数学百大经典例题——子集、全集、补集(新课标)
- 格式:doc
- 大小:146.50 KB
- 文档页数:2
1.1.2子集全集补集习题(精)1.1.2 子集、全集、补集.下列关系式①1∈{(1,2};②{1}∈{0,1,2,3};③{0,1}{0,1};④{0}中错误的个数由 (A.0个 B.1个 C.2个 D.3个.已知集合M={x|- <x<="" p="">A.{-3,0,1} B.{-1,0,1,2}C.{y|-π<y<-1,y∈z} d.{x|x≤,x∈n}<="" p="">.设A={x|1<x<a},若ab,则实数a的取值范围是.< p="">.满足关系{1}B{1,2,3,4}的集合B有个..已知集合A={(x,y|x+y=2,x,y∈N},试写出A的所有子集..设集合M={x|x= ,n∈Z},N={x|x=+n,n∈Z},试确定集合M、N之间的关系..指出下列各对集合之间的关系:(1A={-1,1},B={x∈Z|x2=1};(2A={-1,1},B={(-1,-1,(-1,1,(1,-1,(1,1};(3A={-1,1},B={Φ,{-1},{1},{-1,1}};(4A={x|-1<x<0}.< p="">.已知集合M满足{2,3}?M?{1,2,3,4,5},求集合M及其个数.9..设集合A={1,2,3},B={x|x A},求集合B.10.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若BA,求实数m的取值范围.11.已知A={x|x2-3x+2≤0},B={x|1≤x≤a},(1若A?B,求a的取值范围;(2若A?B,求a的取值范围.12.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.13.已知集合A={x|x=3n-2,n∈Z},B={y|y=3k+1,k∈Z},证明A=B.14.设非空实数集A={x|-2≤x≤a},B={y|y=2x+3,x∈A},C={z|x=3n-2,n∈Z}若C?B,求实数a的取值范围15.已知A={x|1<a x<2,B={x|丨x丨<1},满足A?B,求实数a 的范围。
《子集、全集、补集》典型例题剖析题型1 集合关系的判断例1 指出下列各组集合之间的关系:(1){15},{05}A xx B x x =-<<=<<∣∣; (2){}21(1)0,,2nA x x xB x x n ⎧⎫+-=-===∈⎨⎬⎩⎭Z ∣∣;(3){(,)0},{(,)0,00,0}A x y xy B x y x y x y =>=>><<∣∣或; (4){}{}2*2*1,,45,A x x a a B x x a a a ==+∈==-+∈N N ∣∣.解析 (1)中集合表示不等式,可以根据范围直接判断,也可以利用数轴判断;(2)解集合A 中方程得到集合A ,再根据集合B 中n 分别为奇数、偶数得到集合B ,进行判断;(3)可以根据集合中元素的特征或者集合的几何意义判断;(4)将集合A 中x 关于a 的关系式改写成集合B 中的形式,再进行判断.答案 (1)方法一:集合B 中的元素都在集合A 中,但集合A 中有些元素(比如00.5-,)不在集合B 中,故BA .方法二:利用数轴表示集合A ,B ,如下图所示,由图可知BA .(2){}20{0,1}A x x x =-==∣.在集合B 中,当n 为奇数时,1(1)02nx +-==,当n 为偶数时,1(1)1,{0,1},2n x B A B +-==∴=∴=.(3)方法一:由00000xy x y x y >>><<得,或,;由000x y x >><,或,0y <得0xy >,从而A B =.方法二:集合A 中的元素是平面直角坐标系中第三象限内的点对应的坐标,集合B 中的元素也是平面直角坐标系中第一、三象限内的点对应的坐标,从而A B =.(4)对于任意x A ∈,有221(2)4(2)5x a a a =+=+-++.**,2{3,4,5},a a x B ∈∴+∈∴∈N N .由子集的定义知,A B ⊆.设1B ∈,此时2451a a -+=,解得*2,a a =∈N .211a +=在*a ∈N 时无解,1A ∴∉. 综上所述,AB .名师点评 对于(5),在判断集合A 与B 的关系时可先根据定义判断A B ⊆,再进一步判断AB .判断A B 时,只要在集合B 中找出一个元素不属于集合A 即可.变式训练1 判断下列各组中两个集合的关系:(1){3,},{6,}A xx k k B x x z z ==∈==∈N N ∣∣; (2)1,24k A xx k ⎧⎫==+∈⎨⎬⎩⎭Z ∣,1,42k B x x k ⎧⎫==+∈⎨⎬⎩⎭Z ∣. 答案 (1)A 中的元素都是3的倍数,B 中的元素都是6的倍数,对于任意的,63(2)z z z ∈=⨯N ,因为z ∈N ,所以2z ∈N ,从而可得6z A ∈,从而有B A ⊆.