单位:m )随飞行时间t (单位:s )变化的数据如下表. 飞行时间/s t 0 2 4 6 8 …飞行水平距离/m x 0 10 20 30 40 …飞行高度/m y 0 22 40 54 64 …探究发现:x 与t y 与t 之间的数量关系可以用我们已学过的函数来描述.直接写出x 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围).问题解决:如图,活动小组在水平安全线上A 处设置一个高度可以变化的发射平台试飞该航模飞机.根据上面的探究发现解决下列问题.(1)若发射平台相对于安全线的高度为0m 求飞机落到安全线时飞行的水平距离(2)在安全线上设置回收区域,125m,5m ==MN AM MN .若飞机落到MN 内(不包括端点,M N ) 求发射平台相对于安全线的高度的变化范围.50.(2023·河北·统考中考真题)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题 请解答这道题.如图,在平面直角坐标系中 一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出 并运动路线为抛物线21:(3)2C y a x =-+的一部分 淇淇恰在点(0)B c ,处接住 然后跳起将沙包回传 其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标 并求a c 的值(2)若嘉嘉在x 轴上方1m 的高度上 且到点A 水平距离不超过1m 的范围内可以接到沙包 求符合条件的n 的整数值.51.(2023·河南·统考中考真题)小林同学不仅是一名羽毛球运动爱好者 还喜欢运用数学知识对羽毛球比赛进行技术分析 下面是他对击球线路的分析.如图,在平面直角坐标系中 点A C 在x 轴上 球网AB 与y 轴的水平距离3m OA = 2m CA = 击球点P 在y 轴上.若选择扣球 羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+ 若选择吊球 羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现 上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近 请通过计算判断应选择哪种击球方式.52.(2023·内蒙古赤峰·统考中考真题)乒乓球被誉为中国国球.2023年的世界乒乓球标赛中中国队包揽了五个项目的冠军成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图一位运动员从球台边缘正上方以击球高度OA为28.75cm的高度将乒乓球向正前方击打到对面球台乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y(单位:cm)乒乓球运行的水平距离记为x(单位:cm).测得如下数据:(1)在平面直角坐标系xOy中描出表格中各组数值所对应的点(),x y并画出表示乒乓球运行轨迹形状的大致图象(2)①当乒乓球到达最高点时与球台之间的距离是__________cm当乒乓球落在对面球台上时到起始点的水平距离是__________cm①求满足条件的抛物线解析式(3)技术分析:如果只上下调整击球高度OA乒乓球的运行轨迹形状不变那么为了确保乒乓球既能过网又能落在对面球台上需要计算出OA的取值范围以利于有针对性的训练.如图①.乒乓球台长OB为274cm 球网高CD 为15.25cm .现在已经计算出乒乓球恰好过网的击球离度OA 的值约为1.27cm .请你计算出乒乓球恰好落在对面球台边缘点B 处时 击球高度OA 的值(乒乓球大小忽略不计).53.(2023·浙江台州·统考中考真题)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲 乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水 此时水面高度为30cm 开始放水后每隔10min 观察一次甲容器中的水面高度 获得的数据如下表: 流水时间t /min 0 10 20 30 40水面高度h /cm (观察值) 30 29 28.1 27 25.8任务1 分别计算表中每隔10min 水面高度观察值的变化量.【建立模型】小组讨论发现:“0=t 30h =”是初始状态下的准确数据 水面高度值的变化不均匀 但可以用一次函数近似地刻画水面高度h 与流水时间t 的关系.任务2 利用0=t 时 30h = 10t =时 29h =这两组数据求水面高度h 与流水时间t 的函数解析式.【反思优化】经检验 发现有两组表中观察值不满足任务2中求出的函数解析式 存在偏差.小组决定优化函数解析式 减少偏差.通过查阅资料后知道:t 为表中数据时 根据解析式求出所对应的函数值 计算这些函数值与对应h 的观察值之差的平方和......记为w w 越小 偏差越小. 任务3 (1)计算任务2得到的函数解析式的w 值.(2)请确定经过()0,30的一次函数解析式 使得w 的值最小.【设计刻度】得到优化的函数解析式后 综合实践小组决定在甲容器外壁设计刻度 通过刻度直接读取时间. 任务4 请你简要写出时间刻度的设计方案.54.(2023·黑龙江·统考中考真题)如图,抛物线23y ax bx =++与x 轴交于()()3,0,1,0A B -两点 交y 轴于点C .(1)求抛物线的解析式.(2)拋物线上是否存在一点P 使得12PBC ABC S S = 若存在 请直接写出点P 的坐标若不存在 请说明理由.55.(2023·广东深圳·统考中考真题)蔬菜大棚是一种具有出色的保温性能的框架覆膜结构 它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架 上面覆上一层或多层保温塑料膜 这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成 其中3m AB = 4m BC = 取BC 中点O 过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E 若以O 点为原点 BC 所在直线为x 轴 OE 为y 轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线AED 的顶点()0,4E 求抛物线的解析式(2)如图,为了保证蔬菜大棚的通风性 该大棚要安装两个正方形孔的排气装置LFGT SMNR 若0.75m FL NR == 求两个正方形装置的间距GM 的长(3)如图,在某一时刻 太阳光线透过A 点恰好照射到C 点 此时大棚截面的阴影为BK 求BK 的长.参考答案一 单选题1.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =--- 下列说法正确的是( ) A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-3 【答案】C【分析】根据二次函数的图象及性质进行判断即可.【详解】二次函数()2323y x =---的对称轴为2x = 顶点坐标为()2,3-①30-<①二次函数图象开口向下 函数有最大值 为=3y -①A B D 选项错误 C 选项正确故选:C.【点睛】本题考查二次函数的图象及性质 熟练掌握二次函数图象和性质是解题的关键.2.(2023·广西·统考中考真题)将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线是( )A .2(3)4y x =-+B .2(3)4y x =++C .2(3)4y x =+-D .2(3)4y x =--【答案】A【分析】根据“左加右减 上加下减”的法则进行解答即可.【详解】解:将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线的函数表达式为:2(3)4y x =-+. 故选:A .【点睛】本题考查了二次函数图象的平移 熟知二次函数图象平移的法则是解答此题的关键.3.(2023·湖南·统考中考真题)如图所示 直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,则下列说法正确的是( )A .b 恒大于0B .a b 同号C .a b 异号D .以上说法都不对【答案】C 【分析】先写出抛物线的对称轴方程 再列不等式 再分a<0 >0a 两种情况讨论即可.【详解】解:①直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴①对称轴为直线>02b x a=-当a<0时,则>0b当>0a 时,则0b <①a b 异号故选:C .【点睛】本题考查的是二次函数的性质 熟练的利用对称轴在y 轴的右侧列不等式是解本题的关键.4.(2023·辽宁大连·统考中考真题)已知抛物线221y x x =--,则当03x ≤≤时 函数的最大值为( ) A .2-B .1-C .0D .2【答案】D 【分析】把抛物线221y x x =--化为顶点式 得到对称轴为1x = 当1x =时 函数的最小值为2- 再分别求出0x =和3x =时的函数值 即可得到答案.【详解】解:①()222112y x x x =--=--①对称轴为1x = 当1x =时 函数的最小值为2-当0x =时 2211y x x =--=- 当3x =时 232312y =-⨯-=①当03x ≤≤时 函数的最大值为2故选:D.【点睛】此题考查了二次函数的最值 熟练掌握二次函数的性质是解题的关键.5.(2023·四川成都·统考中考真题)如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点 下列说法正确的是( )A .抛物线的对称轴为直线1x =B .抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C .A B 两点之间的距离为5D .当1x <-时 y 的值随x 值的增大而增大【答案】C 【分析】待定系数法求得二次函数解析式 进而逐项分析判断即可求解.【详解】解:①二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点①0936a =--①1a =①二次函数解析式为26y x x =+-212524x ⎛⎫=+- ⎪⎝⎭ 对称轴为直线12x =- 顶点坐标为125,24⎛⎫-- ⎪⎝⎭ 故A B 选项不正确 不符合题意①10a => 抛物线开口向上 当1x <-时 y 的值随x 值的增大而减小 故D 选项不正确 不符合题意 当0y =时 260x x +-=即123,2x x =-=①()2,0B①5AB = 故C 选项正确 符合题意故选:C .【点睛】本题考查了二次函数的性质 待定系数法求二次函数解析式 抛物线与坐标轴的交点 熟练掌握二次函数的性质是解题的关键.6.(2023·河南·统考中考真题)二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【分析】根据二次函数图象的开口方向 对称轴判断出a b 的正负情况 再由一次函数的性质解答.【详解】解:由图象开口向下可知a<0 由对称轴b x 02a=-> 得0b >. ①一次函数y x b =+的图象经过第一 二 三象限 不经过第四象限.故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质 解答本题的关键是求出a b 的正负情况 要掌握它们的性质才能灵活解题 此题难度不大.7.(2023·内蒙古通辽·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()()1020x ,,, 其中101x << 下列四个结论:①0abc < ①0a b c ++> ①230b c +< ①不等式22c ax bx c x c ++<-+的解集为02x <<.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【分析】根据函数图象可得出a b c 的符号即可判断① 当1x =时 0y <即可判断① 根据对称轴为12b x a=-> 0a >可判断① 21y ax bx c =++ 22c y x c =-+数形结合即可判断①. 【详解】解:①抛物线开口向上 对称轴在y 轴右边 与y 轴交于正半轴①000a b c ><>,,①0abc < 故①正确.①当1x =时 0y <①0a b c ++< 故①错误.①抛物线2y ax bx c =++与x 轴交于两点()()1020x ,,,其中101x << ①2021222b a ++<-< ①3122b a <-< 当322b a -<时 3b a >- 当2x =时 420y a bc =++=122b ac ∴=-- 1232a c a ∴-->- ①20a c ->①()234342220b c a c c a c a c +=--+=-+=--< 故①正确设21y ax bx c =++ 22c y x c =-+ 如图:由图得 12y y <时 02x << 故①正确.综上 正确的有①①① 共3个故选:C .【点睛】本题考查了二次函数的图象及性质 根据二次函数的图象及性质巧妙借助数学结合思想解决问题是解题的关键.8.(2023·四川自贡·统考中考真题)经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x 为自变量)与x 轴有交点,则线段AB 长为( )A .10B .12C .13D .15【答案】B【分析】根据题意 求得对称轴 进而得出1c b =- 求得抛物线解析式 根据抛物线与x 轴有交点得出240b ac ∆=-≥ 进而得出2b =,则1c = 求得,A B 的横坐标 即可求解. 【详解】解:①抛物线22122y x bx b c =-+-+的对称轴为直线1222b b x b a =-=-=⎛⎫⨯- ⎪⎝⎭①抛物线经过23,()41,),(A b m B b c m -+-两点 ①23412b bc b -++-= 即1c b =- ①22221122222y x bx b c x bx b b =-+-+=-+-+- ①抛物线与x 轴有交点①240b ac ∆=-≥ 即()22142202b b b ⎛⎫-⨯-⨯-+-≥ ⎪⎝⎭即2440b b -+≤ 即()220b -≤①2b = 1211c b =-=-=①23264,418118b b c -=-=-+-=+-=①()()41238412AB b c b =+---=--=故选:B .【点睛】本题考查了二次函数的对称性 与x 轴交点问题 熟练掌握二次函数的性质是解题的关键. 9.(2023·四川达州·统考中考真题)如图,拋物线2y ax bx c =++(,,a b c 为常数)关于直线1x =对称.下列五个结论:①0abc > ①20a b += ①420a b c ++> ①2am bm a b +>+ ①30a c +>.其中正确的有( )A .4个B .3个C .2个D .1个【答案】B 【分析】由抛物线的开口方向 与y 轴交点以及对称轴的位置可判断a b c 的符号 由此可判断①正确 由抛物线的对称轴为1x = 得到12b a-= 即可判断① 可知2x =时和0x =时的y 值相等可判断①正确 由图知1x =时二次函数有最小值 可判断①错误 由抛物线的对称轴为1x =可得2b a =- 因此22y ax ax c =-+ 根据图像可判断①正确.【详解】①①抛物线的开口向上0.a ∴>①抛物线与y 轴交点在y 轴的负半轴上0.c ∴< 由02b a->得 0b < 0abc ∴>故①正确 ①抛物线的对称轴为1x = ∴12b a-= ∴2b a =-∴20a b += 故①正确①由抛物线的对称轴为1x = 可知2x =时和0x =时的y 值相等.由图知0x =时 0y <①2x =时 0y <.即420a b c ++<.故①错误①由图知1x =时二次函数有最小值2a b c am bm c ∴++≤++2a b am bm ∴+≤+(a b m ax b +≤+)故①错误①由抛物线的对称轴为1x =可得12b a-= 2b a ∴=-①22y ax ax c =-+当=1x -时 23y a a c a c =++=+.由图知=1x -时0,y >30.a c ∴+>故①正确.综上所述:正确的是①①① 有3个故选:B .【点睛】本题主要考查了二次函数的图像与系数的关系 二次函数的对称轴及顶点位置.熟练掌握二次函数图像的性质及数形结合是解题的关键.10.(2023·四川泸州·统考中考真题)已知二次函数223y ax ax =-+(其中x 是自变量) 当03x <<时对应的函数值y 均为正数,则a 的取值范围为( )A .01a <<B .1a <-或3a >C .30a -<<或0<<3aD .10a -≤<或0<<3a 【答案】D【分析】首先根据题意求出对称轴212a x a -=-= 然后分两种情况:0a >和a<0 分别根据二次函数的性质求解即可.【详解】①二次函数223y ax ax =-+①对称轴212a x a-=-= 当0a >时①当03x <<时对应的函数值y 均为正数①此时抛物线与x 轴没有交点①()22430a a ∆=--⨯<①解得0<<3a当a<0时①当03x <<时对应的函数值y 均为正数①当3x =时 9630y a a =-+≥①解得1a ≥-①10a -≤<①综上所述当03x <<时对应的函数值y 均为正数,则a 的取值范围为10a -≤<或0<<3a .故选:D .【点睛】此题考查了二次函数的图象和性质 解题的关键是分两种情况讨论.11.(2023·四川凉山·统考中考真题)已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是( )A .<0abcB .420a b c -+<C .30a c +=D .20am bm a ++≤(m 为实数)【答案】C 【分析】根据开口方向 与y 轴交于负半轴和对称轴为直线1x =可得00a c ><, 20b a =-< 由此即可判断A 根据对称性可得当2x =-时 0y > 当=1x -时 0y = 由此即可判断B C 根据抛物线开口向上 对称轴为直线1x = 可得抛物线的最小值为a c -+ 由此即可判断D .【详解】解:①抛物线开口向上 与y 轴交于负半轴①00a c ><,①抛物线对称轴为直线1x = ①12b a-= ①20b a =-<。
