现代高炉炼铁工艺
- 格式:ppt
- 大小:16.74 MB
- 文档页数:87
本次将高炉炼铁工艺流程分为以下几部分: 一、 高炉炼铁工艺流程详解二、 高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料、高炉炼铁工艺流程详解高炉炼铁工艺流程详图如下图所示:附:高炉炉本体主要组成部分介绍以及高炉操作知识料钾调控阙,-20 0V炉身V-E001C■-14001C炉腹,-leoor £小料牛 小料钟出铁口 , 900-1000V" 京铁加利面铁炉炉爆气首工艺设备相见文库文档:料风咀注,各类校珀均产生暖声:、高炉炼铁原理炼铁过程实质上是将铁从其白然形态一一矿石等含铁化合物中还原出来的过程。
铁矿石、焦炭、石炎石炼铁方法主要有高炉法、直接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、H2、C;适宜温度等)通过物化反应获取还原后的生铁。
生铁除了少部分用于铸造外,绝大部分是作为炼钢原料。
高炉炼铁是现代炼铁的主要方法,钢铁生产中的重要环节。
这种方法是由古代竖炉炼铁发展、展了改进而成的。
尽管世界各国研究发很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单, 生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。
炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锭矿等)按一定比例白高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。
原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。
同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,白渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。
炼铁实训报告高炉炼铁的原料:铁矿石、燃料、熔剂一、铁矿石铁都是以化合物的状态存在于自然界中,尤其是以氧化铁的状态存在的量特别多。
现在将几种比较重要的铁矿石提出来说明:(1)磁铁矿(Magnetite)是一种氧化铁的矿石,主要成份为Fe3O4,是Fe2O3和FeO 的复合物,呈黑灰色,比重大约5.15左右,含Fe72.4%,O 27.6%,具有磁性。
在选矿(Beneficiation)时可利用磁选法,处理非常方便;但是由于其结构细密,故被还原性较差。
经过长期风化作用后即变成赤铁矿。
(2)赤铁矿(Hematite)也是一种氧化铁的矿石,主要成份为Fe2O3,呈暗红色,比重大约为5.26,含Fe70%,O 30%,是最主要的铁矿石。
由其本身结构状况的不同又可分成很多类别,如赤色赤铁矿(Red hematite)、镜铁矿(Specularhematite)、云母铁矿(Micaceous hematite)、粘土质赤铁(Red Ocher)等。
(3)褐铁矿(Limonite)这是含有氢氧化铁的矿石。
它是针铁矿(Goethite)HFeO2和鳞铁矿(Lepidocrocite)FeO(OH)两种不同结构矿石的统称,也有人把它主要成份的化学式写成mFe2O3.nH2O,呈现土黄或棕色,含有Fe约62%,O 27%,H2O 11%,比重约为3.6~4.0,多半是附存在其它铁矿石之中。
(4)菱铁矿(Siderite)是含有碳酸铁的矿石,主要成份为FeCO3,呈现青灰色,比重在3.8左右。
这种矿石多半含有相当多数量的钙盐和镁盐。
由于碳酸根在高温约800~900℃时会吸收大量的热而放出二氧化碳,所以我们多半先把这一类矿石加以焙烧之后再加入鼓风炉。
另外还有铁的硅酸盐矿(Silicate Iron)硫化铁矿(Sulphide iron)二、燃料炼铁的主要燃料是焦炭。
烟煤在隔绝空气的条件下,加热到950-1050℃,经过干燥、热解、熔融、粘结、固化、收缩等阶段最终制成焦炭,这一过程叫高温炼焦(高温干馏)。
本次将高炉炼铁工艺流程分为以下几部分:一、高炉炼铁工艺流程详解二、高炉炼铁原理三、高炉冶炼主要工艺设备简介四、高炉炼铁用的原料附:高炉炉本体主要组成部分介绍以及高炉操作知识工艺设备相见文库文档:一、高炉炼铁工艺流程详解高炉炼铁工艺流程详图如下图所示:二、高炉炼铁原理炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。
