工程材料力学性能第一章全套课件
- 格式:ppt
- 大小:7.48 MB
- 文档页数:166
第一章单向静拉伸力学性能1. 弹性比功:金属材料吸收弹性变形功的能力。
2 .滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性。
3 .包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
4. 解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
5. 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等对弹性模量影响较小,所以它是一个对组织不敏感的力学性能指标。
5. 解理断裂;金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂。
6. 决定金属屈服强度的因素有哪些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。
外在因素:温度、应变速率和应力状态。
7. 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。
8. 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。
上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。
9. 试述多晶体金属产生明显屈服的条件,并解释bcc金属及其合金与fee金属及其合金屈服行为不同的原因。
10. 试举出几种能显著强化金属而又不降低其塑性的方法。
答:固溶强化、形变硬化、细晶强化11. 断裂强度S c与抗拉强度S b有何区别?12. 裂纹扩展受哪些因素支配?答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。
工程材料力学性能1金属在单向静拉伸下的力学性能金属在单向静拉伸下的力学性能本章介绍金属在拉伸状态下的力学行为,包括弹性形变、塑性形变和断裂。
重点介绍表征这些力学行为的性能指标、测试方法,以及力学行为的物理机理。
第一节拉伸力―拉伸力―伸长曲线和应力―伸长曲线和应力―应变曲线一、试件形状拉伸实验一般采用光滑的圆柱或板状(横截面为长方形)试件,试件尺寸在国家标准中有明确的规定。
以圆柱试件为例,其结构如下图所示:图1.1 圆柱拉伸试件结构图、过渡部分R、夹持部分H。
光滑试件由三个部分组成:工作部分L0(标距)二、拉伸实验由拉伸实验机拉伸试件,由附加仪器记录拉伸力F及其对应的试件标距间的绝对伸长量8L。
以F为纵坐标,8L为横坐标,做出的F―8L曲线称为拉伸力-伸长曲线,也称为拉伸图(曲线)。
三、拉伸曲线和应力拉伸曲线和应力―和应力―应变曲线1、拉伸曲线下图为退火低碳钢的拉伸曲线o8L(mm)F(N)工程材料力学性能拉伸过程中金属的变形可分为四个阶段:弹性变形(oe段)、不均匀屈服塑性变形(AC段,塑性屈服)、均匀塑性变形(CB段)、不均匀集中塑性变形(BK段,即“缩颈”现象)。
需要指出的是,塑性阶段仍然伴随弹性变形,只是此时外观上表现出不可逆的塑性变形。
2、应力―应变曲线如果以试件原始横截面AO去除拉伸力F得到应力σ,即σ= F,以原始标A0距LO去除绝对伸长8L得到应变ε,即ε=L,则拉伸曲线可以转换成应力―应L0变曲线,如下图所示。
由于原始横截面和标距为常数,所以应力―应变曲线在形状上与拉伸力―伸长曲线相似。
oσ(MPa)σe:弹性极限σs:屈服强度不同材料的应力-应变曲线差别很大,有些材料只有弹性变形阶段,如陶瓷和淬火高碳钢;有些材料没有不均匀的塑性屈服阶段,如有色金属。
工程材料力学性能第二节弹性变形一、弹性变形及其实质金属弹性变形是一种可逆的变形,是金属内原子之间引力、斥力以及外力三者之间平衡的结果。