专题10二次函数一、选择题1.(2023·四川绵阳·统考中考真题)将二次函数2y x =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是()A .b >8B .b >﹣8C .b ≥8D .b ≥﹣8【答案】D【分析】先根据平移原则:上加下减,左加右减写出解析式,再列方程组,有公共点则△≥0,则可求出b 的取值.【详解】解:由题意得:平移后得到的二次函数的解析式为:2=(3)1y x --,则2(3)12y x y x b⎧=--⎨=+⎩,2(3)12--=+x x b ,2880-+-=x x b ,△=(﹣8)2﹣4×1×(8﹣b )≥0,b ≥﹣8,故选:D .【点睛】主要考查的是二次函数图象的平移和两函数的交点问题,二次函数与一次函数图象有公共点.2.(2023·四川眉山·统考中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的一个交点坐标为()1,0,对称轴为直线=1x -,下列四个结论:①<0abc ;②420a b c -+<;③30a c +=;④当31x -<<时,20ax bx c ++<;其中正确结论的个数为()A .1个B .2个C .3个D .4个【答案】D 【分析】根据二次函数开口向上,与y 轴交于y 轴负半轴,00a c ><,,根据对称轴为直线=1x -可得20b a =>,由此即可判断①;求出二次函数与x 轴的另一个交点坐标为()3,0-,进而得到当2x =-时,0y <,由此即可判断②;根据1x =时,0y =,即可判断③;利用图象法即可判断④.A.4个B【答案】B【分析】由抛物线的开口方向、与正确;由抛物线的对称轴为判断③正确;由图知x=A .1个B .【答案】B 【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与可.【详解】解:由图可知,二次函数开口方向向下,与 图象与x 轴交于点(3,0A -10420a b c ∴-+=.5a ∴- 12b a-=-,2b a ∴=.当30a c ∴+=,3c a ∴=-,∴A .1个B .2【答案】C 【分析】开口方向,对称轴,与④即可.【详解】∵抛物线的开口向下,对称轴为直线0,0,0a b c <<<∴()11,A x y 和点()22,B x y 关于对称轴对称,∴abc B.A.<0【答案】C【分析】根据开口方向,与即可判断A;根据对称性可得当线开口向上,对称轴为直线【详解】解:∵抛物线开口向上,与A.抛物线的对称轴为直线C.A,B两点之间的距离为【答案】C【分析】待定系数法求得二次函数解析式,进而逐项分析判断即可求解.【详解】解:∵二次函数∴二次函数解析式为y故A,B选项不正确,不符合题意;a=>,抛物线开口向上,当∵10y=时,2x x+意;当0A .()55,B .246,5⎛⎫ ⎪⎝⎭C .3224,5⎛ ⎝【答案】C 【分析】如图所示,过点C 作CD AB ⊥于D ,连接CP 三角形,即90C ∠=︒,进而利用等面积法求出24CD =【点睛】本题主要考查了勾股定理和勾股定理的逆定理,矩形的性质与判断,垂线段最短,坐标与图形等等,正确作出辅助线是解题的关键.11.(2023·四川雅安·统考中考真题)如图,二次函数A.①②【答案】C【分析】根据抛物线开口方向可得函数的对称性可得∴-【点睛】本题考查圆的的性质,二次函数图象的性质,19.(2022·四川广元·统考中考真题)二次函数1,0),对称轴为直线x=2,下列结论:2,y1)、点B(﹣12,y2)、点C(72,为常数).其中正确的结论有()【详解】解:A 、根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),且对称轴在y 轴的左侧可知0a >,该说法正确,故该选项不符合题意;B 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3)可知03a b c c ++=⎧⎨=-⎩,解得3a b +=,该说法正确,故该选项不符合题意;C 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),对称轴在y 轴的左侧,则抛物线不经过(-1,0),该说法错误,故该选项符合题意;D 、关于x 的一元二次方程ax 2+bx +c =-1根的情况,可以转化为抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的交点情况,根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),310-<-<,结合抛物线开口向上,且对称轴在y 轴的左侧可知抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的有两个不同的交点,该说法正确,故该选项不符合题意;故选:C .【点睛】本题考查二次函数的图像与性质,涉及到开口方向的判定、二次函数系数之间的关系、方程的根与函数图像交点的关系等知识点,根据题中条件得到抛物线草图是解决问题的关键.21.(2022·四川成都·统考中考真题)如图,二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是()A .0a >B .当1x >-时,y 的值随x 值的增大而增大C .点B 的坐标为()4,0D .420a b c ++>【答案】D 【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.【详解】解:A 、根据图像可知抛物线开口向下,即a<0,故该选项不符合题意;B 、根据图像开口向下,对称轴为1x =,当1x >,y 随x 的增大而减小;当1x <,y 随x 的增大而增大,故当11x -<<时,y 随x 的增大而增大;当1x >,y 随x 的增大而减小,故该选项不符合题意;C 、根据二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,可得对8A.4B.92∵P 与OB 、AB 均相切,∴△OBP 边OB 上的高为∵P (m ,-m +6);∴△AOP 边OA 上的高为-m +6,∵AOB AOP APB BOP S S S S =++ ,∴1168622⨯⨯=⨯⨯2y ax =过点P ,∴5a =.故选D .二、填空题①当31x -≤≤时,1y ≤;AOB 内存在唯一点P ,使得其中正确的结论是___________【答案】②③【分析】根据条件可求抛物线与∴12ABM AMF BMF S S S MF =+=⨯V V V 把()0,3B a -,()30A -,代入得:当=1x -是,2y a =-,∴(F -∵点B 是抛物线与y 轴的交点,∴当则'AOA ,'POP 为等边三角形,∴∵'AOA 为等边三角形,(A -当320,2B ⎛⎫- ⎪ ⎪⎝⎭时,∵'2A B 骣琪=琪琪桫当()0,3B -时,2'232A B 骣骣琪琪琪=+琪琪琪琪桫桫【答案】149/519【分析】根据已知得出直角坐标系,通过代入x =4代入抛物线解析式得出下降高度,即可得出答案.【详解】解:建立平面直角坐标系,设横轴通过以上条件可设顶点式y =ax 2+2,把点A 点坐标(∴920a +=,∴29a =-,∴抛物线解析式为:当水面下降,水面宽为8米时,有把4x =代入解析式,得∴水面下降149米;故答案为:149;【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题【答案】8【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高设y=ax2+bx+2.5,将(2.5,0)代入解析式得出0)代入解析式得9a+3b+4=0,联立可求出时的解析式为y=ax2+bx+h,将(4,0)代入可求出【详解】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,【答案】17【分析】根据题意可知,当直线经过点(线只有一个交点时,(x-5)2+8=kx-3,可得出【详解】解:当直线经过点(1,12)时,当直线与抛物线只有一个交点时,(x-5)∴10+k=±12,解得k=2或k=-22(舍去),∴∴k的最大值与最小值的和为15+2=17.故答案为:【答案】1【分析】根据抛物线22y x x k =++与x 轴只有一个交点可知方程22x x k ++=0根的判别式△=0,解方程求出k 值即可得答案.【详解】∵抛物线22y x x k =++与x 轴只有一个交点,∴方程22x x k ++=0根的判别式△=0,即22-4k =0,解得:k =1,故答案为:1【点睛】本题考查二次函数与x 轴的交点问题,对于二次函数2y ax bx c =++(k≠0),当判别式△>0时,抛物线与x 轴有两个交点;当k=0时,抛物线与x 轴有一个交点;当x <0时,抛物线与x 轴没有交点;熟练掌握相关知识是解题关键.三、解答题支付专利费y 元,y (元)与每日产销x (件)满足关系式 2.800.01y x =+(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润.(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价-成本)⨯产销数量-专利费】【答案】(1)()()18300500w m x x =--<≤,()220.018800300w x x x =-+-<≤(2)()15003970w m =-+最大元,1420w =2最大(3)当4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;当 5.1m =时,该工厂应该选择产销任一产品都能获得最大日利润;当5.16m <≤时,该工厂应该选择产销B 产品能获得最大日利润,理由见解析【分析】(1)根据题木所给的利润计算公式求解即可;(2)根据(1)所求利用一次函数和二次函数的性质求解即可;(3)比较(2)中所求A 、B 两种产品的最大利润即可得到答案.【详解】(1)解:由题意得,()()18300500w m x x =--<≤,()()()2222012800.010.018800300w x x x x x =--+=-+-<≤(2)解:∵46m ≤≤,∴80m ->,∴1w 随x 增大而增大,∴当500x =时,1w 最大,最大为()()8500305003970m m -⨯-=-+元;()2220.018800.014001520w x x x =-+-=--+,∵0.010-<,∴当400x <时,2w 随x 增大而增大,∴当300x =时,2w 最大,最大为()20.0130040015201420-⨯-+=元;(3)解:当50039701420m -+>,即4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点【答案】(1)223y x x =-++(2)PBC 的最大面积为278,32P ⎛ ⎝(3)存在,()4,17或()4,17-或()2,143-+,(2,143--+【分析】(1)利用待定系数法代入求解即可;(2)利用待定系数法先确定直线BC 的解析式为3y x =-+作PD x ⊥轴于点D ,交BC 于点E ,得出23PE x x =-+,然后得出三角形面积的函数即可得出结果;(3)分两种情况进行分析:若BC 为菱形的边长,利用菱形的性质求解即可.【详解】(1)解:将点()()()1,0,3,,00,3A B C -代入解析式得:0930a b c a b c -+=⎧⎪12a b =-⎧⎪∴(),3E x x -+,∴2PE x =-+∴(1122PBCS PE OB ∆=⨯⨯=⨯-∴当32x =时,PBC 的最大面积为(3)存在,()2,2N 或(4,17∵()()3,0,0,3B C ,∵抛物线的解析式为设点()()1,,M t N x y ,,若BC 则22BC CM =,即(2181t =+∵31003x t y +=+⎧⎨+=+⎩,∴4,x y t ==-【答案】(1)21262y x x =-++(2)①【分析】(1)根据抛物线对称轴为待定系数法求得c ,即可解答;(设CD a =,则()0,6D a -,求得即可求出CD 的长;②过,E F1322S S S += ,2AD EF ∴+=设21,262F h h h ⎛⎫-++ ⎪⎝⎭,则AH ,EG AB FH AB ⊥⊥ ,EG ∴∥DI EG ⊥ ,90DIE ∴∠=︒,∴112333DI AB h ∴==+,即点D(1)求抛物线的表达式.(2)若直线值时,使得AN MN +有最大值,并求出最大值.一动点,将抛物线向左平移点M ,是否能与A 、P 、Q 【答案】(1)223y x x =-++(2)①当以AM 为对角线时,22Q P A M x x x x ++∴=,即-Q 在抛物线24y x =-+上AQ(1)求抛物线的解析式;(2)如图1,当:3:5BM MQ =时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ 、PO ,其中于点E ,设OQE 的面积为1S ,PQE 的面积为2S .求21S S 的最大值.【答案】(1)214y x x =-(2)()6,3N (3)1【分析】(1)待定系数法求解析式即可求解;(2),过点M 作2MD x ⊥=,垂足为D 根据已知条件得出:BD CD =:3:5BM MQ =,进而列出方程,解方程,即可求解;1⎛⎫⎛设21,4M m m m ⎛⎫- ⎪⎝⎭,则212,4D m m ⎛⎫- ⎪⎝⎭,∵MD QC ∥,∴:BD CD =:3:BM MQ =∵()2,2C -,∴()2210341524m m m m ⎛⎫-- ⎪⎝⎭=---,解得:∵其中点MQ 在抛物线对称轴的左侧.∴k b ⎧+⎪(1)求该运动员从跳出到着陆垂直下降了多少(2)以A为坐标原点建立直角坐标系,求该抛物线表达式;(3)若该运动员在空中共飞行了4s【答案】(1)该运动员从跳出到着陆垂直下降了过点B 作BD y ⊥轴于点D .在Rt OBD △中,sin 37OD AB =⋅︒=答:该运动员从跳出到着陆垂直下降了(2)解:在Rt OBD △中,BD =【分析】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,根据猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元列出方程组,解出即可.(2)根据当50a =时,每天可售出100盒,每盒猪肉粽售价为a 元时,每天可售出猪肉粽()100250a --⎡⎤⎣⎦盒,列出二次函数关系式,再化成顶点式即可得解.【详解】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,由题意得:102100x y x y -=⎧⎨+=⎩解得:4030x y =⎧⎨=⎩∴每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元.(2)(40)[1002(50)]w a a =---22(70)1800a =--+.∴当70a =时,w 最大值为1800元.∴该商家每天销售猪肉粽获得的最大利润为1800元.【点睛】本题主要考查了二元一次方程组的实际应用以及二次函数的实际应用,根据题意列出相应的函数关系式是解此题的关键.47.(2022·四川广元·统考中考真题)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?【答案】(1)科技类图书的单价为38元,文学类图书的单价为26元.(2)社区至少要准备2700元购书款.【分析】(1)设科技类图书的单价为x 元,文学类图书的单价为y 元,然后根据题意可列出方程组进行求解;(2)设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)及题意可分当3040m ≤<时,当4050m ≤≤时及当5060m <≤时,进而问题可分类求解即可.【详解】(1)解:设科技类图书的单价为x 元,文学类图书的单价为y 元,由题意得:2315445282x y x y +=⎧⎨+=⎩,解得:3826x y =⎧⎨=⎩;答:科技类图书的单价为38元,文学类图书的单价为26元.(2)解:设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)可得:①当3040m ≤<时,则有:()3826100122600w m m m =+-=+,∵12>0,∴当m =30时,w 有最小值,即为36026002960w =+=;②当4050m ≤≤时,则有:()()2384026100522600w m m m m m =-++-=-++,∵-1<0,对称轴为直线26m =,∴当4050m ≤≤时,w 随m 的增大而减小,∴当m =50时,w 有最小值,即为250525026002700w =-+⨯+=;③当5060m <≤时,此时科技类图书的单价为785028-=(元),则有()282610022600w m m m =+-=+,∵2>0,∴当m =51时,w 有最小值,即为10226002702w =+=;综上所述:社区至少要准备2700元的购书款.【点睛】本题主要考查二元一次方程组的应用、一次函数与二次函数的应用,解题的关键是找准等量关系,注意分类讨论.48.(2021·四川雅安·统考中考真题)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y (瓶)与每瓶售价x (元)之间存在一次函数关系(其中1021x ≤≤,且x 为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;(1)求y 与x 之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.【答案】(1)5150y x =-+;(2)当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大为500元.(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点为t ,PAB 的面积为S ,求S 与t 的函数关系式;(3)在二次函数图象上是否存在点M 、N 为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点说明理由.【答案】(1)22y x x =-(2)2312S t t =-++(3)存在,(1,1)-N 或(3,3)【分析】(1)由二次函数的最小值为1-,点(1,)M m 是其对称轴上一点,得二次函数顶点为顶点式2(1)1y a x =--,将点(0,0)O 代入即可求出函数解析式;(2)连接OP ,根据AOB OAP OBP S S S S =+-△△△求出S 与t 的函数关系式;当0y =时,220x x -=,0x ∴=或 点P 在抛物线22y x x =-上,∴AOB OAP OBP S S S S ∴=+-△△△12=⨯(3)设()2,2N n n n -,当AB 为对角线时,由中点坐标公式得,当AM 为对角线时,由中点坐标公式得,当AN 为对角线时,由中点坐标公式得,综上:(1,1)-N 或(3,3)或(1,3)-.。
