第十一章动态时间序列分析
- 格式:ppt
- 大小:1.81 MB
- 文档页数:69
第11章OLS 用于时间序列数据的其他问题11.1复习笔记一、平稳和弱相关时间序列1.平稳和非平稳时间序列平稳时间序列过程,就是概率分布在如下意义上跨时期稳定的时间序列过程:如果从这个序列中任取一个随机变量集,并把这个序列向前移动h 个时期,那么其联合概率分布仍然保持不变。
(1)平稳随机过程对于随机过程{ 1 2 }t x t =:,,…,如果对于每一个时间指标集121m t t t ≤<<⋅⋅⋅<和任意整数h≥1,()12m t t t x x x ⋅⋅⋅,,,的联合分布都与()12 m t h t h t h x x x ++⋅⋅⋅+,,,的联合分布相同,那么这个随机过程就是平稳的。
这种平稳经常称为严平稳,它是从概率分布的角度去定义的。
其含义之一是(取m=1和t 1=1):对所有t=2,3,…,x 1与x t 都有相同的分布。
序列{ 1 2 }t x t =:,,…是同分布的。
不平稳的随机过程称为非平稳过程。
因为平稳性是潜在随机过程而非其某单个实现的性质,所以很难判断所搜集到的数据是否由一个平稳过程生成。
但是,要指出某些序列不是平稳的却很容易。
(2)协方差平稳过程(宽平稳,弱平稳)对于一个具有有限二阶矩()2t E x ⎡⎤∞⎣⎦<的随机过程{ 1 2 }t x t =:,,…,若:(i)E(x t )为常数;(ii)Var(x t )为常数;(iii)对任何t,h≥1,Cov(x t ,x t+h )仅取决于h,而不取决于t,那它就是协方差平稳的。
协方差平稳只考虑随机过程的前两阶矩:这个过程的均值和方差不随着时间而变化,而且,x t 和x t+h 的协方差只取决于这两项之间的距离h,与起始时期t 的位置无关。
由此立即可知x t 与x t+h 之间的相关性也只取决于h。
如果一个平稳过程具有有限二阶矩,那么它一定是协方差平稳的,但反过来未必正确。
由于严平稳的条件比较苛刻,在实际中从概率分布的角度去验证是无法实现的,所以在实际运用中所指的平稳都是指宽平稳,即协方差平稳。
第11章用时间序列数据计算OLS的其它问题第11章用时间序列数据计算OLS 的其它问题习题11.1令{x t :t =1,2,…}为协方差平稳过程,定义γh =Cov(x t ,x t+h ), h ≥0。
[所以γ0=Var(x t )。
] 证明Corr(x t ,x t+h )= γh /γ0。
11.2令{e t :t =-1,0,1,…}为由独立同分布随机变量组成的序列,它的均值为0,方差为1。
定义以下的随机过程:x t =e t -(1/2)e t-1+(1/2)e t-2, t=1,2,…(i) 求出E(x t )和Var(x t )。
它们中的哪个取决于t ?(ii)证明Corr(x t ,x t+1)=-1/2,Corr(x t ,x t+2)=1/3。
(提示:最简单的方法是利用问题11.1中的公式。
)(iii)在h >2时,Corr(x t ,x t+h )是多少?(iv) {x t }是渐近不相关过程吗?11.3假设时间序列过程{y t }由y t =z +e t 产生,其中,t =1,2,…,{e t }是均值为0、方差为2e σ的i.i.d.序列。
随机变量z 不随时间而变化,它的均值为0,方差为2z σ。
假定每个e t 都与z 不相关。
11.4 令{y t :t =1,2,…}遵循(11.20)那样的随机游走,且y 0=0。
证明 )/(),(h t t y y Corr h t t +=+,其中t ≥1,h >0。
11.5对于美国经济社会,令gprice 代表一般价格水平的每月增长率,gwage 代表每小时工资的每月增长率。
[二者都是通过计算对数之差得到的:gprice = Δlog (price ),gwage =Δlog (wage )。
] 利用WAGEPRC.RAW 中的月度数据,我们估计得到下面的分布滞后模型:321038.040.097.119.00093.---++++-=gwage gwage gwage gwage gprice(.00057)(.052)(.039)(.039)(.039)87654103.104.095.107.081.-----+++++gwage gwage gwage gwage gwage (.039)(.039)(.039)(.039)(.039)1211109016.103.110.159.----++++gwage gwage gwage gwage(.039)(.039)(.039)(.052)283.,317.,27322===R R n(i) 描述估计的滞后分布。
