2016年高考-全国一卷-文科数学-(原题+解析)
- 格式:docx
- 大小:391.96 KB
- 文档页数:19
2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3},B={x|x2<9},则A∩B=( )A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}2.设复数z满足z+i=3-i,则=( )A.-1+2iB.1-2iC.3+2iD.3-2i3.函数y=Asin(ωx+φ)的部分图象如图所示,则( )A.y=2sinB.y=2sinC.y=2sinD.y=2sin4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12πB.πC.8πD.4π5.设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=( )A. B.1 C. D.26.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.-B.-C.D.27.下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π8.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A. B. C. D.9.中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )A.7B.12C.17D.3410.下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=xB.y=lg xC.y=2xD.y=11.函数f(x)=cos2x+6cos的最大值为( )A.4B.5C.6D.712.已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则=( )A.0B.mC.2mD.4m第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13.已知向量a=(m,4),b=(3,-2),且a∥b,则m= .14.若x,y满足约束条件则z=x-2y的最小值为.15.△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b= .16.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)等差数列{a n}中,a3+a4=4,a5+a7=6.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=[a n],求数列{b n}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.18.(本小题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85a a 1.25a 1.5a 1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234≥5频数605030302010(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值; (Ⅲ)求续保人本年度平均保费的估计值.19.(本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H.将△DEF沿EF 折到△D'EF的位置.(Ⅰ)证明:AC⊥HD';(Ⅱ)若AB=5,AC=6,AE=,OD'=2,求五棱锥D'-ABCFE的体积.20.(本小题满分12分)已知函数f(x)=(x+1)ln x-a(x-1).(Ⅰ)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(Ⅱ)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.21.(本小题满分12分)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,证明:<k<2.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F. (Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|=,求l的斜率.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=+,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.2016年普通高等学校招生全国统一考试文科数学答案第Ⅰ卷一. 选择题(1)【答案】D (2)【答案】C (3) 【答案】A (4) 【答案】A (5)【答案】D(6) 【答案】A(7) 【答案】C(8) 【答案】B(9)【答案】C(10) 【答案】D (11)【答案】B(12) 【答案】B二.填空题(13)【答案】6-(14)【答案】5-(15)【答案】2113(16)【答案】1和3 三、解答题(17)(本小题满分12分) 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】试题分析:(Ⅰ) 根据等差数列的性质求1a ,d ,从而求得n a ;(Ⅱ)根据已知条件求n b ,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,学.科网由题意有11254,53a d a d -=-=,解得121,5a d ==, 所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦, 当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=;当n=6,7,8时,2334,35n n b +≤<=; 当n=9,10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. 考点:等茶数列的性质,数列的求和. 【结束】(18)(本小题满分12分) 【答案】(Ⅰ)由6050200+求P(A)的估计值;(Ⅱ)由3030200+求P(B)的估计值;(III )根据平均值得计算公式求解. 【解析】 试题分析:试题解析:(Ⅰ)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为60500.55200+=, 故P(A)的估计值为0.55.(Ⅱ)事件B 发生当且仅当一年内出险次数大于1且小于4.由是给数据知,学.科网一年内出险次数大于1且小于4的频率为30300.3200+=, 故P(B)的估计值为0.3. (Ⅲ)由题所求分布列为:调查200名续保人的平均保费为0.850.300.25 1.250.15 1.50.15 1.750.3020.10 1.1925a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=,因此,续保人本年度平均保费估计值为1.1925a. 考点:样本的频率、平均值的计算. 【结束】(19)(本小题满分12分) 【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)证明.'⊥OD OH 再证'⊥OD 平面.ABC 最后呢五棱锥'ABCEF D -体积.试题解析:(I )由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD . (II )由//EF AC 得1.4==OH AE DO AD由5,6==AB AC 得 4.===DO BO所以1, 3.'===OH D H DH于是2222219,''+=+==OD OH D H 故.'⊥OD OH由(I )知'⊥AC HD ,又,'⊥=AC BD BD HD H ,所以⊥AC 平面,'BHD 于是.'⊥AC OD 又由,'⊥=OD OH AC OH O ,所以,'⊥OD 平面.ABC又由=EF DH AC DO 得9.2=EF 五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S所以五棱锥'ABCEF D -体积169342=⨯⨯=V 考点:空间中的线面关系判断,几何体的体积. 【结束】(20)(本小题满分12分)【答案】(Ⅰ)220.x y +-=;(Ⅱ)(],2.-∞. 【解析】试题分析:(Ⅰ)先求定义域,再求()f x ',(1)f ',(1)f ,由直线方程得点斜式可求曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(Ⅱ)构造新函数(1)()ln 1-=-+a x g x x x ,学.科网对实数a 分类讨论,用导数法求解.试题解析:(I )()f x 的定义域为(0,)+∞.当4=a 时,1()(1)ln 4(1),()ln 3'=+--=+-f x x x x f x x x ,(1)2,(1)0.'=-=f f 曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(II )当(1,)∈+∞x 时,()0>f x 等价于(1)ln 0.1-->+a x x x 令(1)()ln 1-=-+a x g x x x ,则 222122(1)1(),(1)0(1)(1)+-+'=-==++a x a x g x g x x x x , (i )当2≤a ,(1,)∈+∞x 时,222(1)1210+-+≥-+>x a x x x ,故()0,()'>g x g x 在(1,)∈+∞x 上单调递增,因此()0>g x ;(ii )当2>a 时,令()0'=g x 得1211=-=-+x a x a由21>x 和121=x x 得11<x ,故当2(1,)∈x x 时,()0'<g x ,()g x 在2(1,)∈x x 单调递减,学.科网因此()0<g x .综上,a 的取值范围是(],2.-∞考点:导数的几何意义,函数的单调性.【结束】(21)(本小题满分12分)【答案】(Ⅰ)14449;(Ⅱ))2. 【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k .试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >.由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (2)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得 2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k-=+,故12||2|34AM x k =+=+.由题设,直线AN 的方程为1(2)y x k=-+,故同理可得||AN =. 由2||||AM AN =得2223443k k k =++,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22'()121233(21)0f t t t t =-+=-≥,所以()f t 在(0,)+∞单调递增,又260,(2)60f f =<=>,因此()f t 在(0,)+∞有唯一的零点,且零点k 在2)2k <<.考点:椭圆的性质,直线与椭圆的位置关系.【结束】请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲【答案】(Ⅰ)详见解析;(Ⅱ)12. 【解析】试题分析:(Ⅰ)证,DGF CBF ∆~∆再证,,,B C G F 四点共圆;(Ⅱ)证明,Rt BCG Rt BFG ∆~∆四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍.试题解析:(I )因为DF EC ⊥,所以,DEF CDF ∆~∆ 则有,,DF DE DG GDF DEF FCB CF CD CB∠=∠=∠== 所以,DGF CBF ∆~∆由此可得,DGF CBF ∠=∠由此0180,CGF CBF ∠+∠=所以,,,B C G F 四点共圆.(II )由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥,连结GB ,由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故,Rt BCG Rt BFG ∆~∆因此四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍,即 111221.222GCB S S ∆==⨯⨯⨯=考点:三角形相似、全等,四点共圆【结束】(23)(本小题满分10分)选修4—4:坐标系与参数方程【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ)15. 【解析】试题分析:(I )利用222x y ρ=+,cos x ρθ=可得C 的极坐标方程;(II )先将直线l 的参数方程化为普通方程,学.科网再利用弦长公式可得l 的斜率.试题解析:(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++=(II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=12||||AB ρρ=-==由||AB =得23cos ,tan 8αα==, 所以l或考点:圆的极坐标方程与普通方程互化,直线的参数方程,点到直线的距离公式.【结束】(24)(本小题满分10分)选修4—5:不等式选讲【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析.