二次函数的实际应用(21题)一、单选题1(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t20≤t≤6.有下列结论:①小球从抛出到落地需要6 s;②小球运动中的高度可以是30 m;③小球运动2 s时的高度小于运动5 s时的高度.其中,正确结论的个数是()A.0B.1C.2D.3【答案】C【分析】本题考查二次函数的图像和性质,令�=0解方程即可判断①;配方成顶点式即可判断②;把t=2和t=5代入计算即可判断③.【详解】解:令�=0,则30t-5t2=0,解得:t1=0,t2=6,∴小球从抛出到落地需要6 s,故①正确;∵�=30t-5t2=-5x-32+45,∴最大高度为45m,∴小球运动中的高度可以是30 m,故②正确;当t=2时,�=30×2-5×22=40;当t=5时,�=30×5-5×52=25;∴小球运动2 s时的高度大于运动5 s时的高度,故③错误;故选C.2(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt△ABC中,∠BAC=90°,AB=12,动点E,F同时从点A出发,分别沿射线AB和射线AC的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接EF,以EF为边向下做正方形EFGH,设点E运动的路程为x0<x<12,正方形EFGH和等腰Rt△ABC重合部分的面积为下列图像能反映y与x之间函数关系的是()A. B.C. D.【答案】A 【分析】本题考查动态问题与函数图象,能够明确y 与x 分别表示的意义,并找到几何图形与函数图象之间的关系,以及对应点是解题的关键,根据题意并结合选项分析当HG 与BC 重合时,及当x ≤4时图象的走势,和当x >4时图象的走势即可得到答案.【详解】解:当HG 与BC 重合时,设AE =x ,由题可得:∴EF =EH =2x ,BE =12-x ,在Rt △EHB 中,由勾股定理可得:BE 2=BH 2+EH 2,∴2x 2+2x 2=12-x 2,∴x =4,∴当0<x ≤4时,y =2x 2=2x 2,∵2>0,∴图象为开口向上的抛物线的一部分,当HG 在BC 下方时,设AE =x ,由题可得:∴EF =2x ,BE =12-x ,∵∠AEF =∠B =45°,∠A =∠EOB =90°,∴△FAE ∽△EOB ,∴AE EF =EO EB ,∴x 2x=EO 12-x ,∴EO =12-x 2,∴当4<x <12时,y =2x ·12-x 2=12-x x =-x 2+12x ,∵-1<0,∴图象为开口向下的抛物线的一部分,综上所述:A 正确,故选:A .3(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,AB =6cm ,BC =8cm ,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,EF =23cm ,∠E =60°,现将菱形EFGH 以1cm/s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD重叠部分的面积S cm 2 与运动时间t s 之间的函数关系图象大致是()A. B.C. D.【答案】D 【分析】本题考查了解直角三角形的应用,菱形的性质,动点问题的函数图象,二次函数的图象的性质,先求得菱形的面积为63,进而分三种情形讨论,重合部分为三角形,重合部分为五边形,重合部分为菱形,分别求得面积与运动时间的函数关系式,结合选项,即可求解.【详解】解:如图所示,设EG ,HF 交于点O ,∵菱形EFGH ,∠E =60°,∴HG =GF又∵∠E =60°,∴△HFG 是等边三角形,∵EF =23cm ,∠HEF =60°,∴∠OEF =30°∴EG =2EO =2×EF cos30°=3EF =6∴S 菱形EFG H =12EG ⋅FH =12×6×23=63当0≤x ≤3时,重合部分为△MNG ,如图所示,依题意,△MNG 为等边三角形,运动时间为t ,则NG =t cos30°=233t ,∴S =12×NG ×NG ×sin60°=34233t 2=33t 2当3<x≤6时,如图所示,依题意,EM=EG-t=6-t,则EK=EMsin60°=6-t32=2336-t∴S△EKJ=12EJ⋅EM=12×2336-t2=336-t2∴S=S菱形EFGH-S△EKJ=6-336-t2=-33t2+43t-123+6∵EG=6<BC∴当6<x≤8时,S=63当8<x≤11时,同理可得,S=6-33t-82当11<x≤14时,同理可得,S=336-t-82=3314-t2综上所述,当0≤x≤3时,函数图象为开口向上的一段抛物线,当3<x≤6时,函数图象为开口向下的一段抛物线,当6<x≤8时,函数图象为一条线段,当8<x≤11时,函数图象为开口向下的一段抛物线,当11<x≤14时,函数图象为开口向上的一段抛物线;故选:D.二、填空题4(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是74m ,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =m .【答案】353【分析】本题考查的是二次函数的实际应用,设抛物线为y =a x -5 2+4,把点0,74,代入即可求出解析式;当y =0时,求得x 的值,即为实心球被推出的水平距离OM .【详解】解:以点O 为坐标原点,射线OM 方向为x 轴正半轴,射线OP 方向为y 轴正半轴,建立平面直角坐标系,∵出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .设抛物线解析式为:y =a x -5 2+4,把点0,74 代入得:25a +4=74,解得:a =-9100,∴抛物线解析式为:y =-9100x -5 2+4;当y =0时,-9100x -5 2+4=0,解得,x 1=-53(舍去),x 2=353,即此次实心球被推出的水平距离OM 为353m .故答案为:3535(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系y =-0.02x 2+0.3x +1.6的图象,点B 6,2.68 在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长CD =4m ,高DE =1.8m 的矩形,则可判定货车完全停到车棚内(填“能”或“不能”).【答案】能【分析】本题主要考查了二次函数的实际应用,根据题意求出当x =2时,y 的值,若此时y 的值大于1.8,则货车能完全停到车棚内,反之,不能,据此求解即可.【详解】解:∵CD =4m ,B 6,2.68 ,∴6-4=2,在y =-0.02x 2+0.3x +1.6中,当x =2时,y =-0.02×22+0.3×2+1.6=2.12,∵2.12>1.8,∴可判定货车能完全停到车棚内,故答案为:能.6(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为xm ,矩形菜地面积为S ,当x ≤8时,如图,则在射线OC 上的长为16-x -1.4+52=19.6-x 2则S =x ⋅19.6-x 2=-12x 2+9.8x =-12x -9.8 2+48.02,∵-12<0,∴当x ≤9.8时,S 随x 的增大而增大,∴当x =8时,S 的最大值为46.4;当x >8时,如图,则矩形菜园的总长为16+6.6+5 =27.6m ,则在射线OC 上的长为27.6-2x 2则S =x ⋅13.8-x =-x 2+13.8x =-x -6.9 2+47.61,∵-1<0,∴当x <6.9时,S 随x 的增大而减少,∴当x >8时,S 的值均小于46.4;综上,矩形菜地的最大面积是46.4cm 2;故答案为:46.4.三、解答题7(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索L 1与缆索L 2均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF 为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离OC =100m ,AO =BC =17m ,缆索L 1的最低点P 到FF 的距离PD =2m (桥塔的粗细忽略不计)(1)求缆索L 1所在抛物线的函数表达式;(2)点E 在缆索L 2上,EF ⊥FF ,且EF =2.6m ,FO <OD ,求FO 的长.【答案】(1)y =3500x -50 2+2;(2)FO 的长为40m .【分析】本题考查了二次函数的应用,待定系数法求二次函数解析式,根据题意求得函数解析式是解题的关键.(1)根据题意设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入求解即可;(2)根据轴对称的性质得到缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,由EF =2.6m ,把y =2.6代入求得x 1=-40,x 2=-60,据此求解即可.【详解】(1)解:由题意得顶点P 的坐标为50,2 ,点A 的坐标为0,17 ,设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入得17=a 0-50 2+2,解得a =3500,∴缆索L 1所在抛物线的函数表达式为y =3500x -50 2+2;(2)解:∵缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,∴缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,∵EF =2.6,∴把y =2.6代入得,2.6=3500x +50 2+2,解得x 1=-40,x 2=-60,∴FO=40m或FO=60m,∵FO<OD,∴FO的长为40m.8(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长80m.设垂直于墙的边AB长为x米,平行于墙的边BC为y米,围成的矩形面积为Scm2.(1)求y与x,s与x的关系式.(2)围成的矩形花圃面积能否为750cm2,若能,求出x的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x的值.【答案】(1)y=80-2x19≤x<40;s=-2x2+80x(2)能,x=25(3)s的最大值为800,此时x=20【分析】本题主要考查一元二次方程的应用和二次函数的实际应用:(1)根据AB+BC+CD=80可求出y与x之间的关系,根据墙的长度可确定x的范围;根据面积公式可确立二次函数关系式;(2)令s=750,得一元二次方程,判断此方程有解,再解方程即可;(3)根据自变量的取值范围和二次函数的性质确定函数的最大值即可.【详解】(1)解:∵篱笆长80m,∴AB+BC+CD=80,∵AB=CD=x,BC=y,∴x+y+x=80,∴y=80-2x∵墙长42m,∴0<80-2x≤42,解得,19≤x<40,∴y=80-2x19≤x<40;又矩形面积s=BC⋅AB=y⋅x=80-2xx=-2x2+80x;(2)解:令s=750,则-2x2+80x=750,整理得:x2-40x+375=0,此时,Δ=b 2-4ac =-40 2-4×375=1600-1500=100>0,所以,一元二次方程x 2-40x +375=0有两个不相等的实数根,∴围成的矩形花圃面积能为750cm 2;∴x =--40 ±1002,∴x 1=25,x 2=15,∵19≤x <40,∴x =25;(3)解:s =-2x 2+80x =-2x -20 2+800∵-2<0,∴s 有最大值,又19≤x <40,∴当x =20时,s 取得最大值,此时s =800,即当x =20时,s 的最大值为8009(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度h m 满足关系式h =-5t 2+v 0t ,其中t s 是物体运动的时间,v 0m/s 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后s 时离地面的高度最大(用含v 0的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.【答案】(1)v 010(2)20m/s (3)小明的说法不正确,理由见解析【分析】本题考查了二次函数的应用,解题的关键是:(1)把函数解析式化成顶点式,然后利用二次函数的性质求解即可;(2)把t =v 010,h =20代入h =-5t 2+v 0t 求解即可;(3)由(2),得h =-5t 2+20t ,把h =15代入,求出t 的值,即可作出判断.【详解】(1)解:h =-5t 2+v 0t=-5t -v 010 2+v 0220,∴当t =v 010时,h 最大,故答案为:v 010;(2)解:根据题意,得当t =v 010时,h =20,∴-5×v 0102+v 0×v 010=20,∴v 0=20m/s (负值舍去);(3)解:小明的说法不正确.理由如下:由(2),得h =-5t 2+20t ,当h =15时,15=-5t 2+20t ,解方程,得t 1=1,t 2=3,∴两次间隔的时间为3-1=2s ,∴小明的说法不正确.10(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线y =ax 2+x 和直线y =-12x +b .其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .【答案】(1)①a =-115,b =8.1;②8.4km (2)-227<a <0【分析】本题考查了二次函数和一次函数的综合应用,涉及待定系数法求解析式,二次函数的图象和性质,一次函数的图象与性质等知识点,熟练掌握二次函数和一次函数的图象与性质是解题的关键.(1)①将9,3.6 代入即可求解;②将y =-115x 2+x 变为y =-115x -152 2+154,即可确定顶点坐标,得出y =2.4km ,进而求得当y =2.4km 时,对应的x 的值,然后进行比较再计算即可;(2)若火箭落地点与发射点的水平距离为15km ,求得a =-227,即可求解.【详解】(1)解:①∵火箭第二级的引发点的高度为3.6km∴抛物线y=ax2+x和直线y=-12x+b均经过点9,3.6∴3.6=81a+9,3.6=-12×9+b解得a=-115,b=8.1.②由①知,y=-12x+8.1,y=-115x2+x∴y=-115x2+x=-115x-1522+154∴最大值y=154km当y=154-1.35=2.4km时,则-115x2+x=2.4解得x1=12,x2=3又∵x=9时,y=3.6>2.4∴当y=2.4km时,则-12x+8.1=2.4解得x=11.44-3=8.4km∴这两个位置之间的距离8.4km.(2)解:当水平距离超过15km时,火箭第二级的引发点为9,81a+9,将9,81a+9,15,0代入y=-12x+b,得81a+9=-12×9+b,0=-12×15+b解得b=7.5,a=-2 27∴-227<a<0.11(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒.(1)求这两种粽子的进价;(2)设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),求y关于x的函数表达式并求出y的最大值.【答案】(1)猪肉粽每盒50元,豆沙粽每盒30元(2)y=-10x2+1200x-35000或y=-10x-602+1000,当x=60时,y取得最大值为1000元【分析】本题考查列分式方程解应用题和二次函数求最值,解决本题的关键是正确寻找本题的等量关系及二次函数配方求最值问题.(1)设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元.根据“用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同”即可列出方程,求解并检验即可;(2)根据题意可列出y关于x的函数解析式,再根据二次函数的性质即可解答.【详解】(1)解:设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元由题意得:5000n+20=3000n解得:n=30经检验:n=30是原方程的解且符合题意∴n+20=50答:猪肉粽每盒50元,豆沙粽每盒30元.(2)解:设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),则y=x-50180-10x-52=-10x2+1200x-35000=-10x-602+1000∵52≤x≤70,-10<0,∴当x=60时,y取得最大值为1000元.12(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元⋯1214161820⋯销售量y/盒⋯5652484440⋯(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.