炼铁方法主要有高炉法、直接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、H2、C;适宜温度等)通过物化反应获取还原后的生铁。
生铁除了少部分用于铸造外,绝大部分是作为炼钢原料。
高炉炼铁是现代炼铁的主要方法,钢铁生产中的重要环节。
这种方法是由古代竖炉炼铁发展、改进而成的。
尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。
炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。
原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。
同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。
炼铁工艺流程和主要排污节点见上图。
三、高炉冶炼主要工艺设备简介高护炼铁设备组成有:①高炉本体;②供料设备;③送风设备;④喷吹设备;⑤煤气处理设备;⑥渣铁处理设备。
冶金09《钢铁冶金学(A)》之《铁冶金学》部分复习思考题绪论复习思考题1 高炉炼铁法在各种炼铁方法中居主导地位的原因是什么?2 为什么说连铸是钢铁工业的一次“技术革命”?3 钢铁工业在国民经济中居何地位?原因何在?第一章现代高炉炼铁工艺复习思考题1 高炉炼铁的工艺流程由哪几部分组成?2 高炉生产有哪些特点?3 对高炉内衬的基本要求是什么?4 简述蓄热式热风炉的工作原理。
5 与湿法除尘相比较,高炉煤气干法除尘有何优点?6 简述高炉内各区域的分布、特征及主要反应。
7 高炉生产有哪些产品和副产品,各有何用途?8 高炉炼铁有哪些技术经济指标?9 利用系数、冶炼强度和焦比之间有何关系?此种关系给我们何种启示?10 概念题:高炉有效高度、有效容积、工作容积、有效容积利用系数、面积利用系数、焦比、置换比、综合焦比、冶炼强度、综合冶炼强度、一代寿命。
第二章高炉炼铁原料复习思考题1天然铁矿石按其主要含铁矿物可分为哪几类?各有何特点?2高炉冶炼对铁矿石质量有何要求?(评价铁矿石质量的标准有哪些?)3熔剂在高炉冶炼中起什么作用?4高炉冶炼对碱性熔剂的质量有何要求?5说明焦炭在高炉冶炼过程中的作用。
6高炉冶炼对焦炭质量提出了哪些要求?7焦炭的强度指标有哪些?简述各指标的意义及高炉冶炼对各指标的原则要求。
8铁矿粉烧结生产有何意义?9简述抽风烧结过程中从上到下依次出现的层次及各层中的主要反应。
10根据烧结过程中碳燃烧反应的类型,分析烧结过程的气氛性质。
11分析水汽冷凝对烧结过程的影响及消除过湿层的措施。
12影响CaCO3分解及CaO矿化的因素有哪些?13 高炉内碳酸盐分解对冶炼过程有何不利影响?(高炉采用熔剂性烧结矿冶炼,杜绝石灰石入炉的意义何在?)14烧结过程发生固相反应的条件是什么,反应过程和反应产物有何特点,固相反应对烧结过程有何影响?15烧结过程中的液相是如何形成的,不同碱度烧结矿的烧结过程中产生的液相有何特点,液相对烧结矿质量有何影响?16 简述正硅酸钙(C2S)造成烧结矿粉化的原因及主要对策。
高炉炼铁生产工艺流程简介高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。
付产品有:水渣、矿渣棉和高炉煤气等。
高炉:炼铁一般是在高炉里连续进行的。
高炉又叫鼓风炉,这是因为要把热空气吹入炉中使原料不断加热而得名的。
这些原料是铁矿石、石灰石及焦炭。
因为碳比铁的性质活泼,所以它能从铁矿石中把氧夺走,而把金属铁留下。
高炉的主要组成部分高炉炉壳:现代化高炉广泛使用焊接的钢板炉壳,只有极少数最小的土高炉才用钢箍加固的砖壳。
炉壳的作用是固定冷却设备,保证高炉砌体牢固,密封炉体,有的还承受炉顶载荷。
炉壳除承受巨大的重力外,还要承受热应力和内部的煤气压力,有时要抵抗崩料、坐料甚至可能发生的煤气爆炸的突然冲击,因此要有足够的强度。
炉壳外形尺寸应与高炉内型、炉体各部厚度、冷却设备结构形式相适应。
炉喉:高炉本体的最上部分,呈圆筒形。
炉喉既是炉料的加入口,也是煤气的导出口。
它对炉料和煤气的上部分布起控制和调节作用。
炉喉直径应和炉缸直径、炉腰直径及大钟直径比例适当。
炉喉高度要允许装一批以上的料,以能起到控制炉料和煤气流分布为限。
炉身:高炉铁矿石间接还原的主要区域,呈圆锥台简称圆台形,由上向下逐渐扩大,用以使炉料在遇热发生体积膨胀后不致形成料拱,并减小炉料下降阻找力。
炉身角的大小对炉料下降和煤气流分布有很大影响。
炉腰:高炉直径最大的部位。
它使炉身和炉腹得以合理过渡。