【解析】试题分析:(I )先去掉绝对值,再分12x <-,1122x -≤≤和12x >三种情况解不等式,即可得M ;(II )采用平方作差法,再进行因式分解,进而可证当a ,b ∈M 时,1a b ab +<+.试题解析:(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-; 当1122x -<<时,()2f x <; 当12x ≥时,学.科网由()2f x <得22,x <解得1x <. 所以()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时,11,11a b -<<-<<,从而22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<,因此|||1|.a b ab +<+考点:绝对值不等式,不等式的证明.【结束】一、选择题1.D 由已知得B={x|-3<x<3},∵A={1,2,3},∴A ∩B={1,2},故选D.2.C z=3-2i,所以=3+2i,故选C.3.A 由题图可知A=2,=-=,则T=π,所以ω=2,则y=2sin(2x+φ),因为题图经过点,所以2sin =2,所以+φ=2kπ+,k ∈Z,即φ=2kπ-,k ∈Z,当k=0时,φ=-,所以y=2sin,故选A. 4.A 设正方体的棱长为a,则a 3=8,解得a=2.设球的半径为R,则2R=a,即R=,所以球的表面积S =4πR 2=12π.故选A. 5.D 由题意得点P 的坐标为(1,2).把点P 的坐标代入y=(k>0)得k=1×2=2,故选D.6.A 由圆的方程可知圆心为(1,4).由点到直线的距离公式可得=1,解得a=-,故选A. 易错警示 圆心的坐标容易误写为(-1,-4)或(2,8). 7.C 由三视图知圆锥的高为2,底面半径为2,则圆锥的母线长为4,所以圆锥的侧面积为×4π×4=8π.圆柱的底面积为4π, 圆柱的侧面积为4×4π=16π,从而该几何体的表面积为8π+16π+4π=28π,故选C.8.B 行人在红灯亮起的25秒内到达该路口,即满足至少需要等待15秒才出现绿灯,根据几何概型的概率公式知所求事件的概率P==,故选B.9.C 执行程序框图,输入a 为2时,s=0×2+2=2,k=1,此时k>2不成立;再输入a 为2时,s=2×2+2=6,k=2,此时k>2不成立;再输入a为5,s=6×2+5=17,k=3,此时k>2成立,结束循环,输出s为17,故选C.10.D 函数y=10lg x的定义域、值域均为(0,+∞),而y=x,y=2x的定义域均为R,排除A,C;y=lg x的值域为R,排除B,故选D.易错警示利用对数恒等式将函数y=10lg x变为y=x,将其值域认为是R是失分的主要原因.11.B f(x)=1-2sin2x+6sin x=-2+,当sin x=1时,f(x)取得最大值5,故选B.思路分析利用二倍角余弦公式及诱导公式将f(x)=cos2x+6cos转化为关于sin x的二次函数,通过配方来求最值,注意不要忘记sin x∈[-1,1].12.B 由题意可知f(x)的图象关于直线x=1对称,而y=|x2-2x-3|=|(x-1)2-4|的图象也关于直线x=1对称,所以两个图象的交点关于直线x=1对称,且每对关于直线x=1对称的交点的横坐标之和为2,所以x i=m,故选B.疑难突破关于直线x=1对称的两点横坐标之和为2,由题意得出f(x)与y=|x2-2x-3|的图象均关于直线x=1对称是解题的关键.二、填空题13.答案-6解析因为a∥b,所以=,解得m=-6.易错警示容易把两个向量平行与垂直的条件混淆.14.答案-5解析由约束条件画出可行域,如图中阴影部分所示(包括边界).当直线x-2y-z=0过点B(3,4)时,z取得最小值,z min=3-2×4=-5.15.答案解析由cos C=,0<C<π,得sin C=.由cos A=,0<A<π,得sin A=.所以sin B=sin[π-(A+C)]=sin(A+C)=sin Acos C+sin Ccos A=,根据正弦定理得b==.16.答案1和3解析丙的卡片上的数字之和不是5,则丙有两种情况:①丙的卡片上的数字为1和2,此时乙的卡片上的数字为2和3,甲的卡片上的数字为1和3,满足题意;②丙的卡片上的数字为1和3,此时乙的卡片上的数字为2和3,甲的卡片上的数字为1和2,这时甲与乙的卡片上有相同的数字2,与已知矛盾,故情况②不符合,所以甲的卡片上的数字为1和3.疑难突破先对丙分类讨论,确定出丙卡片上的数字情况再确定乙、甲是解决问题的关键.。
2016年普通高等学校招生全国统一考试(卷)数学本卷满分200分,考试时间150分钟.参考公式:样本数据x1,x2,…,x n的方差s2=1n∑i=1n(x i-x)2,其中x=1n∑i=1nx i.棱柱的体积V=Sh,其中S是棱柱的底面积,h是高.棱锥的体积V=13Sh,其中S是棱锥的底面积,h是高.数学Ⅰ(共160分)一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合A={-1,2,3,6},B={x|-2<x<3},则A∩B= .2.复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是.3.在平面直角坐标系xOy中,双曲线x 27-y23=1的焦距是.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.5.函数y=2的定义域是.6.下图是一个算法的流程图,则输出的a的值是.7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.8.已知{a n}是等差数列,S n是其前n项和.若a1+a22=-3,S5=10,则a9的值是.9.定义在区间[0,3π]上的函数y=sin2x的图象与y=cos x的图象的交点个数是.10.如图,在平面直角坐标系xOy中,F是椭圆x 2a2+y2b2=1(a>b>0)的右焦点,直线y=b2与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.11.设f(x)是定义在R 上且周期为2的函数,在区间[-1,1)上,f(x)={x +a,-1≤x <0,|25-x|,0≤x <1,其中a ∈R .若f (-52)=f (92),则f(5a)的值是 .12.已知实数x,y 满足{x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值围是 .13.如图,在△ABC 中,D 是BC 的中点,E,F 是AD 上的两个三等分点,BA ⃗⃗⃗⃗⃗ ·CA ⃗⃗⃗⃗⃗ =4,BF ⃗⃗⃗⃗⃗ ·CF⃗⃗⃗⃗⃗ =-1,则BE ⃗⃗⃗⃗⃗ ·CE⃗⃗⃗⃗⃗ 的值是 .14.在锐角三角形ABC 中,若sin A=2sin Bsin C,则tan Atan Btan C 的最小值是 . 二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 在△ABC 中,AC=6,cos B=45,C=π4. (1)求AB 的长; (2)求cos (A -π6)的值.16.(本小题满分14分)如图,在直三棱柱ABC-A 1B 1C 1中,D,E 分别为AB,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F; (2)平面B 1DE ⊥平面A 1C 1F.17.(本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A 1B 1C 1D 1,下部的形状是正四棱柱ABCD-A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB=6 m,PO 1=2 m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m,则当PO 1为多少时,仓库的容积最大?18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M:x 2+y 2-12x-14y+60=0及其上一点A(2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x=6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B,C 两点,且BC=OA,求直线l 的方程;(3)设点T(t,0)满足:存在圆M 上的两点P 和Q,使得TA⃗⃗⃗⃗⃗ +TP ⃗⃗⃗⃗⃗ =TQ ⃗⃗⃗⃗⃗ ,数t 的取值围.19.(本小题满分16分)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=12.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)-6恒成立,数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)-2有且只有1个零点,求ab的值.20.(本小题满分16分)记U={1,2,…,100}.对数列{a n}(n∈N*)和U的子集T,若T=⌀,定义S T=0;若T={t1,t2,…,t k},定义S T=a t1+a t2+…+a tk.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.数学Ⅱ(附加题,共40分)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题作答...........若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4—1:几何证明选讲](本小题满分10分)如图,在△ABC 中,∠ABC=90°,BD ⊥AC,D 为垂足,E 是BC 的中点. 求证:∠EDC=∠ABD.B.[选修4—2:矩阵与变换](本小题满分10分)已知矩阵A =[1 20-2],矩阵B 的逆矩阵B -1=[1 -120 2],求矩阵AB .C.[选修4—4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为{x =1+1t,y =√32t(t 为参数),椭圆C 的参数方程为{x =cosθ,y =2sinθ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.D.[选修4—5:不等式选讲](本小题满分10分) 设a>0,|x-1|<a 3,|y-2|<a 3,求证:|2x+y-4|<a.【必做题】第22题、第23题,每小题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在平面直角坐标系xOy 中,已知直线l:x-y-2=0,抛物线C:y 2=2px(p>0). (1)若直线l 过抛物线C 的焦点,求抛物线C 的方程;(2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q. ①求证:线段PQ 的中点坐标为(2-p,-p); ②求p 的取值围.23.(本小题满分10分)(1)求7C 63-4C 74的值; (2)设m,n ∈N *,n ≥m,求证:(m+1)C m m +(m+2)C m+1m +(m+3)C m+2m +…+n C n -1m +(n+1)C n m =(m+1)C n+2m+2.2016年普通高等学校招生全国统一考试(卷)一、填空题 1.答案 {-1,2}解析 ∵A={-1,2,3,6},B={x|-2<x<3}, ∴A ∩B={-1,2}. 2.答案 5解析(1+2i)(3-i)=3+5i-2i2=5+5i,所以z的实部为5.3.答案2√10解析由x27-y23=1,得a2=7,b2=3,所以c2=10,c=√10,所以2c=2√10.4.答案0.1解析x=4.7+4.8+5.1+5.4+5.55=5.1,则该组数据的方差s2=(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)25=0.1.5.答案[-3,1]解析若函数有意义,则3-2x-x2≥0,即x2+2x-3≤0,解得-3≤x≤1.6.答案9解析代值计算,第一次运行后,a=5,b=7,第二次运行后,a=9,b=5,a>b,从而输出的a值为9.7.答案56解析先后抛掷2次骰子,所有可能出现的情况可用数对表示为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),……(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36个.其中点数之和不小于10的有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6个.从而点数之和小于10的数对共有30个,故所求概率P=3036=5 6 .8.答案20解析设等差数列{a n}的公差为d,则由题设可得{a1+(a1+d)2=-3,5a1+5×42d=10,解得{d=3,a1=-4,从而a9=a1+8d=20.9.答案 7解析 在同一平面直角坐标系中作出y=sin 2x 与y=cos x 在区间[0,3π]上的图象(如图).由图象可知,共有7个交点.10.答案√63解析 由已知条件易得B (-√32a,b 2),C (√32a,b2), F(c,0),∴BF⃗⃗⃗⃗⃗ =(c +√32a,-b 2),CF ⃗⃗⃗⃗⃗ =(c -√32a,-b 2), 由∠BFC=90°,可得BF ⃗⃗⃗⃗⃗ ·CF ⃗⃗⃗⃗⃗ =0, 所以(c -√32a)(c +√32a)+(-b 2)2=0,c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2, 所以c 2a2=23,则e=c a=√63.11.