【答案】(1)y=-2x+80(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w元,根据利润=单件利润×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w元,根据利润=单件利润×销售量-m×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可.【详解】(1)解∶设y与x的函数表达式为y=kx+b,把x=12,y=56;x=20,y=40代入,得12k+b=56 20k+b=40 ,解得k =-2b =80 ,∴y 与x 的函数表达式为y =-2x +80;(2)解:设日销售利润为w 元,根据题意,得w =x -10 ⋅y=x -10 -2x +80=-2x 2+100x -800=-2x -25 2+450,∴当x =25时,w 有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;(3)解:设日销售利润为w 元,根据题意,得w =x -10-m ⋅y=x -10-m -2x +80=-2x 2+100+2m x -800-80m ,∴当x =-100+2m 2×-2=50+m 2时,w 有最大值为-250+m 2 2+100+2m 50+m 2 -800-80m ,∵糖果日销售获得的最大利润为392元,∴-250+m 22+100+2m 50+m 2 -800-80m =392,化简得m 2-60m +116=0解得m 1=2,m 2=58当m =58时,x =-b 2a=54,则每盒的利润为:54-10-58<0,舍去,∴m 的值为2.13(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润×销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,w =5-x -2 100+50x=-50x 2+50x +300=-50x-122+312.5,∵-50<0,∴当x=12时,w有最大值,最大值为312.5,∴5-x=4.5,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.14(2024·四川遂宁·中考真题)某酒店有A、B两种客房、其中A种24间,B种20间.若全部入住,一天营业额为7200元;若A、B两种客房均有10间入住,一天营业额为3200元.(1)求A、B两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?【答案】(1)A种客房每间定价为200元,B种客房每间定价为为120元;(2)当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.【分析】(1)设A种客房每间定价为x元,B种客房每间定价为为y元,根据题意,列出方程组即可求解;(2)设A种客房每间定价为a元,根据题意,列出W与a的二次函数解析式,根据二次函数的性质即可求解;本题考查了二元一次方程组的应用,二次函数的应用,根据题意,正确列出二元一次方程组和二次函数解析式是解题的关键.【详解】(1)解:设A种客房每间定价为x元,B种客房每间定价为为y元,由题意可得,24x+20y=7200 10x+10y=3200,解得x=200 y=120 ,答:A种客房每间定价为200元,B种客房每间定价为为120元;(2)解:设A种客房每间定价为a元,则W=24-a-200 10a=-110a2+44a=-110a-2202+4840,∵-110<0,∴当a=220时,W取最大值,W最大值=4840元,答:当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.15(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A类特产的售价为60元/件,B类特产的售价为72元/件(2)y=10x+60(0≤x≤10)(3)A类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,1 根据题意设每件A类特产的售价为x元,则每件B类特产的售价为132-x元,进一步得到关于x的一元一次方程求解即可;2 根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x得取值范围;3 结合(2)中A类特产降价x元与每天的销售量y件,得到A类特产的利润,同时求得B类特产的利润,整理得到关于x的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A类特产的售价为x元,则每件B类特产的售价为132-x元.根据题意得3x+5132-x=540.解得x=60.则每件B类特产的售价132-60=72(元).答:A类特产的售价为60元/件,B类特产的售价为72元/件.(2)由题意得y=10x+60∵A类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴0≤x≤10.答:y=10x+60(0≤x≤10).(3)w=(60-50-x)(10x+60)+100×(72-60)=-10x2+40x+1800=-10(x-2)2+1840.∵-10<0,∴当x=2时,w有最大值1840.答:A类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.16(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.制定加工方案生产背景背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.【答案】任务1:y=-13x+703;任务2:w=-2x2+72x+3360(x>10);任务3:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润【分析】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键.任务1:根据题意安排x名工人加工“雅”服装,y名工人加工“风”服装,得出加工“正”服装的有70-x-y人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,然后将2种服装的获利求和即可得出结果;任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.【详解】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x名工人加工“雅”服装,y名工人加工“风”服装,∴加工“正”服装的有70-x-y人,∵“正”服装总件数和“风”服装相等,∴70-x-y×1=2y,整理得:y=-13x+703;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,∴w=2y×24+70-x-y×48+x100-2x-10,整理得:w=-16x+1120+-32x+2240+-2x2+120x∴w=-2x2+72x+3360(x>10)任务3:由任务2得w=-2x2+72x+3360=-2x-182+4008,∴当x=18时,获得最大利润,y=-13×18+703=523,∴x≠18,∵开口向下,∴取x=17或x=19,当x=17时,y=533,不符合题意;当x=19时,y=513=17,符合题意;∴70-x-y=34,综上:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.17(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?【答案】(1)y=-25x2+20x+12000,每辆轮椅降价20元时,每天的利润最大,为12240元(2)这天售出了64辆轮椅【分析】本题考查二次函数的实际应用,正确的列出函数关系式,是解题的关键:(1)根据总利润等于单件利润乘以销量,列出二次函数关系式,再根据二次函数的性质求最值即可;(2)令y=12160,得到关于x的一元二次方程,进行求解即可.【详解】(1)解:由题意,得:y=200-x60+x10×4=-25x2+20x+12000;∵每辆轮椅的利润不低于180元,∴200-x≥180,∴x≤20,∵y=-25x2+20x+12000=-25x-252+12250,∴当x<25时,y随x的增大而增大,∴当x=20时,每天的利润最大,为-25×20-252+12250=12240元;答:每辆轮椅降价20元时,每天的利润最大,为12240元;(2)当y=12160时,-25x2+20x+12000=12160,解得:x1=10,x2=40(不合题意,舍去);∴60+1010×4=64(辆);答:这天售出了64辆轮椅.18(2024·江西·中考真题)如图,一小球从斜坡O点以一定的方向弹出球的飞行路线可以用二次函数y=ax2+bx a<0刻画,斜坡可以用一次函数y=14x刻画,小球飞行的水平距离x(米)与小球飞行的高度y(米)的变化规律如下表:x012m4567⋯y07261528152n72⋯(1)①m =,n =;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系y =-5t 2+vt .①小球飞行的最大高度为米;②求v 的值.【答案】(1)①3,6;②152,158;(2)①8,②v =410【分析】本题主要考查二次函数的应用以及从图象和表格中获取数据,(1)①由抛物线的顶点坐标为4,8 可建立过于a ,b 的二元一次方程组,求出a ,b 的值即可;②联立两函数解析式求解,可求出交点A 的坐标;(2)①根据第一问可知最大高度为8米;②将小球飞行高度与飞行时间的函数关系式化简为顶点式即可求得v 值.【详解】(1)解:①根据小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律表可知:抛物线顶点坐标为4,8 ,∴-b 2a =4-b 24a =8 ,解得:a =-12b =4 ,∴二次函数解析式为y =-12x 2+4x ,当y =152时,-12x 2+4x =152,解得:x =3或x =5(舍去),∴m =3,当x =6时,n =y =-12×62+4×6=6,故答案为:3,6.②联立得:y =-12x 2+4x y =14x ,解得:x =0y =0 或x =152y =158,∴点A 的坐标是152,158,(2)①由题干可知小球飞行最大高度为8米,故答案为:8;②y =-5t 2+vt =-5t -v 10 2+v 220,则v 220=8,解得v =410(负值舍去).19(2024·江苏苏州·中考真题)如图,△ABC 中,AC =BC ,∠ACB =90°,A -2,0 ,C 6,0 ,反比例函数y =k xk ≠0,x >0 的图象与AB 交于点D m ,4 ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数y =k xk ≠0,x >0 图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM ∥AB ,交y 轴于点M ,过点P 作PN ∥x 轴,交BC 于点N ,连接MN ,求△PMN 面积的最大值,并求出此时点P 的坐标.【答案】(1)m =2,k =8(2)S △PMN 最大值是92,此时P 3,83【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:(1)先求出B 的坐标,然后利用待定系数法求出直线AB 的函数表达式,把D 的坐标代入直线AB 的函数表达式求出m ,再把D 的坐标代入反比例函数表达式求出k 即可;(2)延长NP 交y 轴于点Q ,交AB 于点L .利用等腰三角形的判定与性质可得出QM =QP ,设点P 的坐标为t ,8t ,2<t <6 ,则可求出S △PMN =12⋅6-t ⋅t ,然后利用二次函数的性质求解即可.【详解】(1)解:∵A -2,0 ,C 6,0 ,∴AC =8.又∵AC =BC ,∴BC =8.∵∠ACB =90°,∴点B 6,8 .设直线AB 的函数表达式为y =ax +b ,将A -2,0 ,B 6,8 代入y =ax +b ,得-2a +b =06a +b =8 ,。
中考数学总复习《二次函数》专项测试卷-附参考答案学校:___________姓名:___________班级:___________考号:___________一、单选题(共12题;共24分)1.二次函数y=﹣x2+2x﹣4,当﹣1<x<2时,y的取值范围是()A.﹣7<y<﹣4B.﹣7<y≤﹣3C.﹣7≤y<﹣3D.﹣4<y≤﹣3 2.已知二次函数y=3(x−2)2+ℎ,当自变量x分别取-2,2,5时,对应的值分别为y1,y2和y 3则y1,y2和y3的大小关系正确的是()A.y3<y2<y1B.y1<y2<y3C.y2<y3<y1D.y3<y1<y23.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数ℎ=3.5t−4.9t2(的单位:秒,h的单位:米)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A.0.71B.0.70C.0.63D.0.364.对于二次函数y=−14(x+2)2−1,下列说法正确的是()A.当x>−2时,y随x的增大而增大B.当x=−2时,y有最大值−1C.图象的顶点坐标为(2,−1)D.图象与x轴有两个交点5.抛物线y=2x2−12x+22的顶点是()A.(3,−4)B.(−3,4)C.(3,4)D.(2,4)6.如图,二次函数y=ax2+bx+c(a≠0)的图像的顶点在第一象限,且过点(0,1)和(-1,0)下列结论:①ab<0,②b2-4ac>0,③a-b+c<0,④c=1,⑤当x>-1时,y>0.其中正确结论的个数是()A.2个B.3个C.4个D.5个7.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(3,y2)是抛物线上两点,则y1<y2,其中说法正确的是()A.①②B.②③C.①②④D.②③④8.关于二次函数y=-(x -2)2+3,以下说法正确的是()A.当x>-2时,y随x增大而减小B.当x>-2时,y随x增大而增大C.当x>2时,y随x增大而减小D.当x>2时,y随x增大而增大9.如图,双曲线y= k x经过抛物线y=ax2+bx(a≠0)的顶点(﹣1,m)(m>0),则下列结论中,正确的是()A.a+b=k B.2a+b=0C.b<k<0D.k<a<010.如图,抛物线y=ax2+bx+c交x轴于(−1,0),(3,0)两点,则下列判断中,不正确的是()A.图象的对称轴是直线x=1B.当x>2时,y随x的增大而减小C .当−1<x <1时D .一元二次方程ax 2+bx +c =0的两个根是−1和311.已知点(x 1,y 1),(x 2,y 2)(x 1<x 2)在y =−x 2+2x +m 的图象上,下列说法错误的是( )A .当m >0时,二次函数y =−x 2+2x +m 与x 轴总有两个交点B .若x 2=2,且y 1>y 2,则0<x 1<2C .若x 1+x 2>2,则y 1>y 2D .当−1≤x ≤2时,y 的取值范围为m −3≤y ≤m12.从底面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式是:h =30t ﹣5t 2这个函数图象如图所示,则小球从第3s 到第5s 的运动路径长为( )A .15mB .20mC .25mD .30m二、填空题(共6题;共6分)13.在二次函数 y =−x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:则m 、n 的大小关系为 m n .(填“<”,“=”或“>”)14.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是 .(只需写一个)15.二次函数 y =ax 2+bx +c 的图象与 x 轴相交于 (−1, 0) 和 (5, 0) 两点,则该抛物线的对称轴是 .16.函数y= {x 2+2x −3(x <0)x 2−4x −3(x ≥0) 的图象与直线y=﹣x+n 只有两个不同的公共点,则n 的取值为 .17.已知二次函数y =﹣x 2+2mx+1,当﹣2≤x≤1时最大值为4,则m 的值为 . 18.若函数y=(m ﹣2)x m 2−2+3是二次函数,则m=三、综合题(共6题;共70分)19.已知抛物线 y =a(x −4)2+2 经过点 (2,−2) .(1)求a 的值;(2)若点A(m,y1),B(n,y2)(m<n<4)都在该抛物线上,试比较y1与y2的大小.20.宁波地区最近雾霾天气频繁,使得空气净化器得以畅销,某商场代理销售某种空气净化器,其进价是500元/台,经过市场销售后发现,在一个月内,当售价是1000元/台时,可售出50台,且售价每降低20元,就可多售出5台.若供货商规定这种空气净化器售价不能低于600元/台,代理销售商每月要完成不低于60台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?21.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?22.如图,是一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m 的景观灯,把拱桥的截面图放在平面直角坐标系中。
