根轨迹的概念和系统分析
- 格式:ppt
- 大小:1.23 MB
- 文档页数:25
第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。
本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。
4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。
例如某控制系统的结构图如图4.1所示。
图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。
于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。
箭头表示随K 值增加根轨迹的变化趋势。
这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。
画出根轨迹的目的是利用根轨迹分析系统的各种性能。
通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。
又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。
可以看出,根轨迹与系统性能之间有着比较密切的联系。
图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。
而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。
下面给出图解法绘制根轨迹的根轨迹方程。
《根轨迹分析法》课件1. 课件简介根轨迹分析法是一种用于分析和设计反馈控制系统的方法,通过绘制系统的根轨迹来了解系统在不同参数下的稳定性和动态性能。
本课件将介绍根轨迹分析法的基本概念、方法和应用。
2. 课件内容2.1 根轨迹分析法的基本概念2.1.1 根轨迹的定义根轨迹是指在系统参数变化范围内,使闭环系统稳定的闭环极点轨迹。
2.1.2 根轨迹的性质(1)根轨迹是闭环极点在复平面上的轨迹,反映了闭环系统的稳定性。
(2)根轨迹的形状由系统开环传递函数的极点和零点决定。
(3)根轨迹的分布与系统参数有关,通过改变参数可以改变系统的稳定性和动态性能。
2.2 根轨迹分析法的方法2.2.1 绘制根轨迹的基本步骤(1)确定系统开环传递函数。
(2)画出开环传递函数的极点和零点。
(3)根据系统参数的变化,绘制出根轨迹。
(4)分析根轨迹的形状,判断闭环系统的稳定性。
2.2.2 根轨迹的绘制技巧(1)利用软件工具,如MATLAB,自动绘制根轨迹。
(2)手动绘制根轨迹时,注意利用对称性和周期性简化绘制过程。
2.3 根轨迹分析法的应用2.3.1 设计控制器通过分析根轨迹,可以确定控制器参数,使闭环系统具有所需的稳定性和动态性能。
2.3.2 系统优化根轨迹分析法可以帮助我们找到系统参数的最佳组合,从而优化系统的性能。
2.3.3 故障诊断分析根轨迹可以帮助我们发现系统中的故障,为故障诊断提供依据。
3. 课件总结本课件介绍了根轨迹分析法的基本概念、方法和应用。
通过学习本课件,您可以了解根轨迹分析法在控制系统设计和分析中的重要性,并掌握绘制根轨迹的基本方法。
希望这有助于您在实际工作中更好地应用根轨迹分析法。
科学性:1. 内容准确:课件内容基于控制理论的基本原理,准确地介绍了根轨迹分析法的概念、方法和应用。
2. 逻辑清晰:课件从基本概念入手,逐步深入到方法介绍和应用实例,逻辑结构清晰,易于理解。
3. 实例典型:课件中提供了控制系统的实例,帮助学习者更好地理解根轨迹分析法的应用场景。
《模块化自控原理》线性系统的根轨迹分析实验模块化自控原理中的线性系统的根轨迹分析实验是探究线性系统的稳定性和动态特性的一种常用方法,通过实验观测和分析系统的根轨迹,可以得到系统的传递函数以及系统的稳定性等重要信息。
下面是对该实验的详细说明和分析。
1.实验目的1.1理解线性系统的根轨迹概念及其重要性;1.2学习使用根轨迹法进行系统的稳定性和动态特性分析;1.3掌握根轨迹分析实验的具体步骤;1.4提高实验操作和数据处理的能力。
2.实验原理2.1根轨迹的概念根轨迹是以参数变化为基础的线性系统稳定性和动态特性的分析方法之一、根轨迹是指在参数变化的范围内,系统传递函数极点的轨迹,可以用来判断系统的稳定性、响应特性和动态响应快慢等重要指标。
2.2根轨迹的画法根轨迹的画法需要先确定系统的开环传递函数,然后通过对传递函数进行拆项和配平,求解极点的位置。
根轨迹的位置可以通过极点的实部和虚部来表示,根据虚轴对称性和极点与零点的关系,可以画出根轨迹的大致形状和方向。
2.3根轨迹分析的应用根据根轨迹的形状、分布和方向可以判断系统的稳定性和动态特性:-根轨迹在左半平面则系统稳定;-根轨迹与虚轴交点奇数个则系统不稳定;-根轨迹的分布越往左上角或右上角,系统的动态特性越好。
3.实验装置和器材3.1实验装置数字控制系统实验台、计算机、示波器、信号发生器、数模转换器等。
3.2实验器材电脑、电源线、连接线、示波器探头等。
4.实验步骤4.1连接实验装置将数字控制系统实验台与计算机、示波器、信号发生器和数模转换器等设备进行连接。
4.2系统参数调整设置合适的实验参数,包括采样频率、控制周期、信号幅值等。
4.3系统根轨迹绘制在计算机上运行相应的根轨迹绘制软件,根据实验所给的开环传递函数和稳定域范围,绘制系统的根轨迹。
4.4根轨迹分析根据根轨迹的形状、位置和分布等信息,分析系统的稳定性和动态特性,并给出相应的结论和解释。
4.5记录实验数据记录实验中所绘制的根轨迹和分析结果,包括根轨迹的形状、交点、分布等重要特征。
控制系统根轨迹分析简介控制系统根轨迹分析是一种经典的控制系统稳定性分析方法。
通过分析系统的特征根轨迹,可以评估系统的稳定性、阻尼比、过渡时间等性能指标,从而设计合适的控制器来实现系统的稳定和性能要求。
根轨迹的定义控制系统的根轨迹是由系统的特征根在复平面上随参数变化所形成的轨迹。
特征根是系统传递函数的零点,它们决定了系统的动态特性。
根轨迹对应于特征根的运动轨迹,可以直观地反映系统的稳定性和相应的频率响应。
根轨迹的绘制方法步骤一:计算系统的传递函数首先,需要获得系统的传递函数。
传递函数通常是通过将系统的微分方程进行拉氏变换得到的。
传递函数是 Laplace 域中的函数,它描述了输入和输出之间的关系。
步骤二:确定系统的开环极点和零点根轨迹是由系统的特征根构成的,而特征根由系统的开环极点和零点决定。
开环极点指的是系统传递函数的分母多项式的根,而开环零点指的是系统传递函数的分子多项式的根。
通过确定系统的极点和零点,可以得到系统的特征根。
步骤三:绘制根轨迹根轨迹的绘制可以通过手工计算或数值模拟方法实现。
手工计算方法需要根据系统的传递函数进行复杂的计算,而数值模拟方法可以借助计算机软件进行自动计算和绘制。
绘制根轨迹时,需要遵循以下基本规则: - 根轨迹始于系统的零点。
如果系统有多个零点,那么根轨迹将从每个零点开始。
- 根轨迹与实轴交点的个数等于零点的个数减去极点的个数,这一性质被称为根轨迹的零点和极点计数法则。
- 根轨迹在系统的极点位置是不连续的,并且与极点的关联程度取决于极点的幅度和阶数。
根轨迹的稳定性分析通过观察根轨迹图形,可以评估控制系统的稳定性。
根轨迹的稳定性分析方法主要有以下几种:1. 判据法判据法是判断根轨迹稳定性的基本方法之一。
根轨迹的稳定性与根轨迹图形与实轴的关系有关。
如果根轨迹图形位于实轴的左侧,则系统是稳定的;如果根轨迹图形经过实轴,则系统是不稳定的。
2. Astrom法Astrom法是一种根据根轨迹图形的形态特征进行稳定性判断的方法。