答案 -25解析 ∵f(x)是周期为2的函数,∴f (-52)=f (-2-12)=f (-12),f (92)=f (4+12)=f (12),又∵f (-52)=f (92),所以f (-12)=f (12),即-12+a=110,解得a=35,则f(5a)=f(3)=f(4-1)=f(-1)=-1+35=-25.12.答案 [45,13]解析 画出不等式组{x -2y +4≥0,2x +y -2≥0,3x -y -3≤0表示的可行域如图:由x-2y+4=0及3x-y-3=0得A(2,3),由x 2+y 2表示可行域的点(x,y)与点(0,0)的距离的平方可得(x 2+y 2)max =22+32=13,(x 2+y 2)min =d 2=(√)2=45,其中d 表示点(0,0)到直线2x+y-2=0的距离,所以x 2+y 2的取值围为[45,13].13.答案 78解析 由已知可得BE ⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ +23DA ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ -23AD ⃗⃗⃗⃗⃗ =12(AC ⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ )-13(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=16AC ⃗⃗⃗⃗⃗ -56AB ⃗⃗⃗⃗⃗ , CE ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ +23DA ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ -23AD ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ )-13(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=16AB ⃗⃗⃗⃗⃗ -56AC ⃗⃗⃗⃗⃗ , BF ⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ +13DA ⃗⃗⃗⃗⃗ =12(AC⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ )-16(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) =13AC ⃗⃗⃗⃗⃗ -23AB ⃗⃗⃗⃗⃗ , CF ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ +13DA ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ )-16(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=13AB ⃗⃗⃗⃗⃗ -23AC ⃗⃗⃗⃗⃗ , 因为BA ⃗⃗⃗⃗⃗ ·CA ⃗⃗⃗⃗⃗ =4,所以AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =4, 则BF ⃗⃗⃗⃗⃗ ·CF ⃗⃗⃗⃗⃗ =(13AC ⃗⃗⃗⃗⃗ -23AB ⃗⃗⃗⃗⃗ )·(13AB⃗⃗⃗⃗⃗ -23AC ⃗⃗⃗⃗⃗ ) =19AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ -29AB ⃗⃗⃗⃗⃗ 2-29AC ⃗⃗⃗⃗⃗ 2+49AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =59AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ -29(AB⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2)=59×4-29(AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2)=-1, 所以AB⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2=292,从而BE ⃗⃗⃗⃗⃗ ·CE ⃗⃗⃗⃗⃗ =(16AC ⃗⃗⃗⃗⃗ -56AB ⃗⃗⃗⃗⃗ )·(16AB ⃗⃗⃗⃗⃗ -56AC ⃗⃗⃗⃗⃗ ) =-536AB ⃗⃗⃗⃗⃗ 2-536AC ⃗⃗⃗⃗⃗ 2+2636AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =-536(AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2)+2636AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =-536×292+2636×4=6372=78.14.答案 8解析 ∵sin A=2sin Bsin C, ∴sin(B+C)=2sin Bsin C,即sin Bcos C+cos Bsin C=2sin Bsin C, 亦即tan B+tan C=2tan Btan C,∵tan A=tan[π-(B+C)]=-tan(B+C) =-tanB+tanC 1-tanBtanC =tanB+tanC1-tanBtanC , 又△ABC 为锐角三角形, ∴tan A=tanB+tanC tanBtanC -1>0,tan B+tan C>0,∴tan Btan C>1,∴tan Atan Btan C=tanB+tanCtanBtanC -1·tan B ·tan C=2(tanBtanC)2tanBtanC -1,令tan Btan C-1=t,则t>0,∴tan Atan Btan C=2(t+1)2t=2(t +1t +2)≥2×(2+2)=8,当且仅当t=1t ,即tan Btan C=2时,取“=”.∴tan Atan Btan C 的最小值为8.二、解答题15.解析(1)因为cos B=45,0<B<π,所以sin B=√1-cos2B=√1-(45)2=35.由正弦定理知ACsinB =ABsinC,所以AB=AC·sinCsinB=6×√2235=5√2.(2)在△ABC中,A+B+C=π,所以A=π-(B+C),于是cos A=-cos(B+C)=-cos(B+π4)=-cos Bcosπ4+sin B·sinπ4,又cos B=45,sin B=35,故cos A=-45×√22+35×√22=-√210.因为0<A<π,所以sin A=2A=7√210.因此,cos(A-π6)=cos Acosπ6+sin Asinπ6=-√210×√32+7√210×12=7√2-√620.16.证明(1)在直三棱柱ABC-A 1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.17.解析(1)由PO 1=2知O1O=4PO1=8.因为A1B1=AB=6,所以正四棱锥P-A1B1C1D1的体积V锥=13·A1B12·PO1=13×62×2=24(m3);正四棱柱ABCD-A1B1C1D1的体积V柱=AB2·O1O=62×8=288(m3).所以仓库的容积V=V锥+V柱=24+288=312(m3).(2)设A1B1=a(m),PO1=h(m),则0<h<6,O1O=4h.连结O1B1.因为在Rt △PO 1B 1中,O 1B 12+P O 12=P B 12,所以(√2a2)2+h 2=36,即a 2=2(36-h 2). 于是仓库的容积V=V 柱+V 锥=a 2·4h+13a 2·h=133a 2h=263(36h-h 3),0<h<6,从而V'=263(36-3h 2)=26(12-h 2). 令V'=0,得h=2√3或h=-2√3(舍). 当0<h<2√3时,V'>0,V 是单调增函数; 当2√3<h<6时,V'<0,V 是单调减函数. 故h=2√3时,V 取得极大值,也是最大值. 因此,当PO 1=2√3 m 时,仓库的容积最大.18.解析 圆M 的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5. (1)由圆心N 在直线x=6上,可设N(6,y 0). 因为圆N 与x 轴相切,与圆M 外切, 所以0<y 0<7,于是圆N 的半径为y 0, 从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x-6)2+(y-1)2=1. (2)因为直线l ∥OA,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y=2x+m,即2x-y+m=0, 则圆心M 到直线l 的距离 d=√=√.因为BC=OA=√22+42=2√5, 而MC 2=d 2+(BC 2)2, 所以25=(m+5)25+5,解得m=5或m=-15.故直线l 的方程为2x-y+5=0或2x-y-15=0.(3)设P(x 1,y 1),Q(x 2,y 2).因为A(2,4),T(t,0),TA ⃗⃗⃗⃗⃗ +TP ⃗⃗⃗⃗⃗ =TQ ⃗⃗⃗⃗⃗ , 所以{x 2=x 1+2-t,y 2=y 1+4.①因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.②将①代入②,得(x 1-t-4)2+(y 1-3)2=25.于是点P(x 1,y 1)既在圆M 上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点, 所以5-5≤√[(t +4)-6]2+(3-7)2≤5+5, 解得2-2√21≤t ≤2+2√21.因此,实数t 的取值围是[2-2√21,2+2√21]. 19.解析 (1)因为a=2,b=12,所以f(x)=2x +2-x.①方程f(x)=2,即2x +2-x =2,亦即(2x )2-2×2x+1=0,所以(2x -1)2=0,于是2x=1,解得x=0.②由条件知f(2x)=22x +2-2x =(2x +2-x )2-2=(f(x))2-2. 因为f(2x)≥mf(x)-6对于x ∈R 恒成立,且f(x)>0, 所以m ≤(f(x))2+4f(x)对于x ∈R 恒成立.而(f(x))2+4f(x)=f(x)+4f(x)≥2√f(x)·4f(x)=4,且(f(0))2+4f(0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g(x)=f(x)-2只有1个零点,而g(0)=f(0)-2=a 0+b 0-2=0, 所以0是函数g(x)的唯一零点.因为g'(x)=a x ln a+b xln b,又由0<a<1,b>1知ln a<0,ln b>0, 所以g'(x)=0有唯一解x 0=lo g b a(-lna lnb).令h(x)=g'(x),则h'(x)=(a xln a+b xln b)'=a x(ln a)2+b x(ln b)2,从而对任意x ∈R ,h'(x)>0,所以g'(x)=h(x)是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g'(x)<g'(x 0)=0;当x ∈(x 0,+∞)时,g'(x)>g'(x 0)=0. 因而函数g(x)在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x02<0,于是g (x02)<g(0)=0.又g(log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g(x)在以x02和log a2为端点的闭区间上的图象不间断,所以在x02和log a2之间存在g(x)的零点,记为x1.因为0<a<1,所以log a2<0.又x02<0,所以x1<0,与“0是函数g(x)的唯一零点”矛盾.若x0>0,同理可得,在x02和log b2之间存在g(x)的非0的零点,矛盾.因此,x0=0.于是-lnalnb=1,故ln a+ln b=0,所以ab=1.20.解析(1)由已知得a n=a1·3n-1,n∈N*.于是当T={2,4}时,S T=a2+a4=3a1+27a1=30a1.又S T=30,故30a1=30,即a1=1.所以数列{a n}的通项公式为a n=3n-1,n∈N*.(2)因为T⊆{1,2,…,k},a n=3n-1>0,n∈N*,所以S T≤a1+a2+…+a k=1+3+…+3k-1=12(3k-1)<3k.因此,S T<a k+1.(3)下面分三种情况证明.①若D是C的子集,则S C+S C∩D=S C+S D≥S D+S D=2S D.②若C是D的子集,则S C+S C∩D=S C+S C=2S C≥2S D.③若D不是C的子集,且C不是D的子集.令E=C∩∁U D,F=D∩∁U C,则E≠⌀,F≠⌀,E∩F=⌀.于是S C=S E+S C∩D,S D=S F+S C∩D,进而由S C≥S D得S E≥S F.设k为E中的最大数,l为F中的最大数,则k≥1,l≥1,k≠l.由(2)知,S E<a k+1.于是3l-1=a l≤S F≤S E<a k+1=3k,所以l-1<k,即l≤k.又k≠l,故l≤k-1.从而S F≤a1+a2+…+a l=1+3+…+3l-1=3l-12≤3k-1-12=a k-12≤S E-12,故S E≥2S F+1,所以S C-S C∩D≥2(S D-S C∩D)+1,即S C+S C∩D≥2S D+1.综合①②③得,S C+S C∩D≥2S D.21.A.证明在△ADB和△ABC中,因为∠ABC=90°,BD⊥AC,∠A为公共角,所以△ADB∽△ABC,于是∠ABD=∠C.在Rt △BDC 中,因为E 是BC 的中点, 所以ED=EC,从而∠EDC=∠C. 所以∠EDC=∠ABD.B.