设63z =,则12z =∉N ,故3B ∉,但3A ∈,所以BA . (2)方法一:取,0,1,2,3,4,5,k =,可得1357911,,,,,,,444444A ⎧⎫=⎨⎬⎩⎭,13537,,,1,,,,24424B ⎧⎫=⎨⎬⎩⎭, 易知A 中任一元素均为B 中的元素,但B 中的有些元素不在集合A 中,A B .方法二:集合A 的元素为121()244k k x k +=+=∈Z ,集合B 的元素为12()424k k x k +=+=∈Z ,而21k +为奇数,2k +为整数,A B ∴.点拨 判断两个集合的关系要先找到集合中元素的特征,再由特征判断集合间的关系. 题型2 根据集合间的包含关系求参数的值范围 类型(一)有限集的问题例2 已知{}2230,{10}A x x x B x ax =--==-=∣∣,若BA ,试求a 的值.解析: 首先将集合A ,B 具体化,在对集合B 具体化时,要注意对参数a 进行讨论,然后再由BA 求a 的值.答案 {}2230{1,3}A x x x =--==-∣,且BA ,(1)当B =∅时,方程10ax -=无解,故0a =;(2)当B ≠∅时,则1B a ⎧⎫=⎨⎬⎩⎭.若11a =-,即1a =-时,B A ; 若13a =,即13a =时,B A . 综上可知,a 的值为:10,1,3-.易错提示 特别要注意子集与真子集的区别,审清题意,由题目的具体条件确定真子集是否有可能为∅,这是个易错点.变式训练2 已知集合{}2320,{05,}A x x x B x x x =-+==<<∈N ∣∣,那么满足A C B 的集合C 的个数是( )A.1B.2C.3D.4 答案 B点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{123},,,{124},,.本题考查对元素个数及真子集的理解,一定要弄清子集和真子集的区别.变式训练3 把上题改为:已知集合{2320}A x x x =-+=∣,{05,}B xx x =<<∈N ∣,则满足A C B ⊆⊆的集合C 的个数是___________.答案 4点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4},故答案为4.类型(二) 无限集的问题例 3 已知集合{04},{}A x x B x x a =<=<∣∣,若A B ,求实数a 的取值集合.解析 将数集A 在数轴上表示出来,再将B 在数轴上表示出来,使得A B ,即可求出a 的取值范围.答案 将数集A 表示在数轴上(如图),要满足AB ,表示数a 的点必须在表示4的点处或在表示4的点的右边.所以所求a 的集合为{4}aa ∣.易错提示 在解决取值范围问题时,一般借助数轴比较直观,但一定要注意端点的取舍问题,能取的用实心点,不能取的用空心点,此题易漏掉端点4,显然4a =符合题意.变式训练 4 已知集合{25},{121}A xx B x a x a =-=+-∣∣. (1)若B A ⊆,求实数a 的取值范围; (2)若AB ,求a 的取值范围.答案 (1),B A D ⊆∴=∅①时,满足要求. 则121a a +>-即2a <;②B ≠∅时,则121,12,23215a a a a a +-⎧⎪+-⇒⎨⎪-⎩.综上可知:3a ≤. (2)121,,12215a a AB a a +-⎧⎪∴+-⎨⎪-⎩,,且12215a a +≤--≥与中的等号不能同时成立. 解这个不等式组,无解,a ∴∈∅,即不存在这样的a 使A B .题型3 集合的全集与补集问题例4 已知全集U ,集合 {1,3,5,7},{2,46},{1,4,6}UU A A B ===,,则集合B =____________.解析 因为{1,3,5,7},{2,4,6}UA A ==,所以{1,2,3,4,5,6,7}U =.又由已知{1,4,6}UB =,所以{2,3,5,7}B =.答案 27}3{5,,,变式训练5 设集合{1,2,3,4,5,6},{1,2,3},{3,4,5}U M N ===,则集合UM 和UN 共有的元素组成的集合为( )A.{2,3,4,5}B.{1,2,4,5,6}C.{1,2,6}D.{6} 答案 D点拨 由题意 {4,5,6},{1,2,6}U UM N ==,所以集合U M 和UN 共有的元素为6,组成的集合为{6}.例5 已知集合{}21A x a x a =<<+∣,集合{}15B x x =<<∣. (1)若A B ⊆,求实数a 的取值范围; (2)若RAB ,求实数a 的取值范围.解析 (1)可借助数轴求解;(2)先根据集合B 求出共补集RB ,再根据RAB 列出不等式求解.注意要考虑A 为空集的情况.答案(1)若A =∅,则21a a +≤,解得1a ≤-,满足题意; 若A ≠∅,则21a a <+,解得1a >-.