(完整版)通信原理第二章课后答案
- 格式:doc
- 大小:150.01 KB
- 文档页数:5
习题解答2-1、什么是调制信道?什么是编码信道?说明调制信道和编码信道的关系。
答:所谓调制信道是指从调制器输出端到解调器输入端的部分。
从调制和解调的角度来看,调制器输出端到解调器输入端的所有变换装置及传输媒质,不论其过程如何,只不过是对已调制信号进行某种变换。
所谓编码信道是指编码器输出端到译码器输入端的部分。
从编译码的角度看来,编码器的输出是某一数字序列,而译码器的输入同样也是某一数字序列,它们可能是不同的数字序列。
因此,从编码器输出端到译码器输入端,可以用一个对数字序列进行变换的方框来概括。
根据调制信道和编码信道的定义可知,编码信道包含调制信道,因而编码信道的特性也依赖调制信道的特性。
2-2、什么是恒参信道?什么是随参信道?目前常见的信道中,哪些属于恒参信道?哪些属于随参信道?答:信道参数随时间缓慢变化或不变化的信道叫恒参信道。
通常将架空明线、电缆、光纤、超短波及微波视距传输、卫星中继等视为恒参信道。
信道参数随时间随机变化的信道叫随参信道。
短波电离层反射信道、各种散射信道、超短波移动通信信道等为随参信道。
2-3、设一恒参信道的幅频特性和相频特性分别为:其中,0K 和d t 都是常数。
试确定信号)(t s 通过该信道后的输出信号的时域表示式,并讨论之。
解:传输函数d t j je K e H H ωωϕωω-==0)()()(冲激响应)()(0d t t K t h -=δ输出信号)()()()(0d t t s K t h t s t y -=*=结论:该恒参信道满足无失真条件,故信号在传输过程中无失真。
2-4、设某恒参信道的传输特性为d t j eT H ωωω-+=]cos 1[)(0,其中,d t 为常数。
试确定信号)(t s 通过该信道后的输出信号表达式,并讨论之。
解:输出信号为: dt K H ωωϕω-==)()(0)(21)(21)()(2121)(21]cos 1[)(00)()(00000T t t T t t t t t h e e e e e e e e T H d d d T t j T t j t j t j T j T j t j t j d d d d d d --++-+-=++=++=+=+--------δδδωωωωωωωωωω讨论:此信道的幅频特性为0cos 1)(T H ωω+=,相频特性为ωωϕd t -=)(,相频特性与ω成正比,无想频失真;K H ≠)(ω,有幅频失真,所以输出信号的失真是由信道的幅频失真引起的,或者说信号通过此信道只产生幅频失真。
WORD 格式可编辑第二章习题习题 2.1设随机过程 X(t ) 可以表示成:X (t) 2cos(2 t ),t式中,是一个离散随机变量,它具有如下概率分布:P(=0)=0.5 ,P(= /2)=0.5试求 E[ X( t )] 和 R X (0,1) 。
解:E[ X( t )]= P(=0)2 cos(2 t ) +P( =/2)2cos(2 t)=cos(2 t) sin 2 t cos t2习题 2.2设一个随机过程 X( t ) 可以表示成:X (t ) 2cos(2 t), t判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:为功率信号。
R X ( )lim T1 T / 2X ( t ) X (t) dtTT / 2lim T1T / 2t)* 2 cos 2(t)dtTT / 22 cos(22cos(2) ej 2te j 2 tP ( f )R X ( ) e j 2fd(e j 2 te j 2 t )e j 2fd( f 1)( f 1)习题 2.3设有一信号可表示为:X (t)4exp( t) ,t 0{0, t<0试问它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:它是能量信号。
X( t ) 的傅立叶变换为:X ( )x(t)e j tdt4e t e j tdt 4e(1 j )tdt41 j216则能量谱密度2=4G(f)= X ( f )j142 f21习题 2.4X(t )=x 1 cos2 tx 2 sin 2 t ,它是一个随机过程,其中x 1 和 x 2是相互统计独立的高斯随机变量,数学期望均为0,方差均为2。
试求:(1) E[ X(t )] , E[ X 2(t ) ] ;(2) X( t )的概率分布密度; (3) R X (t 1 ,t 2 )解:(1) E X tE x 1 cos2 t x 2 sin 2 t cos 2 t E x 1 sin 2 t E x 2 0P X ( f )因为x 1和x 2相互独立,所以E x 1 x 2E x 1E x 2。
现代通信原理课后习题答案第⼆章2.40 ⼆进制对称信道中的误⽐特率P e为0.2,若输⼊信道的符号速率为2000符号/s,求该信道的信道容量。