解析 设B=[a c bd],则B -1B =[1 -120 2][a cbd]=[10 01],即[a -12c 2cb -12d 2d]=[1001],故{ a -12c =1,b -12d =0,2c =0,2d =1,解得{ a =1,b =14,c =0,d =12,所以B =[1 14012]. 因此,AB =[10 2-2][1 14012]=[1 540 -1]. C.解析 椭圆C 的普通方程为x 2+y24=1. 将直线l 的参数方程{x =1+12t,y =√32t 代入x 2+y24=1,得 (1+12t)2+(√32t )24=1,即7t 2+16t=0,解得t 1=0,t 2=-167.所以AB=|t 1-t 2|=167.D.证明 因为|x-1|<a3,|y-2|<a3,所以|2x+y-4|=|2(x-1)+(y-2)|≤2|x-1|+|y-2|<2×a 3+a3=a.22.解析 (1)抛物线C:y 2=2px(p>0)的焦点为(p2,0), 由点(p 2,0)在直线l:x-y-2=0上,得p2-0-2=0,即p=4.所以抛物线C 的方程为y 2=8x.(2)设P(x 1,y 1),Q(x 2,y 2),线段PQ 的中点M(x 0,y 0).因为点P 和Q 关于直线l 对称,所以直线l 垂直平分线段PQ, 于是直线PQ 的斜率为-1,则可设其方程为y=-x+b. ①由{y 2=2px,y =-x +b 消去x 得y 2+2py-2pb=0.(*)因为P 和Q 是抛物线C 上的相异两点,所以y 1≠y 2,从而Δ=(2p)2-4×(-2pb)>0,化简得p+2b>0. 方程(*)的两根为y 1,2=-p±√p 2+2pb ,从而y 0=y 1+y 22=-p.因为M(x 0,y 0)在直线l 上,所以x 0=2-p. 因此,线段PQ 的中点坐标为(2-p,-p). ②因为M(2-p,-p)在直线y=-x+b 上, 所以-p=-(2-p)+b,即b=2-2p.由①知p+2b>0,于是p+2(2-2p)>0,所以p<43.因此,p 的取值围是(0,43).23.解析 (1)7C 63-4C 74=7×6×5×43×2×1-4×7×6×5×44×3×2×1=0.(2)当n=m 时,结论显然成立.当n>m 时,(k+1)C k m =(k+1)·k!m!·(k -m)!=(m+1)·(k+1)!(m+1)!·[(k+1)-(m+1)]!=(m+1)C k+1m+1,k=m+1,m+2,…,n.又因为C k+1m+1+C k+1m+2=C k+2m+2,所以(k+1)C k m =(m+1)(C k+2m+2-C k+1m+2),k=m+1,m+2,…,n.因此,(m+1)C m m +(m+2)C m+1m +(m+3)C m+2m +…+(n+1)C n m=(m+1)C m m +[(m+2)C m+1m +(m+3)C m+2m +…+(n+1)C n m]=(m+1)C m+2m+2+(m+1)[(C m+3m+2-C m+2m+2)+(C m+4m+2-C m+3m+2)+…+(C n+2m+2-C n+1m+2)]=(m+1)C n+2m+2.。
2016年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.33.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.35.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}【考点】1E:交集及其运算.【专题】11:计算题;29:规律型;5J:集合.【分析】直接利用交集的运算法则化简求解即可.【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.【点评】本题考查交集的求法,考查计算能力.2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.3【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,通过复数相等的充要条件求解即可.【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.【点评】本题考查复数的相等的充要条件的应用,复数的乘法的运算法则,考查计算能力.3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【专题】12:应用题;34:方程思想;49:综合法;5I:概率与统计.【分析】确定基本事件的个数,利用古典概型的概率公式,可得结论.【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=.另解:由列举法可得,红、黄、白、紫记为1,2,3,4,即有(12,34),(13,24),(14,23),(23,14),(24,13),(34,12),则P==.故选:C.【点评】本题考查等可能事件的概率计算与分步计数原理的应用,考查学生的计算能力,比较基础.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.3【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;4R:转化法;58:解三角形.【分析】由余弦定理可得cosA=,利用已知整理可得3b2﹣8b﹣3=0,从而解得b的值.【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.【点评】本题主要考查了余弦定理,一元二次方程的解法在解三角形中的应用,考查了计算能力和转化思想,属于基础题.5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;29:规律型;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】设出椭圆的方程,求出直线的方程,利用已知条件列出方程,即可求解椭圆的离心率.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.【点评】本题考查椭圆的简单性质的应用,考查点到直线的距离公式,椭圆的离心率的求法,考查计算能力.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;48:分析法;57:三角函数的图像与性质.【分析】求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x﹣)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.【点评】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题.7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b【考点】4M:对数值大小的比较.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】根据指数函数,对数函数,幂函数的单调性结合换底公式,逐一分析四个结论的真假,可得答案.【解答】解:∵a>b>0,0<c<1,∴log c a<log c b,故B正确;∴当a>b>1时,0>log a c>log b c,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B.【点评】本题考查的知识点是指数函数,对数函数,幂函数的单调性,难度中档.9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【考点】6B:利用导数研究函数的单调性.【专题】35:转化思想;4C:分类法;53:导数的综合应用.【分析】求出f(x)的导数,由题意可得f′(x)≥0恒成立,设t=cosx(﹣1≤t ≤1),即有5﹣4t2+3at≥0,对t讨论,分t=0,0<t≤1,﹣1≤t<0,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围.【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题.二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.【考点】9T:数量积判断两个平面向量的垂直关系.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.【点评】考查向量垂直的充要条件,以及向量数量积的坐标运算,清楚向量坐标的概念.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.【考点】GP:两角和与差的三角函数.【专题】11:计算题;35:转化思想;49:综合法;56:三角函数的求值.【分析】由θ得范围求得θ+的范围,结合已知求得cos(θ+),再由诱导公式求得sin()及cos(),进一步由诱导公式及同角三角函数基本关系式求得tan(θ﹣)的值.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.【点评】本题考查两角和与差的正切,考查诱导公式及同角三角函数基本关系式的应用,是基础题.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为4π.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;5B:直线与圆.【分析】圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,利用圆的弦长公式,求出a值,进而求出圆半径,可得圆的面积.【解答】解:圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,∵直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,且|AB|=2,∴圆心(0,a)到直线y=x+2a的距离d=,即+3=a2+2,解得:a2=2,故圆的半径r=2.故圆的面积S=4π,故答案为:4π【点评】本题考查的知识点是直线与圆相交的性质,点到直线的距离公式,难度中档.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【考点】8H:数列递推式.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】(Ⅰ)令n=1,可得a1=2,结合{a n}是公差为3的等差数列,可得{a n}的通项公式;(Ⅱ)由(1)可得:数列{b n}是以1为首项,以为公比的等比数列,进而可得:{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,+b n+1=nb n.(Ⅱ)由(I)知:(3n﹣1)b n+1即3b n=b n.+1即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.【点评】本题考查的知识点是数列的递推式,数列的通项公式,数列的前n项和公式,难度中档.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;MK:点、线、面间的距离计算.【专题】11:计算题;35:转化思想;5F:空间位置关系与距离.【分析】(Ⅰ)根据题意分析可得PD⊥平面ABC,进而可得PD⊥AB,同理可得DE⊥AB,结合两者分析可得AB⊥平面PDE,进而分析可得AB⊥PG,又由PA=PB,由等腰三角形的性质可得证明;(Ⅱ)由线面垂直的判定方法可得EF⊥平面PAC,可得F为E在平面PAC内的正投影.由棱锥的体积公式计算可得答案.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC 内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=×DE×S=×2××2×2=.△PEF【点评】本题考查几何体的体积计算以及线面垂直的性质、应用,解题的关键是正确分析几何体的各种位置、距离关系.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【考点】3H:函数的最值及其几何意义;5C:根据实际问题选择函数类型;B8:频率分布直方图.【专题】11:计算题;51:函数的性质及应用;5I:概率与统计.【分析】(Ⅰ)若n=19,结合题意,可得y与x的分段函数解析式;(Ⅱ)由柱状图分别求出各组的频率,结合“需更换的易损零件数不大于n”的频率不小于0.5,可得n的最小值;(Ⅲ)分别求出每台都购买19个易损零件,或每台都购买20个易损零件时的平均费用,比较后,可得答案.【解答】解:(Ⅰ)当n=19时,y==(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,更换的易损零件数为17个频率为0.16,更换的易损零件数为18个频率为0.24,更换的易损零件数为19个频率为0.24又∵更换易损零件不大于n的频率为不小于0.5.则n≥19∴n的最小值为19件;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,所须费用平均数为:(70×19×200+4300×20+4800×10)=4000(元)假设这100台机器在购机的同时每台都购买20个易损零件,所须费用平均数为(90×4000+10×4500)=4050(元)∵4000<4050∴购买1台机器的同时应购买19台易损零件.【点评】本题考查的知识点是分段函数的应用,频率分布条形图,方案选择,难度中档.20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【考点】K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出P,N,H的坐标,利用=,求;(Ⅱ)直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,利用判别式可得结论.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.【点评】本题考查直线与抛物线的位置关系,考查学生的计算能力,正确联立方程是关键.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】35:转化思想;48:分析法;51:函数的性质及应用;53:导数的综合应用.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);②当a<0时,(如右下图)若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;当x→﹣∞时f(x)>0或找到一个x<1使得f(x)>0对于a>0恒成立,f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(1n(﹣2a),1)单调减,只有f(ln(﹣2a))等于0才有两个零点,而当x≤1时,f(x)<0,所以只有一个零点不符题意.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