由A B ⊆,可得2151a a +≤≥且,解得12a ≤≤.综上,实数a 的取值范围为{1, 12}aa a -∣或. (2)R {1, 5}B xx x =∣或. 若A ≠∅,则211a a a +≤≤-,则,此时RAB ,满足题意;若A ≠∅,则1a >-. 又RAB ,所以5211a a ≥+≤或,所以510a a ≥-<≤或.综上,实数a 的取值范围为{0, 5}aa a ∣或. 变式训练6 已知集合{12},{}A xx B x x a =<<=<∣∣,若RA B ⊆,求实数a 的取值范围.答案由{}B xx a =<∣,得R {}B x x a =∣.又RA B ⊆,所以1a ≤,故a 的取值范围是1a ≤.规律方法总结1.判断集合间关系的常用方法. (1)列举观察法.当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之间的关系. (2)集合元素特征法.首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.一般地,设{()},{()}A xp x B x q x ==∣∣,①若由()p x 可推出()q x ,则A B ⊆;②若由()q x 可推出()p x ,则B A ⊆;③若()p x ,()q x 可互相推出,则A B =;④若由力()p x 推不出()q x ,由()q x 也推不出()p x ,则集合A ,B 无包含关系.(3)数形结合法.利用venn 图、数轴等直观地判断集合间的关系,一般地,判断不等式的解集之间的关系,适合用画数轴法.2.根据集合间的包含关系求参数的值或范围的方法.已知两个集合之间的包含关系求参数的值或范围时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.一般地,若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时要注意集合中元素的互异性;若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.3.求补集的策略.(1)若所给集合是有限集,则先把集合中的元素列举出来,然后结合补集的定义来求解另外,针对此类问题,在解答过程中也常常借助Venn 图来求解,这样处理比较直观、形象,且解答时不易出错.(2)若所给集合是无限集,在解答有关集合补集问题时,则常借助数轴,先把已知集合及全集分别表示在数轴上,然后根据补集的定义求解.核心素养园地目的 以一元二次方程和两个集合的关系为知识载体,求参数的范围为任务,借助根与系数的关系、解方程分类讨论思想等一系列数学思维活动,加强逻辑推理和数学运算核心素养水平一、水平二的练习.情境 已知集合{}{}22240,2(1)10A x x x B x x a x a =+==+++-=∣∣,若B A ⊆,求实数a 的取值范围.分析 易知集合{0,4}A =-,由B A ⊆的具体含义可知 {0}B B =∅=或或{}{}404B B =-=-或,,进而得解.答案 {}240{0,4}A x x x =+==-∣.,B A B ⊆∴=∅或{}{}0404}{B B B ==-=-或或,. 当B =∅时,()22[2(1)]410,1a a a ∆=+--<∴<-;当{}0B =时,由根与系数的关系知202(1)01a a =-+⎧⎨=-⎩,,解得1a =-. 当{}4B =-时,由根与系数的关系知2442(1),161,a a --=-+⎧⎨=-⎩无解; 当{0,4}B =-时,由根与系数的关系知2402(1),0 1.a a -+=-+⎧⎨=-⎩解得1a =. 综上可知,实数a 的取值范围为{1, 1}aa a -=∣或.。
例1判定以下关系是否正确⑴{a} {a}(2) {1 , 2, 3} = {3 , 2, 1}(3) 丰{0}(4) 0 € {0}(5) € {0}(6) 二{0}分析空集是任何集合的子集,是任何非空集合的真子集.解根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2列举集合{1 , 2, 3}的所有子集.分析子集中分别含1, 2, 3三个元素中的0个,1个,2个或者3个.解含有0个元素的子集有:;含有1个元素的子集有{1} , {2} , {3};含有2个元素的子集有{1 , 2}, {1 , 3} , {2 , 3};含有3个元素的子集有{1 , 2, 3} •共有子集8个.说明:对于集合A,我们把和A叫做它的平凡子集.例3已知{a , b} A丰{a, b , c, d},则满足条件集合A的个数为分析A中必含有元素a , b,又A是{a , b , c , d}真子集,所以满足条件的 A 有:{a , b}, {a , b , c}{a , b , d}.