由于在炉腰部位有炉渣形成,并且粘稠的初成渣会使炉料透气性恶化,为减小煤气流的阻力,在渣量大时可适当扩大炉腰直径,但仍要使它和其他部位尺寸保持合适的比例关系,比值以取上限为宜。
炉腰高度对高炉冶炼过程影响不很显著,一般只在很小范围内变动。
炉腹:高炉熔化和造渣的主要区段,呈倒锥台形。
为适应炉料熔化后体积收缩的特点,其直径自上而下逐渐缩小,形成一定的炉腹角。
炉腹的存在,使燃烧带处于合适位置,有利于气流均匀分布。
炉腹高度随高炉容积大小而定,但不能过高或过低,一般为3.0~3.6m。
高炉炼铁工艺1. 预处理原料:在高炉炼铁之前,需要对原料进行一定的预处理。
首先要破碎和磨细铁矿石,以增加其表面积,便于后续的还原反应。
同时要对焦炭进行粉煤处理,以增加其反应表面积,并降低硫和灰分含量。
此外,石灰石也需要进行破碎和磨细,以便混合均匀。
2. 加料和还原反应:预处理好的原料按一定比例加入高炉中,与风推入的煤气(还原气)一起在高温下进行还原反应。
在这个过程中,煤气中的一氧化碳和二氧化碳与铁矿石中的氧化铁发生化学反应,将氧气从氧化铁中除去,从而生成熔融的铁水和气体的渣浆。
3. 收集铁水:熔融的铁水通过高炉底部的出口流出,并收集到铁水坩埚中。
铁水可以通过连续铸造机或者浇铸处理成各种规格和形状的铸铁产品。
4. 渣浆处理:在还原反应过程中,高炉内产生的含有铁和其他杂质的渣浆需要被处理。
通常,渣浆会通过热风炉或转炉处理,以及重新冶炼过程,从而提炼出有用的铁和其他金属。
高炉炼铁工艺是一项高温高压的工艺过程,需要严格控制各种工艺参数,以保证生产铁水的质量和数量。
同时,高炉炼铁工艺也是一个能耗较高的工艺过程,如何提高能源利用效率,降低生产成本,是钢铁企业一直在努力解决的问题。
随着科技的不断创新和进步,高炉炼铁工艺也在不断地完善和改进,为钢铁工业的可持续发展做出了重要贡献。
高炉炼铁工艺作为钢铁行业的核心工艺之一,对于钢铁产品的质量和产量起着至关重要的作用。
在过去的几十年里,随着工业技术的不断发展和创新,高炉炼铁工艺也在不断地完善和改进。
首先,钢铁企业在高炉炼铁工艺方面不断引入优化技术和自动化控制系统,以提高生产效率和产品质量。
通过智能化技术,高炉操作可以更加精准和稳定,从而减少了人为因素对于生产过程的影响,提高了工作效率和产品一致性。
同时,一些新型的高炉炼铁工艺还采用了先进的能源回收技术,将废热和废气重新利用,从而降低了能源消耗和环境排放,实现了资源的合理利用。
其次,高炉炼铁工艺也在材料的选用上有了新的突破。
高炉炼铁技术工艺及应用分析摘要:不断优化高炉冶炼工艺和流程,能够有效解决高污染和高能耗的难题,对促进中国钢铁工业的可持续发展有着重大的现实意义。
介绍了当前世界上最先进的炼铁技术和流程,并对炼铁技术进行了介绍。
通过本项目的实施,可提高炼铁强度,提高炼铁品质,减少煤粉用量,减少对环境的负面影响。
关键词:高炉冶炼;高污染;钢铁工业;炼铁品质引言:在钢铁工业中,高炉是最主要的生产装置,它的稳定和安全运行对整个生产过程起着举足轻重的作用。
目前,在炼铁高炉冶金技术的发展中,还存在着一些技术含量偏低、冶金设备落后以及余热再利用等问题。
因此,这就要求政府有关部门和炼铁企业对此给予足够的关注,并将冶金技术的应用朝着低焦炭、无污染以及可再生的方向发展。
1.高炉炼铁工艺简介1.1.高炉结构介绍采用高炉炼铁不仅能进一步增加铁材产量,而且还能保证冶炼的安全性与品质。
在炼铁过程中,最常用的就是高炉,其外观大多为圆筒形,一般都会设置有各种冶炼出口、排气口、进风口。
在熔炼过程中,必须先将铁质原料送入高炉,然后在高炉内进行一系列的工序处理,再将精炼后的铁质从熔炼口排放出去。
由于冶炼的条件比较高,所以炉膛内的温度也比较高。
在进行高炉的熔炼时,除高炉外,还要用到一些其它的辅助设备,以完成炼铁作业。
在熔炉的温度和温度下,矿石的分子结构被破坏,然后用还原剂将其中的铁提取出来,然后将其中的铁与铁进行分离。
在冶炼过程中,会产生一定数量的铁屑,这些铁屑必须通过排放口排放出去。
1.2高炉炼铁系统组成高炉炼铁工艺主要包括上料系统、炉顶系统、炉体系统、渣处理系统、喷吹系统和公辅系统。
输送装置,的作用是根据生产过程的需要,将炉料平稳地输送到高炉。
炉顶系统,当前,炉顶系统主要使用的是无料钟炉顶,它由固定受料漏斗、料罐、阀箱、气密箱和溜槽五个主要部分组成,它的主要作用是把原燃料按照设定的工艺要求和布料方式向高炉内布料。
炉体系统主要包含了以下内容:高炉内衬、炉体冷却设施、高炉炉壳及框架平台、炉体检测与控制设施及其他炉体主要附属设备,在这里,高炉炼铁的主要反应就会在这里进行,进而可以生产出铁水。