2016全国新课标1卷数学答案【篇一:2016年高考真题----理科数学(新课标1卷)word版带答案】>试题类型:a2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合a?{x|x?4x?3?0},b?{x|2x?3?0},则a?b? 23333(?3,?)(?3,)(,3)(1,)2(b)2(c)2(d)2(a)(2)设(1?i)x?1?yi,其中x,y是实数,则x?yi=(a)1(bcd)2(3)已知等差数列{an}前9项的和为27,a10=8,则a100=(a)100(b)99(c)98(d)97(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(a)(b)(c)(d)(5)已知方程–=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(a)(–1,3) (b)(–1,3) (c)(0,3) (d)3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(7)函数y=2x2–e|x|在[–2,2]的图像大致为(a)(b)(c)(d)0?c?1,则(8)若a?b?1,(a)ac?bc(b)abc?bac(c)alogbc?blogac(d)logac?logbc(9)执行右面的程序图,如果输入的x?0,y?1,n?1,则输出x,y的值满足(a)y?2x(b)y?3x(c)y?4x(d)y?5x(10)以抛物线c的顶点为圆心的圆交c于a、b两点,交c的标准线于d、e两点.已知|ab|=|de|=则c的焦点到准线的距离为(a)2(b)4(c)6(d)8(11)平面a过正方体abcd-a1b1c1d1的顶点a,a//平面cb1d1,a?平面abcd=m,a?平面aba1b1=n,则m、n所成角的正弦值为1(b(d) 3??12.已知函数f(x)?sin(?x+?)(??0?2),x???4x?为f(x)的零点学.科网,?4为y?f(x)图像的对称轴,且f(x)在???5???单调,则?的最大值为 1836??(a)11 (b)9 (c)7 (d)5第ii卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=.(14)(2x5的展开式中,x3的系数是.(用数字填写答案)(15)设等比数列 ???? 满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为。
2016年普通高等学校招生全国统一考试〔北京卷〕数学〔文科〕第一部分〔选择题 共40分〕一、选择题:本大题共8小题,每题5分,共40分,在每题给出的四个选项中,选出符合题目要求的一项. 〔1〕【2016年北京,文1,5分】已知集合{}24A x x =<<,{}35B x x x =<>或,则A B =〔 〕〔A 〕{}25x x << 〔B 〕{}45x x x <>或 〔C 〕{}23x x << 〔D 〕{}25x x x <>或 【答案】C【解析】∵集合{}24A x x =<<,{}35B x x x =<>或,∴{}23Ax x B =<<,故选C .【点评】此题考查交集的求法,是基础题,解题时要认真审题,注意交集的定义的合理运用.〔2〕【2016年北京,文2,5分】复数12i2i+=-〔 〕〔A 〕i 〔B 〕1i + 〔C 〕i - 〔D 〕1i - 【答案】A【解析】()()()()12i 2i 12i 5ii 2i 2i 2i 5+++===--+,故选A . 【点评】此题考查的知识点是复数代数形式的加减运算,共轭复数的定义,难度不大,属于基础题. 〔3〕【2016年北京,文3】执行如下图的程序框图,输出s 的值为〔 〕〔A 〕8〔B 〕9 〔C 〕27 〔D 〕36【答案】B 【解析】当0k =时,满足进行循环的条件,故0S =,1k =,当1k =时,满足进行循环的条件,故1S =, 2k =,当2k =时,满足进行循环的条件,故9S =,3k =,当3k =时,不满足进行循环的 条件,故输出的S 值为9,故选B .【点评】此题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.〔4〕【2016年北京,文4,5分】以下函数中,在区间()1,1-上为减函数的是〔 〕〔A 〕11y x=- 〔B 〕cos y x = 〔C 〕()ln 1y x =+ 〔D 〕2x y -= 【答案】D【解析】A .x 增大时,x -减小,1x -减小,∴11x-增大;∴函数11y x =-在()1,1-上为增函数,该选项错误;B .cos y x =在()1,1-上没有单调性,该选项错误;C .x 增大时,1x +增大,()ln 1x +增大,∴()ln 1y x =+ 在()1,1-上为增函数,即该选项错误;D .122xxy -⎛⎫== ⎪⎝⎭;∴根据指数函数单调性知,该函数在()1,1-上 为减函数,∴该选项正确,故选D .【点评】考查根据单调性定义判断函数在一区间上的单调性的方法,以及余弦函数和指数函数的单调性,指数式的运算.〔5〕【2016年北京,文5,5分】圆()2212x y ++=的圆心到直线3y x =+的距离为〔 〕 〔A 〕1 〔B 〕2 〔C 〕2 〔D 〕22 【答案】C【解析】∵圆()2212x y ++=的圆心为()1,0-,∴圆()2212x y ++=的圆心到直线3y x =+的距离为:1322d -+==,故选C . 【点评】此题考查圆心到直线的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式和圆的性质的合理运用.〔6〕【2016年北京,文6,5分】从甲、乙等5名学生中随机选出2人,则甲被选中的概率为〔 〕〔A 〕15 〔B 〕25 〔C 〕825 〔D 〕925【答案】B【解析】从甲、乙等5名学生中随机选出2人,基本领件总数2510n C ==,甲被选中包含的基本领件的个数11144m C C ==,∴甲被选中的概率42105P n π===,故选B .【点评】此题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用. 〔7〕【2016年北京,文7,5分】已知()2,5A ,()4,1B .假设点(),P x y 在线段AB 上,则2x y -的最大值为〔 〕〔A 〕1- 〔B 〕3 〔C 〕7 〔D 〕8 【答案】C 【解析】如图()2,5A ,()4,1B .假设点(),P x y 在线段AB 上,令2z x y =-,则平行2y x z =-当直线经过B 时截距最小,z 取得最大值,可得2x y -的最大值为:2417⨯-=,故选C .【点评】此题考查线性规划的简单应用,判断目标函数经过的点,是解题的关键. 〔8〕【2016年北京,文8,5分】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊. 学生序号 1 2 3 4 5 6 7 8 9 10 立定跳远〔单位:米〕 30秒跳绳〔单位:次〕 63 a 75 60 63 72 70 a ﹣1 b 65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则〔 〕 〔A 〕2号学生进入30秒跳绳决赛 〔B 〕5号学生进入30秒跳绳决赛 〔C 〕8号学生进入30秒跳绳决赛 〔D 〕9号学生进入30秒跳绳决赛 【答案】B【解析】∵这10名学生中,进入立定跳远决赛的有8人,故编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛,又由同时进入立定跳远决赛和30秒跳绳决赛的有6人,则3,6,7号同学必进入30秒跳绳决赛,剩下1,2,4,5,8号同学的成绩分别为:63,a ,60,63,1a -有且只有3人进入30秒跳绳决赛,故成绩为63的同学必进入30秒跳绳决赛,故选B .【点评】此题考查的知识点是推理与证明,正确利用已知条件得到合理的逻辑推理过程,是解答的关键.第二部分〔非选择题 共110分〕二、填空题:共6小题,每题5分,共30分。
高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
2016年高考新课标Ⅱ卷文数试题参考解析一、 选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
1. 已知集合{123}A =,,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},【答案】D【解析】由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =I ,故选D. 2. 设复数z 满足i 3i z +=-,则z =(A )12i -+ (B )12i - (C )32i + (D )32i - 【答案】C【解析】由3z i i +=-得,32z i =-,故选C. 3. 函数=sin()y A x ωϕ+ 的部分图像如图所示,则(A )2sin(2)6y x π=-(B )2sin(2)3y x π=-(C )2sin(2+)6y x π=(D )2sin(2+)3y x π=【答案】A4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π (B )323π (C )8π (D )4π 【答案】A【解析】因为正方体的体积为8,所以正方体的体对角线长为233,所以球面的表面积为243)12ππ⋅=,故选A.5. 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k = (A )12 (B )1 (C )32(D )2【答案】D【解析】(1,0)F ,又因为曲线(0)ky k x=>与C 交于点P ,PF x ⊥轴,所以21k =,所以2k =,选D.6. 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =(A )−43 (B )−34(C )3 (D )2 【答案】A【解析】圆心为(1,4),半径2r =,所以2211a =+,解得43a =-,故选A.7. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π 【答案】C【解析】因为原几何体由同底面一个圆柱和一个圆锥构成,所以其表面积为28S π=,故选C.8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯 ,则至少需要等待15秒才出现绿灯的概率为 (A )710 (B )58 (C )38 (D )310【答案】B【解析】至少需要等待15秒才出现绿灯的概率为40155408-=,故选B. 9. 中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34【答案】C【解析】第一次运算,a=2,s=2,n=2,k=1,不满足k>n; 第二次运算,a=2,s=2226⨯+=,k=2,不满足k>n; 第三次运算,a=5,s=62517⨯+=,k=3,满足k>n , 输出s=17,故选C .10. 下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是 (A )y =x (B )y =lg x (C )y =2x(D )y x=【答案】D 【解析】lg 10xy x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .11. 函数π()cos 26cos()2f x x x =+-的最大值为 (A )4 (B )5(C )6(D )7【答案】B【解析】因为2311()2(sin )22f x x =--+,而sin [1,1]x ∈-,所以当sin 1x =时,取最大值5,选B.12. 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数 y =|x 2-2x -3| 与 y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑(A)0 (B)m (C) 2m (D) 4m 【答案】B【解析】因为2(),y |23|y f x x x ==--都关于1x =对称,所以它们交点也关于1x =对称,当m 为偶数时,其和为22m m ⨯=,当m 为奇数时,其和为1212m m -⨯+=,因此选B. 二.填空题:共4小题,每小题5分.13. 已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. 【答案】6-【解析】因为a ∥b ,所以2430m --⨯=,解得6m =-.14. 若x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则z =x -2y 的最小值为__________.【答案】5-15. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________. 【答案】2113【解析】因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin(C)sin cos cos sin 65B A AC A C =+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==.16. 有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 【答案】1和3【解析】由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等差数列{n a }中,34574,6a a a a +=+= (I )求{n a }的通项公式;(II)设nb =[na ],求数列{nb }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2【试题分析】(I )先设{}n a 的首项和公差,再利用已知条件可得1a 和d ,进而可得{}n a 的通项公式;(II )根据{}n b 的通项公式的特点,采用分组求和法,即可得数列{}n b 的前10项和.18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”。