答共3个.说明:必须考虑A中元素受到的所有约束.例4设U为全集,集合M、N工U ,且N M,贝U[ ]A .打皿丈理B , McC v NC, D . M^C V N分析作出4图形.答选C.说明:考虑集合之间的关系,用图形解决比较方便.点击思维例 5 设集合 A = {x|x = 5 —4a+ a2, a€ R}, B = {y|y = 4b2+ 4b + 2, b€R},则下列关系式中正确的是[ ]A . A =B B . A BC. A 工B D . A 工B分析问题转化为求两个二次函数的值域问题,事实上x = 5 —4a+ a2=(2 —a)2+ 1 > 1,y = 4b2+ 4b+ 2 = (2b + 1)2+ 1> 1,所以它们的值域是相同的,因此A = B.答选A .说明:要注意集合中谁是元素.例6设全集U〔U护3)和集合也N. P,且M=CuN, N二3 则M与P的关系是[ ]A . M = _ U PB . M = PC. M 工PD. M P分析可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M = C U N=C U(C uP)= P;三是利用画图的方法.圈L4答选B .说明:一题多解可以锻炼发散思维.例7下列命题中正确的是[ ]A . C U(O)= {A}B .若A n B = B,则A BC.若A = {1 , , {2}},则{2}工AD .若A = {1 , 2 , 3}, B = {x|x A},则A € B分析D选择项中A € B似乎不合常规,而这恰恰是惟一正确的选择支.v D选择支中,B中的元素,x A,即x是集合A的子集,而A的子集有,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},而B 是由这所有子集组成的集合,集合A是其中的一个元素.••• A € B .答选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意.例8 已知集合 A = {2,4,6,8,9},B = {1,2, 3,5,8},又知非空集合C是这样一个集合:其各元素都加2后,就变为A的一个子集;若各元素都减2后,则变为B的一个子集,求集合C.分析逆向操作:A中元素减2得0,2,4, 6, 7,则C中元素必在其中;B中元素加2得3, 4, 5, 7, 10,贝U C中元素必在其中;所以C中元素只能是4或7.答 C = {4}或{7}或{4 , 7}.说明:逆向思维能力在解题中起重要作用.例9 设S= {1 , 2, 3, 4},且M = {x € S|x2—5x+ p= 0},若L,§M = {1 , 4},贝U p = _____ .分析本题渗透了方程的根与系数关系理论,由于H S M={1, 4},且M工S,• M = {2 , 3}则由韦达定理可解.答p= 2 X 3= 6.说明:集合问题常常与方程问题相结合.例10 已知集合S= {2 , 3, a2+ 2a—3}, A = {|a + 1|, 2}, C S A = {a + 3}, 求a的值.分析歓求盘的值,需充分挖掘补集的含义. 心' Q AC S.S 这个集合是集合 A 与集合_SA 的元素合在一起“补成”的,此外,对 这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解由补集概念及集合中元素互异性知 a 应满足a + 3 = 3① |a + 1| = a 2 + 2a — 3② (1)a 2+ 2a — 3工 2 ③ a 2 + 2a — 3工 3④ a + 3 = a 2 + 2a — 3①|a + 1| = 32a + 2a — 3工 2 a 2 + 2a — 3工 3④在(1)中,由①得a = 0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a =— 3, a = 2,分别代入②③④检验,a =— 3不合②, 故舍去,a = 2能满足②③④.故 a = 2符合题意.说明:分类要做到不重不漏.k n n例 11 (1993年北京高考题)集合M = {x|x = -^ + -4 , k € Z} , N = { k n n … x|x =壬 + y , k € Z}贝UA . M = NB . M 工 N C. M 工 ND. M 与N 没有相同元素分析分别令k =^, — 1, 0, 1, 2, 3,…得n n 3 n 5 n 7 n4, 4, 4 , 4 , 4n n 3 n 5 n4,T ,~T ,n,T '…} 易见,M 工N .或⑵M = {…,N = …,答选 C .说明:判断两个集合的包含或者相等关系要注意集合元素的无序性。