2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)1.如图,二次函数216y x bx c =++的图象交坐标轴于点()4,0A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数216y x bx c =++的表达式; (2)将线段PB 绕点P 逆时针旋转90︒得到线段PD ,若D 恰好在抛物线上,求点D 的坐标; (3)过点P 作PQ x ⊥轴分别交直线AB ,抛物线于点Q ,C ,连接AC .若以点B 、Q 、C 为顶点的三角形与APQ △相似,直接写出点P 的坐标. 2.抛物线25y ax bx =++经过点1,0A 和点()5,0B .(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线25y x =+相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM y ∥轴,分别与x 轴和直线CD 交于点M 、N .①连结PC PD 、,如图1,在点P 运动过程中,PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;①连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图2,是否存在点P ,使得CNQ 与PBM 相似?若存在,直接写出满足条件的点P 的坐标;若不存在,说明理由.3.已知抛物线24y ax ax b =-+与x 轴交于A ,B 两点,(A 在B 的左侧),与y 轴交于C ,若OB OC =,且03C (,).(1)求抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; (3)在抛物线上是否存在一点M ,过M 作MN x ⊥轴于N ,以A 、M 、N 为顶点的三角形与AOC ∆相似,若存在,求出所有符合条件的M 点坐标,若不存在,请说明理由. 4.如图.在平面直角坐标系中.抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C .点A 的坐标为()1,0-,点C 的坐标为()0,2-.已知点(),0E m 是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE x ⊥轴交抛物线于点P ,交BC 于点F .(1)求该抛物线的表达式;(2)若:1:2EF PF =,请求出m 的值;(3)是否存在这样的m ,使得BEP △与ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由;(4)当点E 运动到抛物线对称轴上时,点M 是x 轴上一动点,点N 是抛物线上的动点,在运动过程中,是否存在以C 、B 、M 、N 为顶点的四边形是平行四边形?若不存在,请说明理由;若存在,请直接写出点M 的坐标.5.如图,二次函数212y x bx c =-++图像交x 轴于点A ,B (A 在B 的左侧),与y 轴交于点(0,3)C ,CD y ⊥轴,交抛物线于另一点D ,且5CD =,P 为抛物线上一点,PE y轴,与x 轴交于E ,与BC ,CD 分别交于点F ,G .(1)求二次函数解析式;(2)当P 在CD 上方时,是否存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,若存在,求出CPG △与FBE 的相似比,若不存在,说明理由.(3)点D 关于直线PC 的对称点为D ,当点D 落在抛物线的对称轴上时,此时点P 的坐标为________.6.如图,抛物线22y ax bx =++与x 轴交于点A ,B ,与y 轴交于点C ,已知A ,B 两点坐标分别是(1,0)A ,(4,0)B -,连接,AC BC .(1)求抛物线的表达式;(2)将ABC ∆沿BC 所在直线折叠,得到DBC ∆,点A 的对应点D 是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D 的坐标;若点D 不在对称轴上,请说明理由;(3)若点P 是抛物线位于第二象限图象上的一动点,连接AP 交BC 于点Q ,连接BP ,BPQ ∆的面积记为1S ,ABQ ∆的面积记为2S ,求12S S 的值最大时点P 的坐标. 7.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.8.已知菱形OABC 的边长为5,且点(34)A ,,点E 是线段BC 的中点,过点A ,E 的抛物线2y ax bx c =++与边AB 交于点D ,(1)求点E 的坐标;(2)连接DE ,将BDE △沿着DE 翻折痕.①当B 点的对应点B '恰好落在线段AC 上时,求点D 的坐标;①连接OB ,BB ',若BB D '△与BOC 相似,请直接写出此时抛物线二次项系数=a ______. 9.如图,抛物线22(0)y ax x c a =-+≠与x 轴交于A 、()3,0B 两点,与y 轴交于点()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式;(2)已知点M 是x 轴上的动点,过点M 作x 轴的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A 、M 、G 为顶点的三角形与BCD △相似,若存在,请求出点M 的坐标;若不存在,请说明理由.(3)在直线BC 下方抛物线上一点P ,作PQ 垂直BC 于点Q ,连接CP ,当CPQ 中有一个角等于ACO ∠时,求点P 的坐标.10.如图,抛物线顶点D 在x 轴上,且经过(0,3)-和(4,3)-两点,抛物线与直线l 交于A 、B 两点.(1)直接写出抛物线解析式和D 点坐标;(2)如图1,若()03A ,-,且 94ABDS =,求直线l 解析式; (3)如图2,若90ADB ∠=︒,求证:直线l 经过定点,并求出定点坐标.11.如图1,已知抛物线2=23y x x --与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 下方抛物线上一动点,过点P 作∥PE BC ,交x 轴于点E ,连接OP 交BC 于点F .(1)直接写出点A ,B ,C 的坐标以及抛物线的对称轴; (2)当点P 在线段BC 下方抛物线上运动时,求BFPE取到最小值时点P 的坐标; (3)当点P 在y 轴右边抛物线上运动时,过点P 作PE 的垂线交抛物线对称轴于点G ,是否存在点P ,使以P 、E 、G 为顶点的三角形与①AOC 相似?若存在,来出点P 的坐标;若不存在,请说明理由.12.如图,抛物线212ax ax b =-+y 经过()1,0A -,32,2C ⎛⎫⎪⎝⎭两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点(不与点B 重合),点Q 在线段MB 上移动,且2PM MQ MB =⋅,设线段OP x =,2MQ y =,求2y 与x 的函数关系式,并直接写出自变量x 的取值范围;并直接写出PM APPQ BQ-的值;(3)在同一平面直角坐标系中,两条直线x m =,x n =分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,.H 问四边形EFHG 能否为平行四边形?若能,求m ,n 之间的数量关系;若不能,请说明理由.13.已知抛物线213222y x x =-++交x 轴于A 、B 两点,A 在B 的左边,交y 轴于点C .(1)求抛物线顶点的坐标;(2)如图1,若10,2E ⎛⎫- ⎪⎝⎭,P 在抛物线上且在直线AE 上方,PQ AE ⊥于O ,求PQ 的最大值;(3)如图2,点(),3D a (32a <)在抛物线上,过A 作直线交抛物线于第四象限另一点F ,点M 在x 轴上,以M 、B 、D 为顶角的三角形与AFB △相似,求点M 的坐标. 14.如图,抛物线23y ax bx =+-与x 轴交于点()1,0A 、()3,0B ,与y 轴交于点C ,联结AC 、BC .(1)求该抛物线的表达式及顶点D 的坐标;(2)如果点P 在抛物线上,CB 平分ACP ∠,求点P 的坐标:(3)如果点Q 在抛物线的对称轴上,DBQ 与ABC 相似.求点Q 的坐标.15.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式; (2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.16.如图①,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,3),顶点为D (4,-1),对称轴与直线BC 交于点E ,与x 轴交于点F .(1)求二次函数的解析式;(2)点M 在第一象限抛物线的对称轴上,若点C 在BM 的垂直平分线上,求点M 的坐标; (3)如图①,过点E 作对称轴的垂线在对称轴的右侧与抛物线交于点H ,x 轴上方的对称轴上是否存在一点P ,使以E ,H ,P 为顶点的三角形与EFB △相似,若存在,求出P点坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,已知抛物线2y ax x c =++经过()2,0A -,()0,4B 两点,直线3x =与x 轴交于点C .(1)求a ,c 的值;(2)经过点O 的直线分别与线段AB ,直线3x =交于点D ,E ,且BDO △与OCE △的面积相等,求直线DE 的解析式;(3)P 是抛物线上位于第一象限的一个动点,在线段OC 和直线3x =上是否分别存在点F ,G ,使B ,F ,G ,P 为顶点的四边形是以BF 为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.18.如图1,抛物线2y ax bx c =++与x 轴交于A ,B (点A 在点B 左侧),与y 轴负半轴交于C ,且满足2OA OB OC ===.(1)求抛物线的解析式;(2)如图2,D 为y 轴负半轴上一点,过D 作直线l 垂直于直线BC ,直线l 交抛物线于E ,F 两点(点E 在点F 右侧),若3DF DE =,求D 点坐标; (3)如图3,点M 为抛物线第二象限部分上一点,点M ,N 关于y 轴对称,连接MB ,P 为线段MB 上一点(不与M 、B 重合),过P 点作直线x t =(t 为常数)交x 轴于S ,交直线NB 于Q ,求QS PS -的值(用含t 的代数式表示).参考答案:1.(1)211266y x x =-- (2)()3,1D -或()8,10D -(3)点P 的坐标为()011-,或()10,.2.(1)265y x x =-+ (2)37,24⎛⎫- ⎪⎝⎭或()3,4-3.(1)243y x x =-+ (2)()2,2P 或()2,2-(3)存在符合条件的M 点,且坐标为:110(3M ,7)9-,()26,15M ,38(3M ,5)9-4.(1)213222y x x =--; (2)2m =;(3)存在,m 的值为0或3;(4)存在,M 点的坐标为()7,0或()1,0M 或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭.5.(1)215322y x x =-++;(2)存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,CPG △与FBE 的相似比为2或25;(3)P 点横坐标55.6.(1)213222y x x =--+(2)点D 不在抛物线的对称轴上, (3)(2,3)-7.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -8.(1)13(2)2E , (2)①11(4)2D ,或23(4)6D ,;①47-9.(1)2=23y x x --(2)()0,0,()6,0,8,03⎛⎫ ⎪⎝⎭,10,03⎛⎫⎪⎝⎭(3)57,24⎛⎫- ⎪⎝⎭或者315,24⎛⎫- ⎪⎝⎭10.(1)()2324y x =--,()2,0D (2)334y x =-或1534y x =- (3)证明见解析,定点坐标为423⎛⎫- ⎪⎝⎭,11.(1)A (﹣1,0),B (3,0),C (0,﹣3),对称轴为直线x =1(2)当t =32时,BF PE 最小,最小值为47,此时P (32,﹣154).(3)存在,点P 的坐标为(2,﹣3)12.(1)211322y x x =-++(2)22150322y x x x =-+≤<(),PM AP PQ BQ -的值为0 (3)m 、n 之间的数量关系是2(1)m n m +=≠13.(1)(32,258)答案第3页,共3页(3)(2,0)或(-5,0)或13,07⎛⎫ ⎪⎝⎭或2205⎛⎫- ⎪⎝⎭,14.(1)2=+43y x x --,(21)D , (2)111639⎛⎫ ⎪⎝⎭,- (3)(2,−2)或12,3⎛⎫ ⎪⎝⎭15.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)(3,4)-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭16.(1)21234y x x =-+(2)(4,3(3)存在P 1)或(4,1),使以E ,H ,P 为顶点的三角形与EFB △相似,17.(1)12a =-,4c = (2)23y x =- (3)存在这样的点F ,点F 的坐标为(2,0)或18.(1)2122y x =- (2)()0,1D -或190,8D ⎛⎫- ⎪⎝⎭, (3)24QS PS t -=-+。
2023年中考专题训练——二次函数与不等式1.在平面直角坐标系xOy 中,存在抛物线2y x 2x m 1=+++以及两点()()A m m 1B m m 3++,和,. (1)求该抛物线的顶点坐标;(用含m 的代数式表示) (2)若该抛物线经过点()A m m 1+,,求此抛物线的表达式; (3)若该抛物线与线段AB 有公共点,结合图象,求m 的取值范围.2.已知二次函数2y ax bx c =++的图象经过点(1,0)-,且对一切实数x ,都有22111424x ax bx c x x ≤++≤++成立. (1)当1x =时,求y 的值; (2)求此二次函数的表达式;(3)当x t m =+时,二次函数2y ax bx c =++的值为1y ,当2x t =时,二次函数2y ax bx c =++的值为2y ,若对一切11t -≤≤,都有12y y <,求实数m 的取值范围.3.已知函数222222()22()x kx k k x k y x kx k k x k ⎧-+-+=⎨++->⎩,(k 为常数). (1)当1k =-时,①求此函数图象与y 轴交点坐标.②当函数y 的值随x 的增大而增大时,自变量x 的取值范围为_____ ___. (2)若已知函数经过点(1,5),求k 的值,并直接写出当20x -时函数y 的取值范围. (3)要使已知函数y 的取值范围内同时含有2±和4±这四个值,直接写出k 的取值范围.4.在初中阶段的函数学习中,我们经历了列表、描点、连线、画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数22y x x c =-+的过程.(1已知函数过点()1,4,则这个函数的解析式为:___ ___.(2)在(1)的条件下,在平面直角坐标系中,若函数22y x x c =-+的图象与x 轴有两个交点,请画出该函数的图象,并写出函数图象的性质:_____ __(写出一条即可).(3)结合(2)中你所画的函数图象,求不等式221x x c x -+≥+的解集.5.在平面直角坐标系中,已知抛物线C :y =ax 2+2x ﹣1(a ≠0)和直线l :y =kx +b ,点A (﹣3,﹣3),B (1,﹣1)均在直线l 上. (1)求出直线l 的解析式;(2)当a =﹣1,二次函数y =ax 2+2x ﹣1的自变量x 满足m ≤x ≤m +2时,函数y 的最大值为﹣4,求m 的值;(3)若抛物线C 与线段AB 有两个不同的交点,求a 的取值范围.6.根据我们学习函数的过程与方法,对函数y =x 2+bx +2﹣c |x ﹣1|的图像和性质进行探究,已知该函数图像经过(﹣1,﹣2)与(2,1)两点, (1)该函数的解析式为 ,补全下表:(2)描点、连线,在所给的平面直角坐标系中画出该函数的图象,写出这个函数的一条性质: .(3)结合你所画的图象与函数y =x 的图象,直接写出x 2+bx +2﹣c |x ﹣1|≤x 的解集 .7.已知函数()()2110by a x a x=-++≠,某兴趣小组对其图像与性质进行了探究,请补充完整探究过程.x … -3 -2 -1 12 3 4 5 … y … -6 -2 2-2 -1 -2 m 385-…(1)请根据给定条件直接写出,,a b m 的值;(2)如图已经画出了该函数的部分图像,请你根据上表中的数据在平面直角坐标系中描点、连线,补充该函数图像,并写出该函数的一条性质;(3)若()214b a x x x-+≥-,结合图像,直接写出x 的取值范围. 8.在平面直角坐标系xOy 中,抛物线23y x bx =-+的对称轴为直线2x =.(1)求b 的值;(2)在y 轴上有一动点(0,)P n ,过点P 作垂直y 轴的直线交抛物线于点1(A x ,1)y ,2(B x ,2)y ,其中12x x <.①当213x x -=时,结合函数图象,求出n 的值;②把直线PB 上方的函数图象,沿直线PB 向下翻折,图象的其余部分保持不变,得到一个新的图象W ,新图象W 在05x 时,满足44y -,求n 的取值范围.9.如图,直线28y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线2y x bx c =++经过点A 和点B .(1)求抛物线的解析式;(2)结合图象直接写出不等式228x bx c x ++>-+的解集;(3)若点1(1,)C y ,2(,)D m y 都在抛物线上,当21y y >时,求m 的取值范围.10.在平面直角坐标系xOy 中,抛物线212y ax x c =-+与x 轴交于A ,()3,0B 两点,与直线AM :2y kx b =+交于点A 、()4,5M 两点.(1)求抛物线解析式及顶点C 的坐标.(2)求点A 的坐标,并结合图象写出不等式22ax x c kx b -+>+的解集. (3)将直线AM 向下平移,在平移过程中与抛物线BC 部分图象有交点时(包含B ,C 端点),请直接写出b 的取值范围.11.