绝密★启用前2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相应位置.......上.。
1.已知集合A=|-1,2,3,6|,B={x|-2<x<3},则A ⋂B= ▲ 。
2.复数z=(1+2i )(3-i ),其中i 为虚数单位,则z 的实部是 ▲ 。
3.在平面直角坐标系xOy 中,双曲线27x -27y =1,其中i 为虚数单位,则z 的实部是 ▲ 。
4.已知一组数据4.7,4.8,5.1,5.4,5.5,则改组数据的方差是 ▲ 。
5.函数y = 的定义域是 ▲ 。
6.右图是一个算法的流程图,则输出的a 的值是 ▲ 。
7.讲一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲8.已知{a m }是等差数列,S m 是其前n 项的和,a 1+a 22=-3,S 5=10,则a 9的值是 ▲9.定于在区间[0,3π]上的函数y=sin2x 的图像与y=cosx 的图像的交点个数是 ▲10.如图,在平面直角坐标系xOy 中,F 是椭圆2222=1(0)x y a b a b+>>的右焦点,直线2b y =与椭圆相较于B,C 两点,∠BFC=90°,则该椭圆的离心率是 ▲11.设22x y + ()f x 是定义在R 上且周期为2的函数,在区间[1,1)-上,,10()5,012x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中a R ∈,若59()()22f f -=,则(5)f a 的值是 ▲12.已知实数x,y 满足240,220,330,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩则22x y +的取值范围是的取值范围 ▲13. 如图,在△ABC 中,D 是BC 的中点,E ,F ,是AD 上的两个三等分点,·4BACA = ,·1BF CF =- ,则·BE CE 的值是 ▲14.在锐角三角形ABC 中,若SINA=2sinBsinC ,则tanAtanBtanC 的最小值是 ▲二、解答题:本大题共6小题,共计90分。
2016年普通高等学校招生全国统一考试(课标全国卷Ⅱ)文 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3},B={x|x 2<9},则A ∩B=( ) A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}2.设复数z 满足z+i=3-i,则z =( ) A.-1+2iB.1-2iC.3+2iD.3-2i3.函数y=Asin(ωx+φ)的部分图象如图所示,则( )A.y=2sin (2x -π6) B.y=2sin (2x -π3) C.y=2sin (x +π6)D.y=2sin (x +π3)4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12πB.323π C.8π D.4π5.设F为抛物线C:y2=4x的焦点,曲线y=kx(k>0)与C交于点P,PF⊥x轴,则k=( )A.12B.1 C.32D.26.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.-43B.-34C.√3D.27.下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π8.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.7B.5C.3D.39.中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )A.7B.12C.17D.3410.下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=xB.y=lg xC.y=2xD.y=√x11.函数f(x)=cos 2x+6cos (π2-x)的最大值为( ) A.4B.5C.6D.712.已知函数f(x)(x ∈R )满足f(x)=f(2-x),若函数y=|x 2-2x-3|与y=f(x)图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i=1mx i =( )A.0B.mC.2mD.4m第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.已知向量a =(m,4),b =(3,-2),且a ∥b ,则m= .14.若x,y 满足约束条件{x -y +1≥0,x +y -3≥0,x -3≤0,则z=x-2y 的最小值为 .15.△ABC 的内角A,B,C 的对边分别为a,b,c,若cos A=45,cos C=513,a=1,则b= . 16.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.18.(本小题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85a a 1.25a 1.5a 1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234≥5频数605030302010 (Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(Ⅲ)求续保人本年度平均保费的估计值.19.(本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H.将△DEF沿EF折到△D'EF的位置.(Ⅰ)证明:AC⊥HD';(Ⅱ)若AB=5,AC=6,AE=54,OD'=2√2,求五棱锥D'-ABCFE的体积.20.(本小题满分12分)已知函数f(x)=(x+1)ln x-a(x-1).(Ⅰ)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程; (Ⅱ)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.21.(本小题满分12分)已知A是椭圆E:x24+y23=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,证明:√3<k<2.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,在正方形ABCD 中,E,G 分别在边DA,DC 上(不与端点重合),且DE=DG,过D 点作DF ⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F 四点共圆;(Ⅱ)若AB=1,E 为DA 的中点,求四边形BCGF 的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是{x =tcosα,y =tsinα(t 为参数),l 与C 交于A,B 两点,|AB|=√10,求l 的斜率.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x -12|+|x +12|,M 为不等式f(x)<2的解集. (Ⅰ)求M;(Ⅱ)证明:当a,b ∈M 时,|a+b|<|1+ab|.2016年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.D 由已知得B={x|-3<x<3},∵A={1,2,3},∴A ∩B={1,2},故选D.2.C z=3-2i,所以z =3+2i,故选C.3.A 由题图可知A=2,T 2=π3-(-π6)=π2,则T=π,所以ω=2,则y=2sin(2x+φ),因为题图经过点(π3,2),所以2sin (2×π3+φ)=2,所以2π3+φ=2kπ+π2,k ∈Z ,即φ=2kπ-π6,k ∈Z ,当k=0时,φ=-π6,所以y=2sin (2x -π6),故选A.4.A 设正方体的棱长为a,则a 3=8,解得a=2.设球的半径为R,则2R=√3a,即R=√3,所以球的表面积S=4πR 2=12π.故选A. 5.D 由题意得点P 的坐标为(1,2).把点P 的坐标代入y=kx (k>0)得k=1×2=2,故选D. 6.A 由圆的方程可知圆心为(1,4).由点到直线的距离公式可得√2=1,解得a=-43,故选A.7.C 由三视图知圆锥的高为2√3,底面半径为2,则圆锥的母线长为4,所以圆锥的侧面积为12×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=16π,从而该几何体的表面积为8π+16π+4π=28π,故选C. 8.B 行人在红灯亮起的25秒内到达该路口,即满足至少需要等待15秒才出现绿灯,根据几何概型的概率公式知所求事件的概率P=2540=58,故选B.9.C 执行程序框图,输入a 为2时,s=0×2+2=2,k=1,此时k>2不成立;再输入a 为2时,s=2×2+2=6,k=2,此时k>2不成立;再输入a 为5,s=6×2+5=17,k=3,此时k>2成立,结束循环,输出s 为17,故选C. 10.D 函数y=10lg x的定义域、值域均为(0,+∞),而y=x,y=2x的定义域均为R ,排除A,C;y=lgx 的值域为R ,排除B,故选D.。
2016年全国高考卷(Ⅰ)文数试题及解析一、选择题(1)设集合{=A 1,3,5,7},2|{x B =≤x ≤5},则=B A ( ) (A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} 【解析】借助数轴,据交集定义得{=B A 3,5}. 故选(B ).(2)设))(21(i a i ++的实部和虚部相等,其中a 为实数,则=a ( ) (A )3- (B )2- (C )2 (D )3 【解析】i a a i a i )12()2())(21(++-=++,∵实部和虚部相等,∴122+=-a a ,解得 3-=a . 故选(D ).(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的 两种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 ( ) (A )31 (B )21 (C )32 (D )65【解析】从红、黄、白、紫4种颜色的花中任选2种花共有6种选法:红黄,红白,红紫,黄白,黄紫,白紫. 其中红色和紫色的花种在同一花坛的情况有2种,故红色和紫 色的花不在同一花坛的概率是32621=-=P . 故选(C ). (4)ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知25==c a ,,32cos =A , 则=b ( ) (A )2 (B )3 (C )2 (D )3【解析】由余弦定理A bc c b a cos 2222-+=,得32222)5(222⨯⨯⨯-+=b b ,化简得 03832=--b b ,0)3)(13(=-+b b ,∵0>b ,∴3=b . 故选(D ). (5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆的中心到l 的距离为其短轴长的41, 则该椭圆离心率为( ) (A )31 (B )21 (C )32 (D )43 【解析】不妨设椭圆的焦点在x 轴上,其方程为)0(12222>>=+b a by a x ,l 的方程为:1=+b y c x 即0=-+bc cy bx ,依题意,412||22⨯=+b cb bc ,∴21=a c . 故选(B ).2(6)将函数)62sin(2π+=x y 的图象向右平移41个周期后,所得图象对应的函数为( ) (A ))42sin(2π+=x y (B ))32sin(2π+=x y(C ))42sin(2π-=x y (D ))32sin(2π-=x y 【解析】易知函数)62sin(2π+=x y 的周期为π,将其图象向右平移41个周期后,所得函数解析式为)32s i n (2]6)4(2s i n [2πππ-=+-=x x y . 