解:2000×(1-0.2)=1600 (b/s)2.41 已知某语⾳信道带宽为4kHz,若接收端的信噪⽐S/N =60dB,求信道容量。
若要求该信道传输56000b/s的数据,则接收端的信噪⽐最⼩应为多少?解:dB=10 lgN 60 = 10 lg S/N →S/N = 106C = wlog2 (1+S/N)=4×103log2(1+106) = 8 × 104 (bps)5.6 × 104 = 4 × 103log2(1+S/N)log2(1+S/N) = 14 → 1+S/N = 214→S/N = 214-12.42 若⿊⽩电视机的每幅图像含有3×105个像素,每个像素都有16个等概率出现的亮度等级,如果信道的输出信噪⽐为S/N = 40dB、信道带宽为1.4MHz,则该信道每秒可传送多少幅图像?解:每幅图的信息量:3×105×log216 = 1.2×106(b)40dB = 10log2 S/N →S/N = 104C = wlog2(1 + S/N)= 1.4×106log2(1+104)≈1.862×107(bps)1.862×107/1.2×106 = 15.5 (幅/s)第三章3.50 ⽤10KHz的单频正弦信号对1MHz的载波进⾏调制,峰值频偏为2KHz。
试求:(1)该调频信号的带宽。
(2)若调制信号的幅度加倍,再求该调频信号的带宽。
解:(1)B FM = 2 × ( 2+10 ) = 24 ( KHz)(2)B FM = 2 ×(2 + 2×10)= 44 (KHz)3.51 幅度1V的10MHz载波受到幅度1V、频率为100Hz的正弦信号调制,最⼤频偏为500Hz。
5-10 某线性调制系统的输出信噪比为20dB,输出噪声功率为 ,由发射机输出端到解调器输入端之间总的传输损耗为100dB,910W试求:(1)DSB/SC时的发射机输出功率;(2)SSB/SC时的发射机输出功率。
,解调器输入信号功率为Si,解:设发射机输出功率为ST/Si=100(dB).则传输损耗K= ST(1)DSB/SC的制度增益G=2,解调器输入信噪比相干解调时:Ni=4No因此,解调器输入端的信号功率:发射机输出功率:(2)SSB/SC制度增益G=1,则解调器输入端的信号功率发射机输出功率:6-1设二进制符号序列为 1 1 0 0 1 0 0 0 1 1 1 0,试以矩形脉冲为例,分别画出相应的单极性码波形、双极性码波形、单极性归零码波形、双极性归零码波形、二进制差分码波形及八电平码波形。
解:各波形如下图所示:6-8已知信息代码为 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1,求相应的AMI码及HDB3码,并分别画出它们的波形图。
解:6-11设基带传输系统的发送滤波器、信道及接收滤波器组成总特性为H(ω),若要求以2/Ts波特的速率进行数据传输,试检验图P5-7各种H(ω)是否满足消除抽样点上码间干扰的条件?ω(a)(c) (d)解:无码间干扰的条件是:⎪⎪⎩⎪⎪⎨⎧>≤=⎪⎪⎭⎫⎝⎛+=∑ssisseqTTTTiHHπωπωπωω2)((a)⎪⎪⎩⎪⎪⎨⎧>=≤=ssTBTHπωππωω21)(则 sT B 21=,无码间干扰传输的最大传码率为:s s B T T B R 212max <== 故该H (ω)不满足消除抽样点上码间干扰的条件。
(b ) ⎪⎪⎩⎪⎪⎨⎧>=≤=ssT B T H πωππωω0231)(则 sT B 23=,无码间干扰传输的最大传码率为:s s B T T B R 232max >== 虽然传输速率小于奈奎斯特速率,但因为R Bmax 不是2/T s 的整数倍,所以仍然不能消除码间干扰。
第二章 确定信号分析2-1图E2.1中给出了三种函数。
图 E2.1①证明这些函数在区间(-4,4)内是相互正交的。
②求相应的标准正交函数集。
③用(2)中的标准正交函数集将下面的波形展开为标准正交级数:⎩⎨⎧≤≤=为其它值t t t s ,040,1)(④利用下式计算(3)中展开的标准正交级数的均方误差: ⎰∑-=-=44231])()([dt t u a t s k k k ε⑤对下面的波形重复(3)和(4):⎪⎩⎪⎨⎧≤≤-=为其它值t t t t s ,044),41cos()(π ⑥图E2.1中所示的三种标准正交函数是否组成了完备正交集?解:①证明:由正交的定义分别计算,得到12()()0u t u t dt +∞-∞⋅=⎰,23()()0u t u t dt +∞-∞⋅=⎰,31()()0u t u t dt +∞-∞⋅=⎰,得证。
②解:424()8,k C u t dt k -== =1,2,3⎰,对应标准正交函数应为()(),1,2,3k k q t t k ==因此标准正交函数集为123123{(),(),()}(),()()}q t q t q t t t t =③解:用标准正交函数集展开的系数为4()(),1,2,3k k a s t q t dt k =⋅ =⎰,由此可以得到4110()()a s t t dt ===⎰4220()()a s t t dt ===⎰4330()()0a s t t dt ==⎰。
