(完整版)建筑物理(热)-1建筑热工基础知识
- 格式:ppt
- 大小:18.40 MB
- 文档页数:151
建筑热工一、名词解释围护结构的传热过程:室内空气通过围护结构与室外空气进行热量传递的过程。
传热:传热是包括各种方式热能传递现象的总称,传热的三种基本方式为导热、对流和热辐射。
温度场:一般情况下,构造与两侧空间上各点的温度是不同的,它是时间和空间的函数,某一时刻所有各点的温度分布叫做温度场。
温度场也是时间和空间的函数。
稳定温度场:如果温度场不随时间和空间变化,则称为稳定温度场。
在稳定温度场中发生的传热过程称为稳定传热过程。
不稳定温度场:温度场随时间变化时,称为不稳定温度场,在不稳定温度场中发生的传热过程称为不稳定传热过程。
导热:当物体各部分之间不发生相对位移或不同的物体直接接触时,依靠物质的分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为导热(或热传导),所以理论上讲导热可以在固体、液体和气体中发生。
热阻:热流通过平壁是所受到的阻力,即平壁抵抗热流通过的能力。
R=d/λ(㎡·K/W)对流:对流是指流体个部分之间发生相对位移,依靠冷热流体互相掺混和移动所引起的热量传递方式。
对流换热的强弱主要取决于:层流边界层内的换热与流体运动发生的原因、流体运动状况、流体与固体壁面温度差、流体的物性、固体壁面的形状、大小及位置等因素。
对流换热:壁面和流体之间在对流和导热同时作用下进行的热量传递。
自然对流:自然对流是由于流体冷、热各部分的密度不同而引起的。
强制对流:如果流体的流动是再水泵或风机等的驱动下造成的。
对流速度取决于外力的大小。
外力愈大,对流愈强。
边界层(区):由于壁面摩擦力和流体粘滞力的作用,在壁面上会形成一个流态平稳、体积很薄的流动层,称之为层流区或层流边界层。
层流区以外,则是一个液态紊乱、体积较薄的流动层,称之为紊流层或紊流边界层,层流边界层和紊流边界层就构成了壁面与流体对流换热的边界层或边界层区。
对流换热热阻:它是热流通过避免边界层是所受到的阻力,即边界层抵抗热流通过的能力。
c R =1/c α(㎡·K/W)对流换热系数:它是一个用来概括边界层对流换热能力大小的系数,具体的物理意义可以表述为:当壁面和流体主流区之间的温差为1℃时,单位时间通过单位表面积的换热量。
《热工基础知识综合性概述》一、引言热工基础知识在现代科学技术和工程领域中占据着至关重要的地位。
从日常生活中的供暖、制冷到工业生产中的能源转换、动力系统,热工知识无处不在。
它不仅涉及到热力学、传热学等基础理论,还与材料科学、机械工程、电气工程等多个学科领域密切相关。
本文将对热工基础知识进行全面的阐述与分析,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、基本概念1. 温度温度是表示物体冷热程度的物理量。
在热工领域中,常用的温度单位有摄氏度(℃)、华氏度(°F)和开尔文(K)。
其中,开尔文是国际单位制中的基本温度单位,它与摄氏度的换算关系为 T (K)=T(℃)+273.15。
2. 热量热量是指由于温度差而传递的能量。
热量的单位通常为焦耳(J)或千卡(kcal)。
在热传递过程中,热量总是从高温物体流向低温物体。
3. 热容量热容量是指物体温度升高(或降低)1 摄氏度所吸收(或放出)的热量。
热容量的大小与物体的质量、物质种类以及温度变化范围有关。
4. 热导率热导率是衡量物质导热能力的物理量。
热导率越大,物质的导热能力越强。
热导率的单位为瓦/(米·开尔文)(W/(m·K))。
三、核心理论1. 热力学第一定律热力学第一定律也称为能量守恒定律,它指出在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
在热工领域中,热力学第一定律可以用来计算系统在热传递和做功过程中的能量变化。
2. 热力学第二定律热力学第二定律有多种表述方式,其中最著名的是克劳修斯表述和开尔文表述。
克劳修斯表述为:热量不能自发地从低温物体传递到高温物体。
开尔文表述为:不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响。