故选(D ). (7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径. 若该几何体的体积是328π,则它的表面积是 ( ) (A )π17 (B )π18 (C )π20 (D ) π28【解析】根据三视图,该空间几何体是一个球切除掉它的81后剩余部分,依题意,得32834873ππ=⨯R (R 为球的半径),∴2=R . 该几何体的表面积为:球表面积的87加上一个球大圆面积的43,即ππππ1741743487222==⨯+⨯R R R . 故选(A ). (8)若0>>b a ,10<<c ,则 ( ) (A )c c b a log log < (B )b a c c log log < (C )c c b a < (D )ba c c > 【解析】对于(A ),根据对数函数的图象在第一象限内的分布情况(底大头高),知 c cb a l o g l o g >,故(A )错误. 对于(B ),当10<<c 时,函数x y c log =是减 函数,∵0>>b a ,b a c c l o g l o g >. 故(B )是正确的. 对于(C ),考察幂函数 αx y =,当10<<α时,为增函数,∴c c b a >. 故(C )错误.对于(D ),∵10<<c ,∴xc y =是递减函数,ba c c <,故(D )错误.(9)函数||22x e x y -=在2[-,]2的图象大致为 ( )∙2 ∙-2Oxy⋅1)(A)(B∙2 ∙-2Oxy⋅1)(C ∙2 ∙-2Oxy⋅1)(D∙2 ∙-2Oxy⋅1肖斌学院:3【解析】易知为偶函数,当0>x 时,x e x y -=22,x e x y -='4,结合x y 4=及2e y =的图象,知当)0(0x x ,∈时,0<'y ;当]20(,∈x ,0>'y ,且当2=x 时,0>y ,且100<<x ,0x 为函数x e x y -=22的极小值点. 结合选项可知(D )符合.(10)执行右边的程序框图,如果输入的110===n y x ,,, 则输出y x ,的值满足 ( ) (A )x y 2= (B )x y 3= (C )x y 4= (D )x y 5=【解析】开始110===n y x ,,,第一次循环:210===n y x ,,;第二次循环:3221===n y x ,,; 第三次循环:4623===n y x ,,,此时满足3622≥+y x ,循环结束, 623==y x ,,满足x y 4=. 故选(C ). (11)平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB , α平面ABCD m =, α平面n A A B B =11,则n m ,所成角的正弦值为 ( )(A )23 (B )22 (C )33 (D )31【解析】过顶点A 分别作直线111//D C m ,111//B D n ,由11n m ,确定的平面即为α,又 α平面ABCD m =,根据线面平行的性质定理知,111////D C m m ,同理111////B D n n ,因此,11D C 与11B D 即为n m ,所成的角,在等边三角形11B CD 中,︒=∠6011B CD ,所以n m ,所成角的正弦值 为23. 故选(A ). 是否开始n y x ,,输入 ny y n x x =-+=,213622≥+y x y x ,输出结束1+=n n1nA1AB1BC1CD 1D1m4(12)若函数x a x x x f sin 2sin 31)(+-=在)(∞+-∞,上单调递增,则a 的取值范围( ) (A )1[-,]1 (B )1[-,]31 (C )31[-,]31 (D )1[-,]31- 【解析】函数x a x x x f sin 2sin 31)(+-=在)(∞+-∞,上单调递增,即)(x f '≥0对R x ∈恒 成立, 即5cos 3cos 42--x a x ≤0对R x ∈恒成立. 令t x =cos ,则1-≤t ≤1,亦即5342--at t ≤0对1-≤t ≤1恒成立,只需⎩⎨⎧≤-⨯-⨯≤-⨯--⨯051314053)1(422a t a ,解得 3131≤≤-a . 故选(C ). 二、填空题(13)设向量)1(+=x x a ,,1(=b ,)2,且b a ⊥,则=x .【解析】32-. ∵b a ⊥,∴02)1(=⨯++x x ,解得32-=x . (14)已知θ是第四象限角,且53)4sin(=+πθ,则=-)4tan(πθ .【解析】34-.∵53)4sin(=+πθ,∴53)cos (sin 22=+θθ,∴523cos sin =+θθ,又1c o s s i n 22=+θθ,且θ是第四象限角,解得1027cos 102sin =-=θθ,, ∴71t a n -=θ,34711171t a n 11t a n )4t a n(-=---=+-=-θθπθ. (15)设直线a x y 2+=与圆02222=--+ay y x C :相交于B A ,两点,若32||=AB , 则圆C 的面积为 .【解析】圆02222=--+ay y x C :,即2)(222+=-+a a y x ,圆心C 到直线a x y 2+=的 距离为2||2|2a a -0|a =+,由2)3()2||(222+=+a a ,解得22=a ,∴圆C 的面 积为ππ4)2(2=+a .(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)文 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( ) A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.设(1+2i)(a+i)的实部与虚部相等,其中a 为实数,则a=( ) A.-3B.-2C.2D.33.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12C.23D.564.△ABC 的内角A,B,C 的对边分别为a,b,c.已知a=√5,c=2,cos A=23,则b=( )A.√2B.√3C.2D.35.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A.13 B.12C.23D.346.将函数y=2sin (2x +π6)的图象向右平移14个周期后,所得图象对应的函数为( ) A.y=2sin (2x +π4)B.y=2sin (2x +π3)C.y=2sin (2x -π4)D.y=2sin (2x -π3)7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π8.若a>b>0,0<c<1,则( ) A.log a c<log b cB.log c a<log c bC.a c <b cD.c a >c b9.函数y=2x 2-e |x|在[-2,2]的图象大致为( )10.执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足( )A.y=2xB.y=3xC.y=4xD.y=5x11.平面α过正方体ABCD-A 1B 1C 1D 1的顶点A,α∥平面CB 1D 1,α∩平面ABCD=m,α∩平面ABB 1A 1=n,则m,n 所成角的正弦值为( ) A.√32B.√22C.√33D.1312.若函数f(x)=x-13sin 2x+asin x 在(-∞,+∞)单调递增,则a 的取值范围是( ) A.[-1,1]B.[-1,13]C.[-13,13]D.[-1,-13]第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13.设向量a=(x,x+1),b=(1,2),且a⊥b,则x= .14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= .15.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2√3,则圆C的面积为.16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=13,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(本小题满分12分)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6.顶点P在平面ABC内的正投影为点D,D 在平面PAB内的正投影为点E,连结PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.;(Ⅰ)求|OH||ON|(Ⅱ)除H以外,直线MH与C是否有其他公共点?说明理由.21.(本小题满分12分)已知函数f(x)=(x-2)e x+a(x-1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与☉O 相切;(Ⅱ)点C,D 在☉O 上,且A,B,C,D 四点共圆,证明:AB ∥CD.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为{x =acost ,y =1+asint (t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (Ⅰ)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f(x)=|x+1|-|2x-3|. (Ⅰ)画出y=f(x)的图象; (Ⅱ)求不等式|f(x)|>1的解集.2016年普通高等学校招生全国统一考试(课标全国卷Ⅰ)一、选择题1.B ∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5},故选B.2.A ∵(1+2i)(a+i)=(a -2)+(2a+1)i, ∴a -2=2a+1,解得a=-3,故选A.3.C 从红、黄、白、紫4种颜色的花中任选2种有以下选法:(红黄)、(红白)、(红紫)、(黄白)、(黄紫)、(白紫),共6种,其中红色和紫色的花不在同一花坛(亦即黄色和白色的花不在同一花坛)的选法有4种,所以所求事件的概率P=46=23,故选C.4.D 由余弦定理得5=22+b 2-2×2bcos A,∵cos A=23,∴3b 2-8b-3=0,∴b=3(b =-13舍去).故选5.B 如图,|OB|为椭圆中心到l 的距离,则|OA|·|OF|=|AF|·|OB|,即bc=a·b2,所以e=c a =12.故选B.6.D 该函数的周期为π,将其图象向右平移π4个单位后,得到的图象对应的函数为y=2sin [2(x -π4)+π6]=2sin (2x -π3),故选D.7.A 由三视图知该几何体为球去掉了18所剩的几何体(如图),设球的半径为R,则78×43πR 3=28π3,故R=2,从而它的表面积S=78×4πR 2+34×πR 2=17π.故选A.8.B ∵0<c<1,∴当a>b>1时,log a c>log b c,A 项错误; ∵0<c<1,∴y=log c x 在(0,+∞)上单调递减,又a>b>0, ∴log c a<log c b,B 项正确;∵0<c<1,∴函数y=x c在(0,+∞)上单调递增, 又∵a>b>0,∴a c>b c,C 项错误;∵0<c<1,∴y=c x 在(0,+∞)上单调递减, 又∵a>b>0,∴c a<c b ,D 项错误.故选B.9.D 当x=2时,y=8-e 2∈(0,1),排除A,B;易知函数y=2x 2-e |x|为偶函数,当x∈[0,2]时,y=2x 2-e x ,求导得y'=4x-e x,当x=0时,y'<0,当x=2时,y'>0,所以存在x 0∈(0,2),使得y'=0,故选D.10.C 执行程序框图:当n=1时,x=0,y=1,此时02+12≥36不成立;当n=2时,x=12,y=2,此时(12)2+22≥36不成立;当n=3时,x=32,y=6,此时(32)2+62≥36成立,结束循环,输出x 的值为32,y 的值为6,满足y=4x,故选C.11.A 设正方体ABCD-A 1B 1C 1D 1的棱长为a.将正方体ABCD-A 1B 1C 1D 1补成棱长为2a 的正方体,如图所示.正六边形EFGPQR 所在的平面即为平面α.点A 为这个大正方体的中心,直线GR 为m,直线EP 为n.显然m 与n 所成的角为60°.所以m,n 所成角的正弦值为√32.故选A.12.C f '(x)=1-23cos 2x+acos x=1-23(2cos 2x-1)+acos x=-43cos 2x+acos x+53, f(x)在R 上单调递增,则f '(x)≥0在R 上恒成立,令cos x=t,t∈[-1,1],则-43t 2+at+53≥0在[-1,1]上恒成立,即4t 2-3at-5≤0在[-1,1]上恒成立,令g(t)=4t 2-3at-5,则{g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a≤13,故选C.二、填空题 13.答案 -23解析 因为a ⊥b,所以x+2(x+1)=0,解得x=-23.14.答案-43 解析 解法一:∵sin (θ+π4)=√22×(sin θ+cos θ)=35, ∴sin θ+cos θ=3√25①, ∴2sin θcos θ=-725. ∵θ是第四象限角,∴sin θ<0,cos θ>0,∴sin θ-cos θ=-√1-2sinθcosθ=-4√25②, 由①②得sin θ=-√210,cos θ=7√210,∴tan θ=-17, ∴tan (θ-π4)=tanθ-11+tanθ=-43.