所以,121211()()()()()22s t t t u t u t ==-④解:先计算得到312111()()()()()()022k k k t s t a u t s t u t u t ε==-=-+=∑ ⑤解:用标准正交集展开的系数分别为441141()())04a s t t dt t dt π--===⎰⎰,44224011()()cos()cos()044a s t t dt t dt t dt ππ--==-=⎰⎰⎰,433422442()()111cos()))444a s t t dtt dt t dt t dt ππππ----= =-+- =⎰⎰⎰⎰。
第二章(信道)习题及其答案【题2-1】设一恒参信道的幅频特性和相频特性分别为0()()d H K t ωϕωω⎧=⎨=-⎩其中,0,d K t 都是常数。
试确定信号()s t 通过该信道后的输出信号的时域表达式,并讨论之。
【答案2-1】 恒参信道的传输函数为:()0()()d j t j H H e K e ωϕωωω-==,根据傅立叶变换可得冲激响应为:0()()d h t K t t σ=-。
根据0()()()i V t V t h t =*可得出输出信号的时域表达式:000()()()()()()d d s t s t h t s t K t t K s t t δ=*=*-=-讨论:题中条件满足理想信道(信号通过无畸变)的条件:()d d H ωωφωωτττ⎧=⎨⎩常数()=-或= 所以信号在传输过程中不会失真。
【题2-2】设某恒参信道的幅频特性为[]0()1cos d j t H T e ωω-=+,其中d t 为常数。
试确定信号()s t 通过该信道后的输出表达式并讨论之。
【答案2-2】 该恒参信道的传输函数为()0()()(1cos )d j t j H H e T e ωϕωωωω-==+,根据傅立叶变换可得冲激响应为:0011()()()()22d d d h t t t t t T t t T δδδ=-+--+-+根据0()()()i V t V t h t =⊗可得出输出信号的时域表达式:0000011()()()()()()()2211 ()()()22d d d d d d s t s t h t s t t t t t T t t T s t t s t t T s t t T δδδ⎡⎤=⊗=⊗-+--+-+⎢⎥⎣⎦=-+--+-+讨论:和理想信道的传输特性相比较可知,该恒参信道的幅频特性0()(1cos )H T ωω=+不为常数,所以输出信号存在幅频畸变。
其相频特性()d t ϕωω=-是频率ω的线性函数,所以输出信号不存在相频畸变。
思考题1-1 什么是通信?常见的通信方式有哪些?1-2 通信系统是如何分类的?1-3 何谓数字通信?数字通信的优缺点是什么?1-4 试画出模拟通信系统的模型,并简要说明各部分的作用。
1-5 试画出数字通信系统的一般模型,并简要说明各部分的作用。
1-6 衡量通信系统的主要性能指标是什么?对于数字通信具体用什么来表述?1-7 何谓码元速率?何谓信息速率?它们之间的关系如何?习题1-1 设英文字母E出现的概率=0.105,X出现的概率为=0.002,试求E和X的信息量各为多少?1-2 某信源的符号集由A、B、C、D、E、F组成,设每个符号独立出现,其概率分别为1/4、1/4、1/16、1/8、1/16、1/4,试求该信息源输出符号的平均信息量。
1-3 设一数字传输系统传送二进制信号,码元速率RB2=2400B,试求该系统的信息速率Rb2=?若该系统改为传送16进制信号,码元速率不变,则此时的系统信息速率为多少?1-4 已知某数字传输系统传送八进制信号,信息速率为3600b/s,试问码元速率应为多少?1-5 已知二进制信号的传输速率为4800b/s,试问变换成四进制和八进制数字信号时的传输速率各为多少(码元速率不变)?1-6 已知某系统的码元速率为3600kB,接收端在l小时内共收到1296个错误码元,试求系统的误码率=?1-7 已知某四进制数字信号传输系统的信息速率为2400b/s,接收端在0.5小时内共收到216个错误码元,试计算该系统=?l-8 在强干扰环境下,某电台在5分钟内共接收到正确信息量为355Mb,假定系统信息速率为1200kb/s。
(l)试问系统误信率=?(2)若具体指出系统所传数字信号为四进制信号,值是否改变?为什么?(3)若假定信号为四进制信号,系统传输速率为1200kB,则=?习题答案第一章习题答案1-1 解:1-2 解:1-3 解:1-4 解:1-5 解:1-6 解:1-7 解:1-8 解:思考题2-1 什么是狭义信道?什么是广义信道?(答案)2-2 在广义信道中,什么是调制信道?什么是编码信道?2-3 试画出调制信道模型和二进制无记忆编码信道模型。