Io 2子集全集补集学习目标:1 •理解集合之间包含得含义,能识别给立集合就是否具有包含关系;2.理解全集与空集得含义.重点难点:能通过分析元素得特点判断集合间得关系、授课内容:一、知识要点1。
子集、真子集(1)子集:如果集合A得任意一个元素都就是集合B得元素,那么集合A称为集合B得子集。
即:对任意得灼A,都有.Y G B,则A________ 凤或52/1).⑵真子集:若月U B,且那么集合A称为集合B得真子集,记作—庚或5 ________________ A)、(3 )空集:空集就是任意一个集合得________ ,就是任何非空集合得______ 、即0匸凡0 ____ 凤砌0)。
⑷若力含有/?个元素,则A得子集有 _________ 个,力得非空子集有 __________ 个.(5 )集合相等:若AQB,且陌凡则力银2。
全集与补集:全集:包含了我们所要研究得并个集合得全部元素得集合称为全集,记作U.补集:若S就是一个集合人S,则,=称S中子集A得补集.简单性质:⑴()=A;(2)S = ,=S.二、典型例题子集、真子集1。
(1)写岀集合{ a .b}得所有子集及其真子集;(2 )写出集合{abc}得所有子集及其真子集.2•设满足{1,2,3} {123,4.5,6},则集合得个数为________________ .3。
设,,若就是得真子集,则得取值范用就是_____ .4。
若集合={1,3, x }, = {"」},且,则满足条件得实数得个数为______________ °5。
设集合={(x,y) I x+y〈0”巧 > 0}与={(xj')Lv< 0 ,y V 0},那么与得关系为 __________________6.集合={x\x=a2—4 a+5, & W/?},= { yly= 4 /「'+4b+3,bW R}则集合与集合得关系就是7.设x,yGR.{U y)lv—3= x—2},A={(x,y) | =1},则集合A 与3得关系就是8e已知集合则得关系就是_______ •9 .设集合则.1 0。
1.2 子集全集补集学习目标:1.理解集合之间包含的含义,能识别给定集合是否具有包含关系;2.理解全集与空集的含义.重点难点:能通过分析元素的特点判断集合间的关系.授课内容:一、知识要点1.子集、真子集(1)子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集.即:对任意的x ∈A ,都有x ∈B ,则A ____B (或B ⊇A ).(2)真子集:若A ⊆B ,且A ≠B ,那么集合A 称为集合B 的真子集,记作A ___B (或B _____A ).(3)空集:空集是任意一个集合的______,是任何非空集合的____.即∅⊆A ,∅____B (B ≠∅).(4)若A 含有n 个元素,则A 的子集有 个,A 的非空子集有 个.(5)集合相等:若A ⊆B ,且B ⊆A ,则A =B .2.全集与补集:全集:包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U .补集:若S 是一个集合,A ⊆S ,则,S C =}|{A x S x x ∉∈且称S 中子集A 的补集. 简单性质:(1)S C (S C )=A ;(2)S C S=Φ,ΦS C =S .二、典型例题子集、真子集1.(1)写出集合{a ,b }的所有子集及其真子集;(2)写出集合{a ,b ,c }的所有子集及其真子集.2.设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 . 3.设{|12}A x x =<<,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x },B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 .5.设集合M ={(x,y )|x+y <0,xy >0}和N ={(x,y )|x <0,y <0},那么M 与N 的关系为______________.6.集合A ={x |x =a 2-4a +5,a ∈R },B ={y |y =4b 2+4b +3,b ∈R } 则集合A 与集合B 的关系是________.7.设x ,y ∈R ,B ={(x,y )|y -3=x -2},A ={(x,y )|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a .10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a },C={x 2+(a+1)x-3,1}.求:(1)当A ={2,3,4}时,求x 的值;(2)使2∈B ,B A ,求x a ,的值;(3)使B=C 的x a ,的值.