解法二:∵(θ+π4)+(π4-θ)=π2,∴sin (θ+π4)=cos (π4-θ)=35,又2kπ-π2<θ<2kπ,k∈Z,∴2kπ-π4<θ+π4<2kπ+π4,k ∈Z, ∴cos (θ+π4)=45,∴sin (π4-θ)=45, ∴tan (π4-θ)=sin(π4-θ)cos(π4-θ)=43, ∴tan (θ-π4)=-tan (π4-θ)=-43. 15.答案 4π解析 把圆C 的方程化为x 2+(y-a)2=2+a 2,则圆心为(0,a),半径r=√a 2+2.圆心到直线x-y+2a=0的距离d=√2.由r 2=d 2+(|AB |2)2,得a 2+2=a 22+3,解得a 2=2,则r 2=4,所以圆的面积S=πr 2=4π. 16.答案 216 000解析 设生产产品A x 件,生产产品B y 件,利润之和为z 元,则z=2 100x+900y.根据题意得{ 1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ,y ∈N ,即{ 3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ,y ∈N ,作出可行域(如图).由{10x +3y =900,5x +3y =600得{x =60,y =100. 当直线2 100x+900y-z=0过点A(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000. 故所求的最大值为216 000元.三、解答题17.解析 (Ⅰ)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2,(3分) 所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n-1.(5分)(Ⅱ)由(Ⅰ)和a n b n+1+b n+1=nb n 得b n+1=bn 3,(7分) 因此{b n }是首项为1,公比为13的等比数列.(9分)记{b n }的前n 项和为S n ,则S n =1-(13)n1-13=32-12×3n -1.(12分)18.解析 (Ⅰ)证明:因为P 在平面ABC 内的正投影为D,所以AB ⊥PD.因为D 在平面PAB 内的正投影为E,所以AB ⊥DE.(2分)又PD∩DE=D,所以AB ⊥平面PED,故AB ⊥PG.又由已知可得,PA=PB,从而G 是AB 的中点.(4分)(Ⅱ)在平面PAB 内,过点E 作PB 的平行线交PA 于点F,F 即为E 在平面PAC 内的正投影.(5分)理由如下:由已知可得PB ⊥PA,PB ⊥PC,又EF ∥PB,所以EF ⊥PA,EF ⊥PC,又PA∩PC=P,因此EF ⊥平面PAC,即点F 为E 在平面PAC 内的正投影.(7分)连结CG,因为P 在平面ABC 内的正投影为D,所以D 是正三角形ABC 的中心,由(Ⅰ)知,G 是AB的中点,所以D 在CG 上,故CD=23CG.(9分)由题设可得PC ⊥平面PAB,DE ⊥平面PAB,所以DE ∥PC,因此PE=23PG,DE=13PC. 由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PE=2√2.在等腰直角三角形EFP 中,可得EF=PF=2,(11分)所以四面体PDEF 的体积V=13×12×2×2×2=43.(12分)19.解析 (Ⅰ)当x≤19时,y=3 800;当x>19时,y=3 800+500(x-19)=500x-5 700,所以y 与x 的函数解析式为y={3 800, x ≤19,500x -5 700,x >19(x ∈N).(4分) (Ⅱ)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(5分)(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800元,20台的费用为4 300元,10台的费用为4 800元,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000(元).(7分)若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000元,10台的费用为4 500元,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050(元).(10分)比较两个平均数可知,购买1台机器的同时应购买19个易损零件.(12分)20.解析 (Ⅰ)由已知得M(0,t),P (t 22p ,t).(1分)又N 为M 关于点P 的对称点,故N (t 2p ,t),ON 的方程为y=p t x,代入y 2=2px 整理得px 2-2t 2x=0,解得x1=0,x2=2t 2p.因此H(2t 2p,2t).(4分)所以N为OH的中点,即|OH||ON|=2.(6分)(Ⅱ)直线MH与C除H以外没有其他公共点.(7分) 理由如下:直线MH的方程为y-t=p2t x,即x=2tp(y-t).(9分)代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,所以除H以外直线MH与C没有其他公共点.(12分)21.解析(Ⅰ)f '(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).(i)设a≥0,则当x∈(-∞,1)时, f '(x)<0;当x∈(1,+∞)时, f '(x)>0.所以f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.(2分)(ii)设a<0,由f '(x)=0得x=1或x=ln(-2a).①若a=-e2,则f '(x)=(x-1)(e x-e),所以f(x)在(-∞,+∞)单调递增.②若a>-e2,则ln(-2a)<1,故当x∈(-∞,ln(-2a))∪(1,+∞)时, f '(x)>0;当x∈(ln(-2a),1)时, f '(x)<0.所以f(x)在(-∞,ln(-2a)),(1,+∞)单调递增,在(ln(-2a),1)单调递减.(4分)③若a<-e2,则ln(-2a)>1,故当x∈(-∞,1)∪(ln(-2a),+∞)时, f '(x)>0;当x∈(1,ln(-2a))时, f '(x)<0.所以f(x)在(-∞,1),(ln(-2a),+∞)单调递增,在(1,ln(-2a))单调递减.(6分)(Ⅱ)(i)设a>0,则由(Ⅰ)知, f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.又f(1)=-e, f(2)=a,取b满足b<0且b<ln a2,则f(b)>a2(b-2)+a(b-1)2=a(b2-32b)>0,所以f(x)有两个零点.(8分)(ii)设a=0,则f(x)=(x-2)e x,所以f(x)只有一个零点.(9分)(iii)设a<0,若a≥-e 2,则由(Ⅰ)知, f(x)在(1,+∞)单调递增,又当x≤1时f(x)<0,故f(x)不存在两个零点;(10分)若a<-e 2,则由(Ⅰ)知, f(x)在(1,ln(-2a))单调递减,在(ln(-2a),+∞)单调递增,又当x≤1时f(x)<0,故f(x)不存在两个零点.(11分)综上,a 的取值范围为(0,+∞).(12分)22.证明 (Ⅰ)设E 是AB 的中点,连结OE.因为OA=OB,∠AOB=120°,所以OE ⊥AB,∠AOE=60°.(2分)在Rt △AOE 中,OE=12AO,即O 到直线AB 的距离等于☉O 半径,所以直线AB 与☉O 相切.(5分)(Ⅱ)因为OA=2OD,所以O 不是A,B,C,D 四点所在圆的圆心.设O'是A,B,C,D 四点所在圆的圆心,作直线OO'.(7分)由已知得O 在线段AB 的垂直平分线上,又O'在线段AB 的垂直平分线上,所以OO'⊥AB. 同理可证,OO'⊥CD.所以AB ∥CD.(10分)23.解析 (Ⅰ)消去参数t 得到C 1的普通方程:x 2+(y-1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.(2分)将x=ρcos θ,y=ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(4分)(Ⅱ)曲线C 1,C 2的公共点的极坐标满足方程组{ρ2-2ρsinθ+1-a 2=0,ρ=4cosθ.(6分) 若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,(8分)由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a=-1(舍去)或a=1.a=1时,极点也为C 1,C 2的公共点,在C 3上.所以a=1.(10分)24.解析(Ⅰ)f(x)={x-4,x≤-1,3x-2,-1<x≤32,-x+4,x>32,(4分)y=f(x)的图象如图所示.(6分)(Ⅱ)由f(x)的表达式及图象知,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=13或x=5,(8分)故f(x)>1的解集为{x|1<x<3}; f(x)<-1的解集为{x|x<13或x>5}.(9分)所以|f(x)|>1的解集为{x|x<13或1<x<3或x>5}.(10分)。
2016年普通高等学校招生全国统一考试
(课标全国卷Ⅰ)
文数
本卷满分150分,考试时间120分钟.
第Ⅰ卷(选择题,共60分)
一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( )
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
2.设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=( )
A.-3
B.-2
C.2
D.3
3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )
A. B. C. D.
4.△ABC的内角A,B,C的对边分别为a,b,c.已知a=,c=2,cos A=,则b=( )
A. B. C.2 D.3
5.直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为( )
A. B. C. D.
6.将函数y=2sin的图象向右平移个周期后,所得图象对应的函数为( )
A.y=2sin
B.y=2sin
C.y=2sin-
D.y=2sin-
7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是( )
A.17π
B.18π
C.20π
D.28π
8.若a>b>0,0<c<1,则( )
A.log a c<log b c
B.log c a<log c b
C.a c<b c
D.c a>c b
9.函数y=2x2-e|x|在[-2,2]的图象大致为( )
10.执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足( )
A.y=2x
B.y=3x
C.y=4x
D.y=5x
11.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )
A. B. C. D.
12.若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是( )
A.[-1,1]
B.-
C.-
D.--
第Ⅱ卷(非选择题,共90分)
本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.
二、填空题:本题共4小题,每小题5分.
13.设向量a=(x,x+1),b=(1,2),且a⊥b,则x= .
14.已知θ是第四象限角,且sin=,则tan-= .
15.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2,则圆C的面积为.
16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.
三、解答题:解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分12分)
已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.
(Ⅰ)求{a n}的通项公式;
(Ⅱ)求{b n}的前n项和.
18.(本小题满分12分)
如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6.顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连结PE并延长交AB于点G.
(Ⅰ)证明:G是AB的中点;
(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.
19.(本小题满分12分)
某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.
(Ⅰ)若n=19,求y与x的函数解析式;
(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;
(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
20.(本小题满分12分)
在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.
(Ⅰ)求;
(Ⅱ)除H以外,直线MH与C是否有其他公共点?说明理由.
21.(本小题满分12分)
已知函数f(x)=(x-2)e x+a(x-1)2.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)有两个零点,求a的取值范围.。