第二章
2-1 试证明图P2-1中周期性信号可以展开为 (图略)
04(1)()cos(21)21n
n s t n t n ππ∞
=-=++∑ 证明:因为
()()s t s t -=
所以
000022()cos cos cos 2k k k k k k kt kt s t c c c kt T πππ∞
∞∞
======∑∑∑
101()00s t dt c -=⇒=⎰ 1
1112
21111224()cos ()cos cos sin 2
k k c s t k tdt k tdt k tdt k πππππ----==-++=⎰⎰⎰⎰ 0,24(1)21(21)n k n k n n π=⎧⎪=⎨-=+⎪+⎩
所以 04(1)()cos(21)21n
n s t n t n ππ∞
=-=++∑
2-2设一个信号()s t 可以表示成
()2cos(2)s t t t πθ=+-∞<<∞
试问它是功率信号还是能量信号,并求出其功率谱密度或能量谱密度。
解:功率信号。
2
22
()cos(2)sin (1)sin (1)[]2(1)(1)j ft j j s f t e dt f f e e f f τπττθθπθτπτπτπτπτ
---=+-+=+-+⎰ 21()lim P f s τττ
→∞= 2222222222sin (1)sin (1)sin (1)sin (1)lim 2cos 24(1)(1)(1)(1)f f f f f f f f ττπτπτπτπτθπτπτπτ
→∞-+-+=++-+-+ 由公式
22sin lim ()t xt x tx δπ→∞= 和 sin lim ()t xt x x
δπ→∞= 有
()[(1)][(1)]44
1[(1)(1)]4P f f f f f π
πδπδπδδ=-++=++-
或者
001()[()()]4
P f f f f f δδ=-++
2-3 设有一信号如下:
2exp()
0()00t t x t t -≥⎧=⎨<⎩
试问它是功率信号还是能量信号,并求出其功率谱密度或能量谱密度。
解:
220()42t x t dx e dt ∞
∞
--∞==⎰⎰ 是能量信号。
2(12)0()()22
12j ft j f t S f x t e dt e dt j f
πππ∞
-∞∞
--===-⎰⎰ 222
24()1214G f j f f ππ==-+
2-4 试问下列函数中哪一些满足功率谱密度的性质:
(1)2()cos 2f f δπ+
(2)()a f a δ+-
(3)exp()a f -
解:
功率谱密度()P f 满足条件:()P f df ∞
-∞⎰为有限值
(3)满足功率谱密度条件,(1)和(2)不满足。
2-5 试求出()cos s t A t ω=的自相关函数,并从其自相关函数求出其功率。
解:该信号是功率信号,自相关函数为
2221()lim cos cos ()cos 2
T T T R A t t T A τωωτωτ-→∞=⋅+=⎰
21(0)2
P R A ==
2-6 设信号()s t 的傅里叶变换为()sin S f f f π=,试求此信号的自相关函数()s R τ。
解: 22222()()sin 1,11
j f s j f R P f e df f e df f πτπττππττ∞
-∞∞
-∞===--<<⎰⎰
2-7 已知一信号()s t 的自相关函数为
()2
k s k R e ττ-=, k 为常数 (1)试求其功率谱密度()s P f 和功率P ;
(2)试画出()s R τ和()s P f 的曲线。
解:(1)
20(2)(2)02
222()()224j f s s k j f k j f P f R e d k k e d e d k k f πτπτπτττττπ∞
--∞∞-+--∞
==
+=+⎰⎰⎰ 2
222
42k P df k f k π∞
-∞=+=⎰ (2)略
2-8 已知一信号()s t 的自相关函数是以2为周期的周期函数: ()1R ττ=-, 11τ-<<
试求功率谱密度()s P f ,并画出其曲线。
解:()R τ的傅立叶变换为, (画图略)
222
21222121()1sin (1)2sin T j f T j f R e d T f e d f
c f
πτπτττπττππ----=-==⎰⎰ 2022()sin ()
sin ()sin ()2P f c f f nf n c f f T n c f f πδπδπδ∞
-∞∞-∞
∞-∞=-=-=-∑∑∑
2-9 已知一信号()s t 的双边功率谱密度为
4210,1010()0
f kHz f kHz P f -⎧-<<=⎨⎩其他
试求其平均功率。
解: 4
41042108
()102103
P P f df f df ∞
-∞--===⨯⎰⎰。