人工智能第三章
- 格式:ppt
- 大小:354.50 KB
- 文档页数:61
人工智能第三章归结推理方法
第三章主要讨论归结推理方法,归结推理方法是人工智能领域中的一种重要技术。
归结推理是一种推理过程,它从一个给定的知识库出发,将给定的输入推断,得出想要的结果。
归结推理是一种推断过程,它把已有的规则和数据应用到新的数据中,来解决新问题。
归结推理可以从三个层面来分析:
1.处理模型
在归结推理中,首先要建立一个处理模型,这个模型是一种结构,它描述了归结推理的步骤,以及归结推理过程中用到的数据和知识。
2.知识表示
归结推理过程是基于知识库,而知识的表示是归结推理中最重要的环节。
知识的表示是一种在计算机中存储、表示和管理数据的方法,它决定了归结推理过程中的正确性和性能。
3.推理机制
推理机制是归结推理过程中,根据已有的输入,对知识进行推理以及解决问题的一种机制。
它可以把归结推理分为计算环节和决策环节,从而实现和可靠的知识表示,实现更精确的推理过程。
基于上述三个层面,归结推理方法可以有效的解决知识表示、理解和存储问题,实现可靠的推理过程,从而解决复杂的问题。
第3章确定性推理部分参考答案判断下列公式是否为可合一,若可合一,则求出其最一般合一。
(1) P(a, b), P(x, y)(2) P(f(x), b), P(y, z)(3) P(f(x), y), P(y, f(b))(4) P(f(y), y, x), P(x, f(a), f(b))(5) P(x, y), P(y, x)解:(1) 可合一,其最一般和一为:σ={a/x, b/y}。
(2) 可合一,其最一般和一为:σ={y/f(x), b/z}。
(3) 可合一,其最一般和一为:σ={ f(b)/y, b/x}。
(4) 不可合一。
(5) 可合一,其最一般和一为:σ={ y/x}。
把下列谓词公式化成子句集:(1)(∀x)(∀y)(P(x, y)∧Q(x, y))(2)(∀x)(∀y)(P(x, y)→Q(x, y))(3)(∀x)(∃y)(P(x, y)∨(Q(x, y)→R(x, y)))(4)(∀x) (∀y) (∃z)(P(x, y)→Q(x, y)∨R(x, z))解:(1) 由于(∀x)(∀y)(P(x, y)∧Q(x, y))已经是Skolem标准型,且P(x, y)∧Q(x, y)已经是合取范式,所以可直接消去全称量词、合取词,得{ P(x, y), Q(x, y)}再进行变元换名得子句集:S={ P(x, y), Q(u, v)}(2) 对谓词公式(∀x)(∀y)(P(x, y)→Q(x, y)),先消去连接词“→”得:(∀x)(∀y)(P(x, y)∨Q(x, y))此公式已为Skolem标准型。
再消去全称量词得子句集:S={P(x, y)∨Q(x, y)}(3) 对谓词公式(∀x)(∃y)(P(x, y)∨(Q(x, y)→R(x, y))),先消去连接词“→”得:(∀x)(∃y)(P(x, y)∨(Q(x, y)∨R(x, y)))此公式已为前束范式。
再消去存在量词,即用Skolem函数f(x)替换y得:(∀x)(P(x, f(x))∨Q(x, f(x))∨R(x, f(x)))此公式已为Skolem标准型。
人工智能第3章谓词逻辑与归结原理
1、谓词逻辑是什么?
谓词逻辑(Predicate Logic)是一种通用的符号化语言,用来表达
和分析各种谓词命题(Propositional Statements)的逻辑关系。
它可以
用来表达抽象概念和客观真理,并以精确的形式描述这些概念和真理。
谓
词逻辑最重要的功能是,它能够发现和解决各种类型的逻辑问题,这在人
工智能中显得尤为重要。
2、归结原理是什么?
归结原理是一种认识论。
它提出的基本原则是,如果要获得B给定A,应当给出一个充分陈述,即必须提供一系列真实可信的参数,以及由此产
生B的能力证明,在这种情况下A必须是正确的。
因此,归结原理会被用
来推理。
例如,通过归结原理,如果一个具体的概念被认为是正确的,那
么人们可以得出结论,即所有概念的结果也是正确的。