在平面直角坐标系xOy 中,点A (x 1,y 1),B (x 2,y 2)在抛物线y =﹣x 2+(2a ﹣2)x ﹣a 2+2a 上,其中x 1<x 2.(1)求抛物线的对称轴(用含a 的式子表示); (2)①当x =a 时,求y 的值;②若y 1=y 2=0,求x 1的值(用含a 的式子表示). (3)若对于x 1+x 2<﹣4,都有y 1<y 2,求a 的取值范围. 12.在平面直角坐标系中,已知抛物线2122y x mx =-+,点A 坐标(4,3),点B 坐标3(1,)4--. (1)抛物线的对称轴为直线 ; (2)当抛物线经过点A 时,求m 的值;(3)点1(22P m -,1)y ,点1(2Q m +,2)y 在抛物线2122y x mx =-+上.当12y y >时,求m 的取值范围;(4)当抛物线2122y x mx =-+与线段AB 只有一个公共点时,直接写出m 的取值范围.13.已知二次函数y =x 2+mx +n 的图象经过点A (1,0)和D (4,3),与x 轴的另一个交点为B ,与y 轴交于点C .(1)求二次函数的表达式及顶点坐标;(2)将二次函数y =x 2+mx +n 的图象在点B 、C 之间的部分(包含点B 、C )记为图象G .已知直线l :y =kx ﹣2k +2总位于图象G 的上方,请直接写出k 的取值范围;(3)如果点P (x 1,c )和点Q (x 2,c )在函数y =x 2+mx +n 的图象上,且x 1<x 2,PQ =2a ,求x 12﹣ax 2+6a +4的值.14.在初中阶段的学习中,我们经历了列表,描点,连线画出函数图象,并结合图象研究函数性质的过程.以下是我们研究函数22835x y x =-+性质及其应用的部分过程.请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象:(2)观察该函数图象,写出该函数图象的一条性质:.(3)已知函数3375y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式223383755x x x -≤-+的解集:.(保留1位小数,误差不超过0.2)15.已知抛物线()2230y ax ax a a =--≠与x 轴交于A ,B 两点,且点A 在点B 的左侧. (1)求A ,B 两点的坐标.(2)结合函数图象写出关于x 的不等式2230ax ax a -->的解集.(3)已知点()11M -,,()23N -,,若该抛物线与线段MN 只有一个公共点,直接写出a 的取值范围.16.定义:在平面直角坐标系中,对于任意两点A (x 1,y 1),B (x 2,y 2),如果点C (x ,y )满足12x x x =-,12y y y =-,那么称点C 是点A ,B 的“双减点”.例如:A (3,2),B (-1,5),当点C (x ,y )满足()314x =--=,253y =-=-,则称点C (4,3-)是点A ,B 的“双减点”. (1)写出点A (1-,2),B (2,4-)的“双减点”C 的坐标,并且判断点C 是否在直线AB 上; (2)点E (t ,y 1),F (t+1,y 2),点G (x ,y )是点E ,F 的“双减点”,是否存在非零实数k ,使得点E ,F ,G 均在函数ky x=的图象上,若存在,求实数k 的值,若不存在请说明理由; (3)已知二次函数222y ax bx =+-(0a b >>)的图像经过点(2,6),且与x 轴交于点M (x 1,0),N (x 2,0),若点P 为M ,N 的“双减点”,求点P 与原点O 的距离OP 的取值范围.17.已知抛物线y =ax 2﹣2ax +a ﹣4(a ≠0)的顶点为A ,与x 轴相交于B ,C 两点. (1)求点A 的坐标;(2)若BC =4,求抛物线的解析式;(3)对于抛物线y =ax 2﹣2ax +a ﹣4(a ≠0)上的任意一点M (x 1,y 1)(x 1<0),在函数y =x +2a ﹣5的图象上总能找到一点N (x 2,y 2)(x 2>0)使得y 1=y 2,请结合函数图象,求出a 的取值范围.18.如图,抛物线2y ax bx c =++经过点()2,3A -,与x 轴负半轴交于点B ,与y 轴负半轴交于点()0,3C -,直线y x m =-+经过A 、B 两点.(1)求抛物线的解析式;(2)观察图象,直接写出不等式2ax bx c x m ++<-+的解集;(3)在y 轴上是否存在点D ,使BDO OBA ∠=∠?如果存在,直接写出点D 的坐标;如果不存在,请说明理由.19.已知抛物线y =ax 2+3ax +c (a ≠0)与y 轴交于点A (1)若a >0①当a =1,c =-1,求该抛物线与x 轴交点坐标;②点P (m ,n )在二次函数抛物线y =ax 2+3ax +c 的图象上,且n -c >0,试求m 的取值范围; (2)若抛物线恒在x 轴下方,且符合条件的整数a 只有三个,求实数c 的最小值;(3)若点A 的坐标是(0,1),当-2c <x <c 时,抛物线与x 轴只有一个公共点,求a 的取值范围. 20.已知:抛物线211:43C y x x =-+-与x 轴交于A 、B 两点,点A 在点B 左侧,将1C 绕点A 旋转180゜得到222C y ax bx c =++:交x 轴与点N(1)求2C 的解析式(2)求证:无论x 取何值恒12y y ≤(3)当2243x x mx n ax bx c -+-≤+≤++时,求m 和n 的值.(4)直线:2l y kx =-经过点N ,D 是抛物线2c 上第二象限内的一点,设D 的横坐标为q ,作直线AD 交抛物线1c 于点M ,交直线l 于点E ,若DM =2ED ,求q 值参考答案:1.(1)(1,)m -;(2):2y (1)x =+或2y (1)2x =+-;(3)013m ≤≤-+132m -≤-. 【分析】(1)根据题意将抛物线的一般解析式化为顶点式即可得出抛物线的顶点坐标; (2)根据题意将()A m m 1+,代入求出m 的值即可求得该抛物线的表达式; (3)根据题意分m≥0,m <0两种情形,分别构建不等式解决问题即可. 【解析】解:(1)∵抛物线解析式为:22y x 2x m 1(1)x m =+++=++, ∴顶点坐标为:(1,)m -.(2)∵抛物线经过点()A m m 1+,, ∴21(1)m m m +=++,解得0,2m =-,所以该抛物线的表达式为:2y (1)x =+或2y (1)2x =+-. (3)当m≥0时,如图1中,观察图象可知:21213m m m m m +≤+++≤+, ∴220m m +≥且2220m m +-≤, 解得013m ≤≤-. 当m <0时,如图2中,观察图象可知:21213m m m m m +≤+++≤+,∴m 2+2m≥0且m 2+2m-2≤0,解得12m -≤-,综上所述,满足条件的m 的值为:01m ≤≤-或12m -≤≤-.【点评】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解决本题的关键是结合图象进行分析解答. 2.(1)1y =;(2)2111424y x x =++;(3)11m -<< 【分析】(1)直接将x=1代入22111424x ax bx c x x ≤++≤++,即可确定y 的值; (2)由题意函数图像过(-1,0)和(1,1),可得11,22b a c =+=,然后再根据22111424x ax bx c x x ≤++≤++,确定a 和c 的值即可解答; (3)当11t -≤≤时,可得12y y <,然后列出不等式解不等式即可.【解析】解:(1)不等式22111424x ax bx c x x ≤++≤++对一切实数都成立, 当1x =时也成立,即11a b c ++≤≤即有1y =;(2)根据二次函数2y ax bx c =++的图象经过点()1,0- 可得0a b c -+=①又当1,1x y ==时,即1a b c ++=② 由①②求得,11,22b a c =+=21122y ax x a ∴=++- 221111122424x ax x a x x ∴≤++-≤++ 即211022ax x a ++-≥,211044a x a ⎛⎫-+-≤ ⎪⎝⎭恒成立,1110,4()042a a a ∴>∆=--≤, 21110,04()()0444a a a -<∆=---≤, 解得:14a =,14c = 二次函数的表达式为2111424y x x =++ (3)当11t -≤≤时,12y y <即:120y y -<即22111111()()(2)20424424t m t m t t ⎡⎤⎡⎤++++-+⨯+<⎢⎥⎢⎥⎣⎦⎣⎦整理得:2231111()042242t m t m m -+-++<当1t =-或1时均成立, 231111042242m m m ∴-+-++<231111042242m m m ∴--+++<解得51m -<<,11m -<<11m ∴-<<【点评】本题考查了二次函数与不等式恒成立问题以及二次函数的性质,掌握赋值法并灵活运用二次函数与不等式的关系是解答本题的关键..3.(1)①(0,3);②x≤1-或x≥1 ;(2)4y =-或8≤y <20;(3)1-≤k 117+k≥2.【分析】(1)①将1k =-代入函数关系式得2223(1)23(1)x x x y x x x ⎧----=⎨-+>-⎩,再将x =0代入223y x x =-+即可求得与y 轴的交点坐标;②先将两个二次函数关系式分别配成顶点式,再根据开口方向、对称轴及自变量的取值范围即可判断得解;(2)将(1,5)分别代入两个函数关系式求得k 的值,再逐个检验,进而可求得正确的函数关系式,再根据x 的取值范围确定y 的取值范围即可;(3)分类讨论,当k≤0时,当0<k <2时,当k≥2时,画出相应的函数图像,讨论图像中的特殊点的坐标即可求得k 的取值范围.【解析】(1)当1k =-时,2223(1)23(1)x x x y x x x ⎧----=⎨-+>-⎩①∵01>-,∴把x =0代入223y x x =-+得3y =. ∴此函数图象与y 轴交点坐标为(0,3). ②当x≤1-时,223y x x -=-- 配方得2(1)2y x =-+-∵a =-1<0,对称轴为直线x =-1, ∴当x≤-1,y 随x 的增大而增大,符合题意, 当x >1-时,223y x x =-+,配方得2(1)2y x =-+,∵a =1>0,对称轴为直线x =1,∴当x≥1时,y 随x 的增大而增大,符合题意,综上所述:当函数y 的值随x 的增大而增大时,自变量x 的取值范围为x≤1-或x≥1; (2)当k≥1时,把(1,5)代入2222y x kx k k =-+-+,得21225k k k -+-+=, 解得2460k k -+=无实根. 当k <1时,把(1,5)代入2222y x kx k k =++-,得21225k k k ++-=, 解得12k =(不合题意,舍去),22k =-. ∴2k =-.∴2248(2)48(2)x x x y x x x ⎧----=⎨-+>-⎩当x =-2时,将x =-2代入248y x x =--- 得:y =-4,当-2<x≤0时,248y x x =-+ 配方得2(2)4y x =-+∵a =1>0,对称轴为直线x =2, ∴当-2<x≤0时,8≤y <20,综上所述:当-2≤x≤0时,y 的取值范围为4y =-或8≤y <20.(3)由题意可知22()2()()2()x k k x k y x k k x k ⎧--+=⎨+->⎩, 当k≤0时,函数图像如图所示,则2()2()y x k k x k =--+的最大值2k≥-2即可, 解得k≥-1, ∴-1≤k≤0,当0<k <2时,2()2()y x k k x k =--+的最大值2k <4 则当x >k 时,2()2()y x k k x k =+->的最小值<4即可,将x =k ,y =4代入得2424k k -= 解得12117117k k +-==(舍去), ∴0<k 117+ 当k≥2时,2()2()y x k k x k =--+的最大值2k≥4,如图,此时在左边的图像上的最大值不小于4,符合题意, ∴k≥2,综上所述:1-≤k 117+或k≥2. 【点评】本题考查了二次函数图像的性质,待定系数法的应用,以及用图像法求对应的自变量的取值范围或函数值的取值范围,解决本题的关键是能够画出相应的函数图像,结合函数图像的性质进行解题.本题是二次函数的综合题,属于中考压轴题,有一定的难度.4.(1)225y x x =-+或223y x x =--;(2)图见解析,性质:(写出一条即可)①关于1x =对称;②=1x -或3x =时有最小值为0;③1x ≤-,13x ≤≤,y 随x 的增大而减小;3x ≥,11x -≤≤,y 随x 的增大而增大;(3)4x ≥或2x ≤【分析】(1)由函数过点()1,4,代入124c -+=,求出5c =或3c =-,可得函数; (2)用描点法画图,列表、描点、连线,性质:①关于1x =对称;②=1x -或3x =时有最小值为0;③1x ≤-,13x ≤≤,y 随x 的增大而减小;3x ≥,11x -≤≤,y 随x 的增大而增大,(3)利用图像解法不等式221x x c x -+≥+在图像上表现为225y x x =-+永远在1y x =+图像上方,或223y x x =--图像在1y x =+图像上方;由交点(2,3)的左侧和交点(4,5)的右侧即可得出答案【解析】解:(1)∵函数过点()1,4,124c -+= ∴14c -=, ∴14c -=±, ∴5c =或3c =-,∴225y x x =-+或223y x x =--; 故答案为:225y x x =-+或223y x x =--;(2)列表描点连线性质:(写出一条即可) ①关于1x =对称;②=1x -或3x =时有最小值为0;③1x ≤-,13x ≤≤,y 随x 的增大而减小;3x ≥,11x -≤≤,y 随x 的增大而增大, 故答案为①关于1x =对称;②=1x -或3x =时有最小值为0;③1x ≤-,13x ≤≤,y 随x 的增大而减小;3x ≥,11x -≤≤,y 随x 的增大而增大;(3)2251x x x -+=+,()2251x x x -+=±+,22340,60x x x x -+=-+=,都无解,或2231x x x --=+,()2231x x x --=±+, 2340x x --=或220x x --=,解得x=-1,x=2,x=4,不等式221x x c x -+≥+在图像上表现为225y x x =-+永远在1y x =+图像上方,或223y x x =--图像在1y x =+图像上方;由交点(2,3)的左侧和交点(4,5)的右侧,即不等式2251x x x -+≥+或2251x x x -+≥+的解集为4x ≥或2x ≤..【点评】本题考查待定系数法求函数解析式,用描点法画函数解析式,观察函数图像写函数性质,利用函数图像求不等式的解集,掌握待定系数法求函数解析式,用描点法画函数解析式,观察函数图像写函数性质,利用函数图像求不等式的解集是解题关键. 5.(1)1322y x =-;(2)m =-3或m =3;(3)49≤a <98或a ≤-2; 【分析】(1)用待定系数法直接将点A 和B 代入直线l 中然后得到关于k 和b 的二元一次方程没然后解方程即可得到k 和b 的值,然后得到l 的解析式;(2)根据题意可得,y =-x 2+2x -1,当y =-4时,有-x 2+2x -1=-4,x =-1或x =3; ①在x =1左侧,y 随x 的增大而增大,x =m +2=-1时,y 有最大值-4,m =-3; ②在对称轴x =1右侧,y 随x 增大而减小,x =m =3时,y 有最大值-4; (3)①a <0时,x =1时,y ≤-1,即a ≤-2;②a >0时,x =-3时,y ≥-3,即a ≥49,直线AB 的解析式为y =12x -32,抛物线与直线联立:ax 2+2x -1=x -32,△=94-2a >0,则a <98,即可求a 的范围;【解析】解:(1)点A (-3,-3),B (1,-1)代入y =kx +b 可得:3=31k b k b --+⎧⎨-=+⎩解得:1232k b ⎧=⎪⎪⎨⎪=-⎪⎩∴l 的解析式为:1322y x =-; (2)根据题意可得,y =-x 2+2x -1, ∵a <0,∴抛物线开口向下,对称轴为直线x =1, ∵m ≤x ≤m +2时,y 有最大值-4, ∴当y =-4时,有-x 2+2x -1=-4, ∴x =-1或x =3,①在对称轴直线x =1左侧,y 随x 的增大而增大, ∴x =m +2=-1时,y 有最大值-4, ∴m =-3;②在对称轴直线x =1右侧,y 随x 增大而减小, ∴x =m =3时,y 有最大值-4; 综上所述:m =-3或m =3; (3)①a <0时,x =1时,y ≤-1, 即a ≤-2;②a >0时,x =-3时,y ≥-3, 即a ≥49,直线AB 的解析式为y=12x -32,抛物线与直线联立:ax 2+2x -1=12x -32,∴ax 2+32x +12=0,△=94-2a >0,∴a <98,∴a 的取值范围为49≤a <98或a ≤-2.【点评】本题考查二次函数的图象及性质,一次函数的图象及性质;熟练掌握待定系数法求解析式,数形结合,分类讨论函数在给定范围内的最大值是解题的关键.6.(1) y =x 2﹣x +2﹣3|x ﹣1|,补全表格见解析,(2) 函数图像见解析,当x =-1时,函数有最小值,最小值为-2;55-x55+15--x15-+.【分析】(1)将点(﹣1,﹣2)与(2,1)代入解析式即可;(2)画出函数图象,观察图象得到一条性质即可(3)根据图象,求出两个函数图象的交点坐标,通过观察可确定解解集.【解析】解:(1)∵该函数图象经过(﹣1,﹣2)与(2,1)两点,∴1222 4221b cb c-+-=-⎧⎨++-=⎩,∴13bc=-⎧⎨=⎩,∴y=x2﹣x+2﹣3|x﹣1|,故答案为:y=x2﹣x+2﹣3|x﹣1|;当x=-4时,y=7;当x=0时,y=-1;补全表格如图,x ⋯﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 ⋯y ⋯7 2 ﹣1 ﹣2 -1 2 1 2 ⋯(2)函数图像如图所示,当x=-1时,函数有最小值,最小值为-2;(3)当x≥1时,x2﹣x+2﹣3x+3=x,解得,155x+=255x-55-x55+当x<1时,x2﹣x+2+3x﹣3=x,解得,315x-+=,415x--=15--≤x15-+∴不等式x2+bx+2﹣c|x﹣1|≤x 55-x55+15--≤x15-+【点评】本题考查二次函数与不等式的关系;掌握描点法画函数图象,利用数形结合解不等式是解题的关键.7.