【拓展提高】12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.⊂ ≠全集、补集1.设集合{}{}R b b y y B R a a x x A ∈+-==∈+-==,3|,,4|22,则A ,B 间的关系为 .2.若U ={x|x 是三角形},P ={x|x 是直角三角形},则U C P = .3.已知全集+=R U ,集合{}|015,,A x x x R =<-≤∈则_______.U C A =4.已知全集}{非零整数=U ,集合}},42{U x x x A ∈>+=,则=A C U .5.设},61{},,5{N x x x B N x x x A ∈<<=∈≤=,则=B C A .6.设全集U={1,2,3,4,5},M ={1,4},则U C M 的所有子集的个数是 .7.已知全集},21{*N n x x U n ∈==,集合}*,21{2N n x x A n ∈==,则=A C U .8.已知A A y ax y x A Z a ∉-∈≤-=∈)4,1(,)1,2(}3),{(,且,则满足条件a 的值为 .9.设U =R ,}1{},31{+≤≤=≥≤=m x m x B x x x P 或,记所有满足P C B U ⊆的m 组成的集合为M ,求M C U .10.(1)设全集{}{},1|,1|,+>=≤==a x x B x x A R U 且U C A B ⊆,求a 的范围.(2)已知全集{}{}{}22,3,23,2,,5,U U a a A b C A =+-==求实数b a 和的值.【拓展提高】10.已知全集}5{的自然数不大于=U ,集合}1,0{=A ,}1{<∈=x A x x B 且,}1{U x A x x C ∈∉-=且.求B C U 、C C U三、巩固练习《子集、全集、补集》1一、填空题1.已知全集U,M、N是U的非空子集,若∁U M⊇N,则下列关系正确的是________.①M⊆∁U N ②M∁U N ③∁U M=∁U N ④M=N2.设全集U和集合A、B、P,满足A=∁U B,B=∁U P,则A________P(填“”、“”或“=”).3.设全集U=R,A={x|a≤x≤b},∁U A={x|x>4或x<3},则a=________,b=________.4.给出下列命题:①∁U A={x|x/∈A};②∁U∅=U;③若S={三角形},A={钝角三角形},则∁S A={锐角三角形};④若U={1,2,3},A={2,3,4},则∁U A={1}.其中正确命题的序号是________.5.已知全集U={x|-2011≤x≤2011},A={x|0<x<a},若∁U A≠U,则实数a的取值范围是________.6.设U为全集,且M U,N U,N⊆M,则①∁U M⊇∁U N;②M⊆∁U N;③∁U M⊆∁U N;④M⊇∁U N.其中不正确的是________(填序号).7.设全集U={1,3,5,7,9},A={1,|a-5|,9},∁U A={5,7},则a的值为________.8.设全集U={2,4,1-a},A={2,a2-a+2}.若∁U A={-1},则a=______.9.设I={1,2,3,4,5,6,7},M={1,3,5,7},则∁I M=________.10.若全集U={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则由∁U A与∁U B的所有元素组成的集合为________.11.已知全集U={非负实数},集合A={x|0<x-1≤5},则∁U A=________.12.已知全集U={0,1,2},且∁U Q={2},则集合Q的真子集共有________个.二、解答题13.已知全集U,集合A={1,3,5,7,9},∁U A={2,4,6,8},∁U B={1,4,6,8,9},求集合B.14.设全集I={2,3,x2+2x-3},A={5},∁I A={2,y},求x,y的值15.已知全集U =R ,集合A ={x|0<ax +1≤5},集合B ={x|x ≤-12或x>2}. (1)若A ⊆∁U B ,求实数a 的取值范围;(2)集合A 、∁U B 能否相等?若能,求出a 的值;否则,请说明理由.《子集、全集、补集》2一、填空题1.已知M ={x|x≥22,x ∈R},a =π,给定下列关系:①a ∈M ;②{a}M ;③a M ;④{a}∈M ,其中正确的是________(填序号).2.已知集合A ⊆{2,3,7},且A 中至多有1个奇数,则这样的集合共有________个.3.设集合A ={2,x,y},B ={2x,y 2,2},且A =B ,则x +y 的值为________.4.已知非空集合P 满足:①P ⊆{1,2,3,4,5},②若a ∈P ,则6-a ∈P ,符合上述条件的集合P 的个数是________.5.