热力学第二定律揭示了热过程的方向性和不可逆性。
3. 传热学基本理论传热学主要研究热量传递的规律和方法。
传热的方式主要有三种:热传导、热对流和热辐射。
(1)热传导:是指热量通过物质的分子、原子或电子的运动而传递的过程。
热工部分一、基本概念1.导热系数(λ):反映了材料的导热能力。
在数值上等于单位厚度材料层两面温差为1K ,在1h 内通过1㎡截面积的热量。
单位:)/(K m W ∙ (金属>非金属和液体>气体) 影响因素:1) 材质;2) 材料干密度(正);3)材料含湿量(正);4)温度(正)2.对流换热系数(c α):表示物体对流换热能力,数值上等于温差为1K ,在1h 内通过1㎡截面积的热量。
影响因素:气流状况(是自然对流还是受迫对流);构件位置(是处于垂直的、水平的或是倾斜的);壁面状况(是有利于气流流动还是不利于流动);传热方向(由下而上(快)或是由上而下(慢))等主要影响因素。
3.辐射换热系数(r α):表示物体辐射换热能力。
数值上等于温差为1K ,在1h 内通过1㎡截面积的热量。
影响因素:各物体的表面温度、发射和吸收辐射热的能力(ε、T )以及它们之间的相对位置。
4.平壁的表面换热系数()e i αα、:是表面对流换热系数和辐射换热系数的和。
5.辐射热的吸收系数、反射系数 、黑度 00,I I r I I r h h ==αρ分别称为吸收系数和反射系数。
黑度(ε):灰体的全辐射本领与同温下绝对黑体的全辐射本领的比值。
对于任意特定波长,物体对辐射热的吸收系数在数值上与其黑度ε是相等的。
这就是说,物体辐射能力愈大,它对外来辐射的吸收能力也愈大;反之,若辐射能力愈,则吸收能力也愈小。
6.材料蓄热系数(S):半无限厚物体表面热流波动的振幅qo A 与温度波动振幅f A 的比值称为物体在谐波热作用下的材料蓄热系数。
单位为:W/(㎡·K ) 影响因素:谐波周期;材料基本物理指标0ρλ、、c 等。
物理意义:半无限厚物体在谐波热作用下,表面对谐波热作用的敏感程度。
7.材料层表面蓄热系数(Y ):材料层表面的热流波动振幅q A 与表面温度波动振幅f A 的比值。
8.热惰性指标:S R D x ∙=称为厚度为x 的材料层的热惰性指标,表示围护结构在谐波热作用下反抗温度波动的能力。
第一篇 建筑热工学第1章 建筑热工学基础知识1.室内热环境构成要素:室内空气温度、空气湿度、气流速度和环境辐射温度构成。
2.人体的热舒适①热舒适的必要条件:人体内产生的热量=向环境散发的热量。
m q ——人体新陈代谢产热量e q ——人体蒸发散热量r q ——人体与环境辐射换热量 c q ——人体与环境对流换热量②充分条件:所谓按正常比例散热,指的是对流换热约占总散热量的25-30% ,辐射散热约为45-50%,呼吸和无感觉蒸发散热约占 25-30%。
处于舒适状况的热平衡,可称之为“正常热平衡”。
(注意与“负热平衡区分”)③影响人体热舒适感觉的因素:1.温度;2.湿度;3.速度;4.平均辐射温度;5.人体新陈代谢产热率;6.人体衣着状况。
3.湿空气的物理性质①湿空气组成:干空气+水蒸气=湿空气②水蒸气分压力:指一定温度下湿空气中水蒸气部分所产生的压力。
⑴未饱和湿空气的总压力:w P ——湿空气的总压力(Pa ) d P ——干空气的分压力(Pa ) P ——水蒸气的分压力(Pa )⑵饱和状态湿空气中水蒸气分压力:s P ——饱和水蒸气分压力注:标准大气压下,s P 随着温度的升高而变大(见本篇附录2)。
表明在一定的大气压下,湿空气温度越高,其一定容积中所能容纳的水蒸气越少,因而水蒸气呈现出的压力越大。
③空气湿度:表明空气的干湿程度,有绝对湿度和相对湿度两种不同的表示方法。
⑴绝对湿度:单位体积空气所含水蒸气的重量,用f 表示(g/m 3)。
饱和状态下的绝对湿度则用饱和水蒸气量max f (g/m 3)表示。
⑵相对湿度:一定温度,一定大气压力下,湿空气的绝对湿度f ,与同温同压下饱和水蒸气量max f 的百分比:⑶同一温度(T相对湿度又可表示为空气中P ——空气的实际水蒸气分压力 (Pa s P ——同温下的饱和水蒸气分压力 (Pa )。
(注:研究表明,对室内热湿环境而言,正常湿度范围大概在30%~60%。