(1)12a =-,3b =-,174m =-;(2)见解析;(3)x 的取值范围是:-3≤x <0或1≤x≤2.【分析】(1)先将(-1,2)和(1,-2)代入函数y=a (x-1)2+bx+1中,列方程组解出可得a 和b 的值,写出函数解析式,计算当x=4时m 的值即可; (2)描点并连线画图,根据图象写出一条性质即可; (3)画y=x-3的图象,根据图象可得结论.【解析】解:(1)把(-1,2)和(1,-2)代入函数y=a (x-1)2+bx+1中得: 41212a b b -+=⎧⎨+=⎩,解得:123a b ⎧=-⎪⎨⎪=-⎩, ∴y=213(1)12x x ---+(a≠0),当x=4时,m=131791244-⨯-+=-;(2)如图所示,性质:当x >2时,y 随x 的增大而减小(答案不唯一);(3)∵a (x -1)2+bx≥x -4,∴a (x -1)2+bx+1≥x -3,如图所示,由图象得:x 的取值范围是:-3≤x <0或1≤x≤2.【点评】本题考查了待定系数法求函数解析式,描点,画函数图象,以及二次函数的性质,解题的关键是掌握二次函数的性质,利用了数形结合思想进行分析. 8.(1)4b = (2)①54n =;②n 的取值范围为24n【分析】(1)由对称轴为直线22bx =-=,可求b 的值; (2)①由题意可得AB =3,由对称性可求点A ,点B 横坐标,代入解析式可求解; ②先求出顶点坐标,由图象和x ,y 的取值范围,可求解. (1)解:抛物线23y x bx =-+的对称轴为直线2x =,22b -∴=-, 4b ∴=;(2)解:①4b =,∴抛物线的表达式为243y x x =-+,直线AB y ⊥轴,AB x ∴∥轴,213x x -=,3AB ∴=.对称轴为直线2x =, ∴点A 的横坐标为31222-=,点B 的横坐标为37222+=,∴当12x =时,54y n ==.②2243(2)1y x x x =-+=--, ∴顶点坐标为(2,1)-,当x =5时,y =8,当4y n ==时,05x 时,图象如下:此时14y -;当2y n ==时,05x 时,图象如下:此时42y -;n ∴的取值范围为24n .【点评】本题是二次函数综合题,考查了二次函数的性质,图形的翻折变换等知识,利用数形结合思想解决问题是解决本题的关键. 9.(1)268y x x =-+ (2)0x <或>4x (3)1m <或5m >【分析】(1)先通过直线解析式得到A 、B 的坐标,再代入二次函数解析式进行求解即可; (2)根据图象解答即可;(3)先将1(1,)C y 代入抛物线解析式,得出1y 的值,再解出当13y =时,方程的解,结合图象,求解即可. (1)令0x =,则8y =(0,8)B ∴ 令0y =,则4x =(4,0)A ∴将A 、B 分别代入2y x bx c =++得80164cb c =⎧⎨=++⎩ 解得 68b c =-⎧⎨=⎩∴抛物线的解析式为268y x x =-+;(2)直线28y x =-+与抛物线268y x x =-+交于A 、B 两点0x ∴<或>4x 时,228x bx c x ++>-+;(3)将1(1,)C y 代入抛物线解析式,得 11683y =-+= 21y y >23y ∴>将13y =代入抛物线解析式,得 2368x x =-+ 解得 121,8x x ==根据图象,当21y y >时,1m <或5m >.【点评】本题考查了一次函数与二次函数的综合问题,涉及一次函数图象与坐标轴的交点、待定系数法求二次函数解析式、图像法解一元一次不等式、图像法解一元二次不等式、解一元二次方程,熟练掌握知识点是解题的关键. 10.(1)2223(1)4y x x x =--=--,C 的坐标为()1,4-; (2)点()1,0A -,1x <-或>4x ; (3)2134b -≤≤-【分析】(1)根据待定系数法求得二次函数的解析式,把一般式化成顶点式,即可求得顶点C 的坐标;(2)利用抛物线的解析式求得A 的坐标,然后根据图象即可求得;(3)先利用待定系数法求得直线AM 的解析式,即可得到平移后的解析式为y x b =+,分别代入B 、C 点的坐标,求得b 的值,求得平移后的直线与抛物线有一个交点时的b 的值,结合图象即可求得. (1)点30B (,)、M (4,5)是抛物线图象上的点,9601685a c a c -+=⎧∴⎨-+=⎩ 解得13a c =⎧⎨=-⎩ ∴抛物线解析式为222314y x x x =--=--(),∴抛物线顶点C 的坐标为14-(,);(2)对于抛物线2=23y x x --, 当0y =时,即2230x x --=, 解得1213x x =-=,, ∴点A (-1,0)观察函数图象可知,不等式22ax x c kx b -+>+的解集为1x <-或>4x ; (3)点A (-1,0)和点M (4,5)在直线AM :2y kx b =+的图象上,045k b k b -+=⎧∴⎨+=⎩ 解得11k b =⎧⎨=⎩,∴直线AM 的解析式为21y x =+.当直线AM 向下平移经过点30B (,)时,直线AM 的解析式为'y x b =+,则3十'0b =,解得'3b =-,当直线AM 平移经过点C (1,-4)时,则1''4b +=- 解得''5b =-,当直线AM 平移后与抛物线2=23y x x --有一个交点时,联立223y x by x x =+⎧⎨=--⎩化简得2330x x b ---=则94(3)0m ∆=---= 解得214b =-, b ∴的取值范围是2134b -≤≤-. 【点评】本题考查了待定系数法求二次函数的解析式,求一次函数的解析式,二次函数图象与几何变换,函数与不等式的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征,数形结合是解题的关键.11.(1)对称轴为直线x =a ﹣1 (2)①y =0;②x 1=a ﹣2 (3)a ≥﹣1【分析】(1)根据抛物线的对称轴x =﹣2ba求解即可; (2)①将x =a 代入y =﹣x 2+(2a ﹣2)x ﹣a 2+2a 求解即可;②若y 1=y 2=0,则﹣x 2+(2a ﹣2)x ﹣a 2+2a =0,解方程并根据x 1<x 2,求出x 1的值.(3)由题意得出x 1<﹣2,则只需讨论x 1<a ﹣1的情况,分两种情况:①当a ≥﹣1时,又有两种情况:x 1<x 2<a ﹣1,x 1<a ﹣1<x 2,分别结合二次函数的性质及x 1+x 2<﹣4计算即可;②当a <﹣1时,令x 1=a ﹣1,x 2=﹣2,此时x 1+x 2<﹣4,但y 1>y 2,不符合题意. 【解析】(1)解:抛物线的对称轴为直线x =﹣2(1)2a --=a ﹣1; (2)解:①当x =a 时,y =﹣a 2+(2a ﹣2)a ﹣a 2+2a =﹣a 2+2a 2﹣2a ﹣a 2+2a =0;②当y 1=y 2=0时,﹣x 2+(2a ﹣2)x ﹣a 2+2a =0, ∴x 2﹣(2a ﹣2)x +a 2﹣2a =0, ∴(x ﹣a +2)(x ﹣a )=0, ∵x 1<x 2, ∴x 1=a ﹣2; (3)解:①当a ≥﹣1时, ∵x 1<x 2,x 1+x 2<﹣4,∴x 1<﹣2,只需讨论x 1<a ﹣1的情况. 若x 1<x 2<a ﹣1,∵x <a ﹣1时,y 随着x 的增大而增大, ∴y 1<y 2,符合题意; 若x 1<a ﹣1<x 2, ∵a ﹣1≥﹣2, ∴2(a ﹣1)≥﹣4, ∵x 1+x 2<﹣4, ∴x 1+x 2<2(a ﹣1). ∴x 1<2(a ﹣1)﹣x 2.∵x =2(a ﹣1)﹣x 2时,y 1=y 2,x <a ﹣1时,y 随着x 的增大而增大,∴y 1<y 2,符合题意.②当a <﹣1时,令x 1=a ﹣1,x 2=﹣2,此时x 1+x 2<﹣4,但y 1>y 2,不符合题意; 综上所述,a 的取值范围是a ≥﹣1.【点评】本题属于二次函数的综合题,涉及二次函数的性质、求函数值、运用二次函数求不等式等知识点,灵活运用二次函数的性质成为解答本题的关键. 12.(1)4m x = (2)152m =(3)1m >或0m <(4)32m =-+152m <-或152m >【分析】(1)根据对称轴为直线2bx a=-,计算求解即可; (2)将(4,3)A 代入抛物线2122y x mx =-+,计算求解即可;(3)由题意知22111111(2)(2)2()()2222222m m m m m m ---+>+-++,解不等式即可;(4)由(4,3)A ,3(1,)4B --可得直线AB 为34y x =,联立234122y x y x mx ⎧=⎪⎪⎨⎪=-+⎪⎩得213()2024x m x -++=,当△0=时,解得32m =--32m =-+,可知此时直线与抛物线有且只有一个交点,然后判断此时线段与抛物线是否有一个交点;当抛物线2122y x mx =-+过3(1,)4B --时,解得152m =-,可知在152m <-时,抛物线与线段有一个交点,当抛物线2122y x mx =-+过(4,3)A 时,解得152m =,可知在152m >时,抛物线与线段有一个交点;进而得到m 的取值范围. (1)解:抛物线的对称轴为直线1224mm x -=-=,故答案为:4mx =. (2)解:将(4,3)A 代入抛物线2122y x mx =-+得:2144232m -⨯+=,解得152m = ∴152m =. (3)解:点1(22P m -,1)y ,点1(2Q m +,2)y 在抛物线2122y x mx =-+上,21111(2)(2)2222y m m m ∴=---+,22111()()2222y m m m =+-++,12y y >,22111111(2)(2)2()()2222222m m m m m m ∴---+>+-++,化简整理得:5(1)02m m ->,∴50210m m ⎧>⎪⎨⎪->⎩或50210m m ⎧<⎪⎨⎪-<⎩, 解得1m >或0m <, ∴1m >或0m <. (4)解:由(4,3)A ,3(1,)4B --可得直线AB 为34y x =,联立234122y x y x mx ⎧=⎪⎪⎨⎪=-+⎪⎩得213()2024x m x -++=,当△0=时,213[()]412024m -+-⨯⨯=, 解得3422m =--或3422m =-+,即3422m =--或3422m =-+2122y x mx =-+与直线AB 只有一个交点, 当3422m =--时,对称轴4B m x x =<,即此时抛物线2122y x mx =-+与直线AB 的交点不在线段AB 上,故舍去, 当3422m =-+时,144B A m x x =-<<=,此时抛物线2122y x mx =-+与直线AB 的交点在线段AB 上,3422m ∴=-+当抛物线2122y x mx =-+过3(1,)4B --时,231(1)(1)242m -=--⨯-+,解得152m =-, 当抛物线2122y x mx =-+过(4,3)A 时,31622m =-+, 解得152m =, 如图:由图可知:抛物线2122y x mx =-+与线段AB 只有一个公共点,m 的范围是32m =-+或152m <-或152m >. 【点评】本题考查了二次函数的对称轴,根据点坐标求参数,解一元二次不等式,二次函数与一次函数的综合.解题得关键在于对知识的灵活运用. 13.(1)y =x 2﹣4x +3,(2,﹣1);(2)﹣2<k <﹣12;(3)8.【分析】(1)代入点A (1,0)和D (4,3),可求得m 、n 的值,从而可得二次函数的表达式,将表达式化为顶点式,即可求得顶点坐标.(2)由l ;y =kx −2k +2=k (x −2)+2可得,过定点(2,2),再分别代入点B 、C 的坐标,可求得k 的值,要使直线l ;y =kx −2k +2总位于图象G 的上方,则k 的取值范围,即为分别代入点B 、C 的坐标所求得的k 的值之间的部分.(3)由二次函数243y x x =-+的对称轴是直线x=2,点P (x 1,c)和点Q (x 2,c)在函数2y x mx n =++的图象上,且x 1<x 2,可得x 1=2−a ,x 2=2+a ,代入21264a a x x +++即可求解.【解析】解:(1)根据题意得:1413m n m n +=-⎧⎨+=-⎩,解得43m n =-⎧⎨=⎩.故二次函数的表达式为y =x 2﹣4x +3, 则函数的对称轴为x =﹣2ba=2, 当x =2时,y =x 2﹣4x +3=﹣1, 故顶点坐标为:(2,﹣1); (2)在y =x 2﹣4x +3中,令x=0,解得y=3,令y=x2﹣4x+3=0,解得x=1或3,则C的坐标是(0,3),点B(3,0),∵y=kx﹣2k+2=k(x﹣2)+2,即直线故点(2,2),设该点为M,当直线过点C、M或过B、M时,都符合要求,将点C的坐标代入y=kx﹣2k+2,即3=﹣2k+2,解得k=﹣12;将点B的坐标代入3=kx﹣2k+2,即0=3k﹣2k+2,解得k=﹣2;故﹣2<k<﹣12,故答案为:﹣2<k<﹣12;(3)∵P(x1,c)和点Q(x2,c)在函数y=x2﹣4x+3的图象上,∴PQ//x轴,∵二次函数y=x2﹣4x+3的对称轴是直线x=2,又∵x1<x2,PQ=2a,∴x1=2﹣a,x2=2+a,∴x12﹣2x2+6a+4=(2﹣a)2﹣a(2+a)+6a+4=8.【点评】本题考查二次函数的图像和性质,解题的关键是熟练掌握二次函数的性质.14.(1)表格见解析,图见解析;(2)图象是轴对称图形,对称轴为y轴;(3)-1.3≤x≤1.8.【分析】(1)把各自变量的值代入函数即可求出对应的值,故可补全表格与图象;(2)根据函数图象的特点即可求解;(3)根据两函数的交点横坐标与图象的特点即可求解.【解析】(1)当x=-2时,22835xyx=-+=59;当x=0时,22835xyx=-+=-3;当x=1时,22835xyx=-+=53-;补全表格为:故补全图象如下:(2)由图可得图象是轴对称图形,对称轴为y 轴 故答案为:图象是轴对称图形,对称轴为y 轴;(3)由函数图象可得函数3375y x =-与函数22835x y x =-+的交点横坐标为x 1=-1.3,x 2=1.8∴不等式223383755x x x -≤-+的解集为-1.3≤x ≤1.8故答案为:-1.3≤x ≤1.8.【点评】此题主要考查函数与不等式综合,解题的关键是根据题意与表格的数据作出函数图象.15.(1)()10A -,;()30B ,(2)0a >时,x 3>或1x -<;0a <时,13x -<< (3)01a ≤<或0a <【分析】(1)对于抛物线的解析式,令0y =即可求解;(2)分别画出0a >时和0a <时,抛物线的图象,根据图象即可求解;(3)分别画出0a >时和0a <时,抛物线的图象和线段MN ,根据图象即可求解; (1)解:∵223y ax ax a =--,∴()()()22331y a x x a x x =--=-+,令0y =,则()()310a x x -+=, 解得13x =,21x =-∴()10A -,,()30B ,; (2)解:当0a >时,抛物线()2230y ax ax a a =--≠如图所示,关于x 的不等式2230ax ax a -->的解集为x 3>或1x -<;当0a <时,抛物线()2230y ax ax a a =--≠如图所示,关于x 的不等式2230ax ax a -->的解集为13x -<<; (3)解:对于抛物线()2230y ax ax a a =--≠,当=1x -时,则230y a a a =+-=; 当2x =时,则4433y a a a a =--=-, 若0a >时,抛物线的开口向上,如图所示,∵()11M -,,当=1x -时,则230y a a a =+-=; ∴点M 在抛物线的内部,∵()23N -,, ∴当44333y a a a a =--=-=-时,点在抛物线的图象上,此时1a =, ∴当抛物线与线段MN 只有一个公共点时,应满足01a ≤<;若0a <时,抛物线的开口向下,如图所示,∵()11M -,,当=1x -时,则230y a a a =+-=; ∴点M 在抛物线的外部, ∵44333y a a a a =--=-->时, ∴()2,3N -点在抛物线图象的内部,∴连接线段MN ,抛物线与线段MN 只有一个公共点 此时满足0a <;综上可得,抛物线与线段MN 只有一个公共点,满足01a ≤<或0a <.【点评】本题考查了二次函数的图象与x 轴的交点坐标,二次函数的图象与性质以及二次函数与不等式的关系,画出图象,根据图象求解是解题的关键. 16.(1)(-3,6),在直线AB 上 (2)不存在,见解析(3)2OP <<【分析】(1)根据“双减点”的定义求出C 点坐标,再利用待定系数法求出直线AB 的解析式,将C 点坐标代入验证即可;(2)根据“双减点”的定义求出G 点坐标,将将E 、F 、G 坐标代入ky x=,即可得到一个关于t 的一元二次方程,根据方程无解即可判断不存在满足条件的k ;(3)二次函数222y ax bx =+-的图象经过点(2,6),可得2a b +=,令y =0,得关于x 的一元二次方程2220ax bx +-=,根据根与系数的关系有:122b x x a +=-,122x x a⋅=-,根据0a b >>,1x 、2x 异号,在不影响结果的前提下,故根据方程的对称性及解答方便,可设120x x >>,则有2124(1)3x x a-=-+0a b >>,2a b +=,即可得到12a <<,继而得到12223x x -<<OP 的取值范围.