图例7 一、循环变动及其测定目的二、循环变动的测定方法(一)直接法(二)剩余法循环变动分析循环变动分析-意义循环变动分析―形式直接法剩余法操作步骤用移动平均法,得到TC的估计,由Y/TC,得到仅含<a name=baidusnap0></a>季节</B>变动的序列,计算季节</B>指数对原序列建立趋势方程,得趋势项T 的估计值原始序列Y/TS得CI的数据对CI进行移动平均得到C的估计注:剔除趋势求季节</B>指数,如果没有特别要求就先采用移动平均法求其趋势,然后求季指回总目录回本章目录平稳时间序列概述平稳时间序列定义常见时间序列模型严平稳回总目录回本章目录平稳时间序列所谓平稳时间序列,指如果序列二阶矩有限 , 且满足如下条件:对任意整数为常数;对任意整数自协方差函数仅与时间间隔有关,和起止时刻无关。
即则称序列为宽平稳(或协方差平稳,二阶矩平稳)序列当时,自协方差函数就是方差回总目录回本章目录平稳序列图形上来看就是: (1)序列围绕常数的长期均值波动,称为是均值回复(Meaning Reversion) (2)在每一时刻,方差对均值的偏离基本相同,波动程度大致相等。
回总目录回本章目录最简单的宽平稳序列是白噪声,常记为,它是构成其他序列的基石,一般白噪声的定义如下:对任意对任意对不同的时刻自回归模型(AR:Auto-regressive);滑动平均模型(MA:Moving-Average);自回归滑动平均模型(ARMA:Auto-regressive Moving-Average)。
回总目录回本章目录常见时间序列模型 P阶自回归模型AR(P)模型回总目录回本章目录其中称为自回归系数,为白噪声序列上式称为是p阶自回归模型,简记为AR(p) 当满足一定条件时,序列是平稳的零均值时间序列满足如下形式 q阶滑动平均模型MA(q)模型回总目录回本章目录其中称为滑动平均系数,为白噪声序列上式称为是q阶滑动平均模型,简记为MA(q) 当阶数q有限时,序列是平稳的零均值时间序列满足如下形式自回归滑动平均模型(ARMA)模型回总目录回本章目录其中称为自回归系数,称为滑动平均系数,为白噪声序列上式称为是p阶自回归模型-q阶滑动平均模型,简记为AMMA(p,q). 当p=0, AMMA(p,q)--MA(q) 一般ARMA模型的数学形式为当满足一定条件时,序列是平稳的.从以上定义中可以看出,AR模型和MA模型即为ARMA模型的特例当q=0, AMMA(p,q)--MA(p) 回总目录回本章目录 ARMA模型的识别相关函数定阶法信息准则定阶法严平稳回总目录回本章目录相关函数定阶法采用ARMA模型对现有的数据进行建模,首要的问题是确定模型的阶数,即相应的p,q的值,对于ARMA模型的识别主要是通过序列的自相关函数以及偏自相关函数进行的。
定量预测——时间序列预测一、时间序列的概念及构成要素时间序列预测法是一种定量分析法,它是在时间序列变量分析的基础上,运用一定的数学方法建立预测模型,使时间趋势向外延伸,从而预测未来市场的发展变化趋势,确定变量预测值。
惯性原理构成要素:现象所属的时间反映现象发展水平的指标数值二、时间序列预测的原理时间序列是指同一变量按事件发生的先后顺序排列起来的一组观察值或记录值。
实际数据的时间序列能够展示研究对象在一定时期内的发展变化趋势与规律,因而可以从时间序列中找出变量变化的特征、趋势以及发展规律,从而对变量的未来变化进行有效地预测。
环比指数定基指数三、时间序列分析的目的1、描述事物在过去的时间状态,分析其随时间推移的发展趋势。
2、揭示事物发展变化的规律性3、预测事物在未来时间的数量四、时间序列的变化动态影响时间序列变动的因素可分解为:可解释的变动:1、长期趋势(T)2、季节变动(S)3、循环变动(C)不可解释的变动:4、不规则变动(I)长期趋势:现象在较长时期内受某种根本性因素作用而形成的总的变动趋势季节变动:现象在一年内有规律的、按一定周期重复出现的变化循环变动:现象以若干年为周期所呈现出的波浪起伏形态的有规律的变动不顾则变动:是一种无规律可循的变动,包括不规则变动严格的随机变动和不规则的突发性影响很大的变动两种类型五、时间序列预测的方法移动平均法1、概念:通过平均每一个连续数列值来修匀时间数列的方法2、做法:对时间数列的各项数值,按照一定的时距(跨越期)进行逐期移动,计算出一系列序时平均数,形成一个派生的平均数时间数列,以此削弱不规则变动的影响,显示出原数列的长期趋势。
3、步骤:(1)、确定移动时距(跨越期)n一般应选择奇数项进行移动平均若原数列呈周期变动,应选择现象的变动周期作为移动的时距长度。
(2)、计算各移动平均值,并将其编制成时间序列4、特点:(1)移动平均对数列具有平滑修匀作用,移动项数越多,平滑修匀作用越强(2)由移动平均数组成的趋势值数列,较原数列的项数少局限:不能完整地反映原数列的长期趋势,不便于直接根据修匀后的数列进行预测。