集合M ={x|x =6-2n ,n ∈N +,x ∈N}的子集有________个.6.已知集合A ={x|ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则实数a 的取值是________.7.已知集合A ={x|0<x<2,x ∈Z},B ={x|x 2+4x +4=0},C ={x|ax 2+bx +c =0},若A ⊆C ,B ⊆C ,则a ∶b ∶c 等于________.8.已知集合A ={-1,2},B ={x|x 2-2ax +b =0},若B≠∅,且B A ,则实数a ,b 的值分别是________.9.以下表示正确的有________(填序号).①{0}∈N ;②{0}⊆Z ;③∅⊆{1,2};④Q R .10.集合A ={x|0≤x<3且x ∈Z}的真子集的个数是________.11.设集合M ={x|-1≤x<2},N ={x|x -k≤0},若M ⊆N ,则k 的取值范围是________.12.已知集合A ={-1,3,m},B ={3,4},若B ⊆A ,则实数m =________.二、解答题13.已知集合M ={x|x =m +16,m ∈Z},N ={x|x =n 2-13,n ∈Z},P ={x|x =p 2+16,p ∈Z}.试确定M ,N ,P 之间满足的关系.14.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若B⊆A,求实数m的取值范围;(2)当x∈Z时,求A的非空真子集个数;(3)当x∈R时,不存在元素x,使x∈A与x∈B同时成立,求实数m的取值范围.15.已知集合A={1,3,-x3},B={x+2,1},是否存在实数x,使得B是A的子集?若存在,求出集合A,B;若不存在,请说明理由.。
子集、全集、补集【经典例题】例1. (1){}a A ,3,1=,{}1,12+-=a a B ,B A ⊇,求a 。
(2)已知{}01|=+=ax x A ,{}056|2=--=x x x B ,B A ⊆,求a 。
(3)已知{}04|2=+=x x x A ,{}01)1(2|22=-+++=a x a x x B ,若A B ⊆,求a 。
经典练习:已知{}52|≤≤-=x x A ,{}121|-≤≤+=m x m x B ,若A B ⊆,求m 的范围例2.设全集{}32,3,22-+=a a U ,{}2,12-=a A 。
(1) 若{}5=A C U ,求实数a 的值(2) 若A B ⊆,集合{}3=B C A ,求集合B 与集合U 。
经典练习:1.设全集}3,5,31{--=U ,31-}053|{2=-+=∈px x x A 且31-}0103|{2=++=∈q x x x B ,求B C A C U U ,2. 已知全集{}{}222,4,3,2,2U x M x x =-=-+,}1{-=M C U ,求实数x 的值。
例3. },,14|{Z n n x x A ∈+==若},34|{Z n n x x B ∈-==},,18|{Z n n x x C ∈+==则A 、B 、C 之间的关系是什么?经典练习1、已知},312|{},,61|{Z n n x x N Z m m x x M ∈-==∈+==, 的关系为则P N M Z p p x x P ,,},,612|{∈+==2、},214|{},,412|{Z k k x x N Z k k x x M ∈+==∈+==设,的关系为则N M ,巩固练习: 基础训练1. 给出6个关系式:①{}{}(,)(,)a b b a =; ②{}{},,a b b a =; ③∅{}0; ④{}00∈; ⑤{}0∅∈; ⑥{}0∅=;其中正确的个数为 ( ) A.6 B.5 C.4D.32.已知集合{}24A x x =<≤,则下列关系中正确的是 ( ) A .A π∉ B .{}A π∈ C .A π⊆ D .{}A π⊆3. 已知集合{}0,2,3,A =,则A 的子集的个数是 ( ) A .4 B .6 C .8 D .9 4.下列各组集合中相等的是 ( ) A .{}{}20,|10A B x x ==+= B . {}3(,)|1,(,)|12y A x y y x B x y x -⎧⎫==+==⎨⎬-⎩⎭C .A ={n 条边都相等的多边形}B ={n 个内角都相等的多边形}D .{}{}|31,,|32,A x x n n Z B y y n n Z ==+∈==-∈5. 若集合},3,1{x A =,}1,{2x B =,且A B ⊆,则满足条件的实数x 的个数是 ( ) A. 1 B. 2 C. 3 D. 4 6.(1)满足{},a b A ⊆⊂≠{,,,}a b c d 的集合A 可以是 ; (2)满足{}1,23,⊂≠{}1,2,3,4,5A ⊆的集合A 可以是 。