(1)根据A (-1,2)、B (2,-4)及“双减点”的定义可知,A 和B 的“双减点”C 的坐标为:(-3,6),且点C 在直线AB 上,设直线AB 的解析式为:y kx b =+,将A (-1,2)、B (2,-4)代入得:224k b k b -+=⎧⎨+=-⎩,解得:20k b =-⎧⎨=⎩, 即直线AB 的解析式为:2y x =-,将C 点坐标代入2y x =-验证可知,C 点在直线AB 上;(2)依据E (t ,1y ),F (t +1,2y ),即x =t -(t +1)=-1,y =21y y -,则“双减点”点G 的坐标为(-1,21y y -),将E (t ,1y ),F (t +1,2y ),G (-1,21y y -)代入k y x=, 得:121211k y t k y t k y y ⎧=⎪⎪⎪=⎨+⎪⎪-=⎪-⎩, 得方程210t t ++=,即213()024t ++=,方程无实数解, 故不存在非零的实数k 使得点E ,F ,G 均在函数k y x =的图象上; (3)∵二次函数222y ax bx =+-的图象经过点(2,6),∴有6442a b =+-,即2a b +=,令y =0,得关于x 的一元二次方程2220ax bx +-=, 根据根与系数的关系有:122b x x a +=-,122x x a⋅=-,∵0a b >>,∴1x 、2x 异号,在不影响结果的前提下,故根据方程的对称性及解答方便,可设120x x >>,∴12x x -= 又∵2a b +=,∴12x x -=, ∵0a b >>,2a b +=,∴12a <<,∴当a =1=∴当a =22,∴2,即122x x -<<∵P 为M (1x ,0),N (2x ,0)的“双减点”,∴P 点的纵坐标为0,即P 点在x 轴上,则P 点在坐标原点O 的距离为P 点的横坐标12x x -,则有OP 的取值范围:2OP <<【点评】本题考查了待定系数法求解一次函数解析式、二次函数的性质、反比例函数的性质、一元二次方程以及求解不等式的解集等知识,充分理解“双减点”的定义是解答本题的关键.17.(1)点A (1,﹣4)(2)y =x 2+4x-3(3)a 的取值范围是0<a ≤1【分析】(1)、将解析式化成顶点式,即可求解.(2)、由(1)可得函数的对称轴,结合BC 的长即可求出B 点坐标,代入解析式即可.(3)、画出图像,分别求出一次函数和二次函数与y 轴交点,结合图像即可求出.(1)解:∵y =ax 2﹣2ax +a ﹣4=a (x ﹣1)2﹣4,∴点A (1,﹣4);(2)∵顶点坐标为(1,﹣4),∴抛物线对称轴为直线x =1,∵BC =4,∴B (﹣1,0),C (3,0),把B 的坐标代入y =ax 2﹣2ax +a ﹣4时,则a +2a +a ﹣4=0,解得a =1∴抛物线的解析式为y =x 2+4x-3;(3)当a >0时,如图,∵y =x +2a ﹣5与y 轴的交点为(0,2a -5),y =ax 2﹣2ax +a ﹣4与y 轴的交点为(0,a -4),当2a ﹣5≤a ﹣4时符合题意,∴0<a ≤1;当a <0时,不合题意,故a 的取值范围是0<a ≤1.【点评】本题考查了二次函数图像与系数的关系,待定系数法求二次函数解析式,一次函数图像上的点的坐标特点,二次函数与坐标轴的交点,熟练掌握函数的性质和数形结合的方法是解题的关键.18.(1)2=23y x x --;(2)12x -<<;(3)存在点D 的坐标是()0,1或()0,1-.【分析】(1)先求出点B 、C 的坐标,把()2,3A -、()1,0B -、()0,3C -三点代入抛物线,可得抛物线的解析式;(2)观察函数图象,写出二次函数在一次函数图象下方所对应的自变量的取值范围即可;;(3)分两种情况进行讨论:①点D 在y 轴的正半轴上,;②若点D 在y 轴的负半轴上.。
中考数学考点专项复习——二次函数一、选择题:1.下列y 关于x 的函数中,属于二次函数的是( ) A .y =x ﹣1B .y =1xC .y =(x ﹣1)2﹣x 2D .y =﹣2x 2+12. 把抛物线y=2x 2向左平移2个单位,再向上平移1个单位,所得到的抛物线的解析式为( )A .y=2(x+2)2+1B .y=2(x+2)2﹣1C .y=2(x ﹣2)2﹣1D .y=2(x ﹣2)2+13.已知二次函数与轴两个交点坐标分别为,,若,则的值是( )A .2B .-1C .1D .-1或24.若函数2221()mm y m m x --=+是二次函数,则m 的值是( )A .2B .-1或3C .-1D .35.下列函数中,当x >0时,y 随x 的增大而减小的是( )A .y=x+1B .y=x 2﹣1C .D .y=﹣(x ﹣1)2+16.用配方法将2611y x x =-+化成()2y a x h k =-+的形式为( ).A .()232y x =++B .()232y x =--C .()262y x =--D .()232y x =-+ 7.一枚炮弹射出x 秒后的高度为y 米,且y 与x 之间的关系为y=ax 2+bx+c (a ≠0),若此炮弹在第3.2秒与第5.8秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A .第3.3sB .第4.3sC .第5.2sD .第4.6s8.已知:抛物线21y x x =--与x 轴的一个交点为(m ,0),则代数式22019m m -+的值是( ).A .2017B .2018C .2019D .20209.已知二次函数y=(x ﹣h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数y 的最小值为5,则h 的值是( ) A .﹣1B .﹣1或5C .5D .﹣510.把二次函数2134y x x --=+用配方法化成()2y a x h k =-+的形式时,应为( ) A .()21224y x =--+ B .()21244y x =--+ C .()21244y x =-++D .211322y x ⎛⎫=--+ ⎪⎝⎭11.在半径为4cm 的圆中,挖去了一个半径为x cm 的圆面,剩下一个圆环的面积为y cm 2,则y 与x 的函数关系式为( )A .216y x ππ=-+B .24y x π=-C .2(2)y x π=-D .2(4)y x =-+12.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式y =﹣0.2x 2+1.5x ﹣2,则最佳加工时间为( ) A .3minB .3.75minC .5minD .7.5min13.如图,Rt △OAB 的顶点A (-2,4)在抛物线y =ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为( )A .(2,2)B .(2,2)C .(2,2)D .(2,2) 14.如图,已知二次函数212433y x x =-的图象与正比例函数223y x =的图象交于点A (3,2),与x 轴交于点B (2,0),若120y y <<,则x 的取值范围是( )A .0<x <2B .0<x <3C .2<x <3D .x <0或x >315.如图,在抛物线上有,两点,其横坐标分别为1,2;在轴上有一动点,当最小时,则点的坐标是( )A .(0.0)B .(0,)C .(0,2)D .(0,)二、填空题16.二次函数22my mx -=有最低点,则m=__________17.已知抛物线y =x 2,把该抛物线向上或向下平移,如果平移后的抛物线经过点A (2,2),那么平移后的抛物线的表达式是 .18.已知抛物线c x ax y ++=2与x 轴交点的横坐标为1-,则c a +=_________.19.当﹣1≤x ≤3时,二次函数y =x 2﹣4x +5有最大值m ,则m =_____.20.已知点A (4,y 1),B (,y 2),C (﹣2,y 3)都在二次函数y =(x ﹣2)2+k 的图象上,则y 1、y 2、y 3的大小关系是 .(请用“>”连接)21.将二次函数322+-=x x y 配方成k h x y +-=2)(的形式,则y =_________________.22.已知反比例函数y =的图象经过点P (2,2),函数y =ax +b 的图象与直线y =﹣x 平行,并且经过反比例函数图象上一点Q (1,m ).则函数y =ax 2+bx +有最 值,这个值是 .23.一个小球被抛出后,如果距离地面高度(米)和运行时间(秒)的函数解析式为,那么小球达到最高点时距离地面高度是______米.24.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加______m.25.如图所示四个二次函数的图象中,分别对应的是①y =ax 2;②y =bx 2;③y =cx 2;④y =dx 2.则a 、b 、c 、d 的大小关系为_____.26.人民币一年定期的年利率为x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款额是a 元,则两年后的本息和y (元)的表达式为________(不考虑利息税). 27.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是_____.28.如图,己知抛物线y =ax 2+bx +c 与直线y =kx +m 交于A (﹣3,﹣1),B (0,3)两点.则关于x 的不等式ax 2+bx +c >kx +m 的解集是.29.点A (﹣1,﹣2)在抛物线y =﹣12(x ﹣1)2上,点A 、B 关于该抛物线的对称轴对称,则B 点坐标为_____.30. 如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3),D 是抛物线y=-x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为________.三、解答题31.已知抛物线2()y a x m =+的对称轴是直线x =2,该抛物线与y 轴的交点坐标是(0,8),求这个二次函数的解析式.32.已知二次函数(k 为常数).(1)当该函数的图像与y 轴的交点在x 轴上方时,求k 的取值范围. (2)求证:无论k 为何值,该函数的图像与x 轴总有公共点;33.如图,一个二次函数的图象经过点A 、C 、B 三点,点A 的坐标为(﹣1,0),点B 的坐标为(3,0),点C 在y 轴的正半轴上,且AB=OC (1)求点C 的坐标;(2)求这个二次函数的解析式,并求出该函数的最大值.34.已知二次函数y=﹣3x2﹣6x+5.(1)求这个函数图象的顶点坐标、对称轴以及函数的最大值;(2)若另一条抛物线y=x2﹣x﹣k与上述抛物线只有一个公共点,求k的值.35.如图,已知二次函数y=ax2+bx+c的图象的顶点坐标为(4,﹣2),且经过点B(0,6).(1)求该二次函数的解析式;(2)求出二次函数图象与x轴的交点A和C的坐标.36.如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.37.在平面直角坐标系中,设二次函数()()1 1x a x y a =+--,其中0a ≠.(1)若函数1y 的图象经过点()1 2-,,求函数1y 的表达式; (2)若一次函数2y ax b =+的图象与1y 的图象经过x 轴上同一点,探究实数a b ,满足的关系式;(3)已知点()0 P x m ,和()1 Q n ,在函数1y 的图象上,若m n <,求0x 的取值范围.38.已知二次函数y =x 2﹣2x .(1)请在表内的空格中填入适当的数;(2)请在所给的平面直角坐标系中画出y =x 2﹣2x 的图象;(3)当x 在什么范围内时,y 随x 的增大而减小;(4)观察y =x 2﹣2x 的图象,当x 在什么范围内时,y >0.39.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.40.如图,在平面直角坐标系中,直线与轴,轴相交于,两点.点的坐标是,连接,.(1)求过,,三点的抛物线的解析式,并判断的形状;(2)抛物线上是否存在着一点,使的面积为25?若存在,求出的坐标,若不存在,请说明理由;(3)在抛物线上,是否存在着一点,使为以为斜边的直角三角形?若存在,请直接写出的坐标;若不存在,请说明理由.41.某扶贫工作队为一贫困户提供了5万元的无息脱贫贷款.该贫困户利用这笔贷款,注册了一家网店,销售一种成本价为20元/件的农产品.已知销售价高于成本价,且不高于32元/件,网店每月需支付电费等其它费用1千元市场调查发现,该农产品每月销售量为y(百件)与销售价x(元/件)之间的函数关系如图所示(1)求该网店每月利润W(百元)与销售价x(元/件)之间的函数关系式,并注明自变量x的取值范围:(2)该贫困户从网店开业起,最快在第几个月可用销售利润还清42. 如图所示,已知抛物线经过点A(﹣2,0)、B(4,0)、C(0,﹣8),抛物线y=ax2+bx+c (a≠0)与直线y=x﹣4交于B、D两点.(1)求抛物线的解析式并直接写出D点的坐标;(2)点P为抛物线上的一个动点,且在直线BD下方,试求出△BDP面积的最大值及此时点P的坐标;(3)点Q是线段BD上异于B、D的动点,过点Q作QF⊥x轴于点F,交抛物线于点G,当△QDG为直角三角形时,求点Q的坐标.。
23、小明同学在A、B两家超市发现他看中的随身听和书包的单价都相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.
(1)求小明看中的随身听和书包单价各是多少元?
(2)假日期间商家开展促销活动,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(购物满100元返购物券30元,购物满200元返购物券60元,以此类推;不足100元不返券,购物券可通用).小明只有400元钱,他能买到一只随身听和一个书包吗?若能,选择在哪一家购买更省钱.
24、已知抛物线y=ax2+x+2.
(1)当a=﹣1时,求此抛物线的顶点坐标和对称轴;
(2)若代数式﹣x2+x+2的值为正整数,求x的值.
26、(2005•潍坊)抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,﹣3),
(1)求二次函数y=ax2+bx+c的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到B、C两点距离之差最大若存在,求出P 点坐标;若不存在,请说明理由;
(3)平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径.
26、考点:二次函数综合题。
专题:压轴题。
分析:(1)根据抛物线过C点,可得出c=﹣3,对称轴x=1,则﹣=1,然后可将B点坐标
代入抛物线的解析式中,联立由对称轴得出的关系式即可求出抛物线的解析式.
(2)本题的关键是要确定P点的位置,由于A、B关于抛物线的对称轴对称,因此可连接AC,那么P点就是直线AC与对称轴的交点.可根据A、C的坐标求出AC所在直线的解析式,进而可根据抛物线对称轴的解析式求出P点的坐标.
(3)根据圆和抛物线的对称性可知:圆心必在对称轴上.因此可用半径r表示出M、N的坐标,然后代入抛物线中即可求出r的值.
解答:解:
(1)将C(0,﹣3)代入y=ax2+bx+c,
得c=﹣3.
将c=﹣3,B(3,0)代入y=ax2+bx+c,
得9a+3b+c=0.(1)
∵x=1是对称轴,
∴.(2)(2分)
将(2)代入(1)得
a=1,b=﹣2.
所以,二次函数得解析式是y=x2﹣2x﹣3.
(2)AC与对称轴的交点P即为到B、C的距离之差最大的点.
∵C点的坐标为(0,﹣3),A点的坐标为(﹣1,0),
∴直线AC的解析式是y=﹣3x﹣3,
又对称轴为x=1,
∴点P的坐标(1,﹣6).
(3)设M(x1,y)、N(x2,y),所求圆的半径为r,
则x2﹣x1=2r,(1)
∵对称轴为x=1,
∴x2+x1=2.(2)
由(1)、(2)得:x2=r+1.(3)
将N(r+1,y)代入解析式y=x2﹣2x﹣3,
得y=(r+1)2﹣2(r+1)﹣3.
整理得:y=r2﹣4.
由于r=±y,
当y>0时,r2﹣r﹣4=0,
解得,,(舍去),
当y<0时,r2+r﹣4=0,
解得,,(舍去).
所以圆的半径是或.
点评:本题着重考查了待定系数法求二次函数解析式、切线的性质、轴对称图形等知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法.
23、考点:二元一次方程组的应用。
分析:(1)设书包的单价为x元,随身听的单价为y元,根据随身听和书包单价之和是452元可以列出方程x+y=452,根据随身听的单价比书包单价的4倍少8元可以列出方程y=4x ﹣8,联立两个方程组成方程组即可解决问题;
(2)分别根据销售A、B两个超市的销售方案计算出所需要的钱即可作出判断.
解答:解:设书包的单价为x元,随身听的单价为y元
根据题意,得,
解这个方程组,得,
答:该同学看中的随身听单价为360元,书包单价为92元;
(2)在超市A购买随身听与书包各一件需花费现金:452×80%=361.6(元)
∵361.6<400,
∴可以选择超市A购买,
在超市B可先花费现金360元购买随身听,再利用得到的90元返券,
加上2元现金购买书包,总计共花费现金:362(元),
∵362<400,
∴也可以选择在超市B购买.
∵362>361.6,
∴在超市A购买更省钱.
点评:数学来源于生活,又服务于生活,本题就是数学服务于生活的实例.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二
元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.
24、考点:二次函数综合题。
专题:综合题。
分析:(1)把a=﹣1代入抛物线,抛物线解析式变为y=﹣x2+x+2根据顶点坐标公式,顶点坐标为(,),在该抛物线中,a=﹣1,b=1,c=2,利用顶点公式和对称轴公
式即可求解.
(2)代数式﹣x2+x+2的值为正整数,即函数y=﹣x2+x+2的值为正整数,从上题可知该二次函数的最大值为,即y得最大值为,小于的正整数只有1或2,所以y的正整数值只能
为1或2,即代数式的值只能为1或2,将1和2分别代入式子求出x的值即可.
解答:解:(1)当a=﹣1时,y=﹣x2+x+2
∴a=﹣1,b=1,c=2
∴,
∴抛物线顶点坐标为,对称轴为直线.
(2)∵代数式﹣x2+x+2的值为正整数
∴函数y=﹣x2+x+2的值为正整数
又∵函数的最大值为
∴y的正整数值只能为1或2
当y=1时,﹣x2+x+2=1
解得
当y=2时,﹣x2+x+2=2
解得x3=0,x4=1
∴x的值为,0或1.
点评:考查抛物线顶点坐标公式,对称轴的性质及正整数等基本的概念。