高考数学百大经典例题离散型随机变量的期望与方差
- 格式:doc
- 大小:294.04 KB
- 文档页数:6
高考数学离散型随机变量的期望与方差解答题考点预测和题型解析在高考中,离散型随机变量的期望与方差试题的出题背景大多数源于课本上,有时也依赖于历年的高考真题、资料中的典型题例为背景,涉及主要问题有:产品检验问题、射击、投篮问题选题、选课,做题,考试问题、试验,游戏,竞赛,研究性问题、旅游,交通问题、摸球球问题、取卡片,数字和入座问题、信息,投资,路线等问题。
属于基础题或中档题的层面。
高考中一定要尽量拿满分。
● 考题预测离散型随机变量的期望与方差涉及到的试题背景有:产品检验问题、射击、投篮问题选题、选课,做题,考试问题、试验,游戏,竞赛,研究性问题、旅游,交通问题、摸球球问题、取卡片,数字和入座问题、信息,投资,路线等问题。
从近几年高考试题看,离散型随机变量的期望与方差问题还综合函数、方程、数列、不等式、导数、线性规划等知识主要考查能力。
● 复习建议1.学习概率与统计的关键是弄清分布列,期望和方差在统计中的作用. 离散型随机变量的分布列的作用是:(1)可以了解随机变量的所有可能取值; (2)可以了解随机变量的所有取值的概率;(3)可以计算随机变量在某一范围内取值的概率。
2.离散型随机变量的分布列从整体上全面描述了随机变量的统计规律。
3.离散型随机变量的数学期望刻画的是离散型随机变量所取的平均值,是描述随机变量集中趋势的一个特征数。
4.离散型随机变量的方差表示了离散型随机变量所取的值相对于期望的集中与分散程度。
● 知识点回顾1.离散型随机变量的期望:(1)若离散型随机变量ξ的概率分布为则称 ++++=n n p x p x p x E 2211ξ为ξ的数学期望(平均值、均值) 简称为期望。
① 期望反映了离散型随机变量的平均水平。
② ξE 是一个实数,由ξ的分布列唯一确定。
③ 随机变量ξ是可变的,可取不同值。
④ ξE 是不变的,它描述ξ取值的平均状态。
(2)期望的性质:① C C E =)(为常数)C ( ② b aE b a E +=+ξξ)( 为常数)b a ,(③ 若),(~p n B ξ,则np E =ξ (二项分布)④ 若),(~p k g ξ,则pE 1=ξ (几何分布) 2.离散型随机变量的方差(1)离散型随机变量的方差:设离散型随机变量ξ可能取的值为,,,,,21 n x x x 且这些值的概率分别为 ,,,,,321n p p p p则称 +-+-=222121)()(p E x p E x D εεε…+-+n n p E x 2)(ε…;为ξ 的方差。
高中数学离散型随机变量的期望与方差练习(含答案)1.事件A为“三个点数都不同”,事件B为“至少出现一个6点”,求条件概率P(A|B)和P(B|A)。
2.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.977,则求P(-1<ξ<3)。
3.随机变量X的取值为1和2,若P(X=0)=0,E(X)=1,则求D(X)。
4.已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.1587,则求P(2<X<4)。
5.甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是多少?6.不透明袋子中装有大小、材质完全相同的2个红球和5个黑球,现从中逐个不放回地摸出小球,直到取出所有红球为止,则摸取次数的数学期望是多少?7.下面说法中正确的是:A.离散型随机变量ξ的均值E(ξ)反映了ξ取值的概率的平均值;B.离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平;C.离散型随机变量ξ的均值E(ξ)反映了ξ取值的平均水平;D.离散型随机变量ξ的方差D(ξ)反映了ξ取值的概率的平均值。
8.每次试验的成功率为p,重复进行10次试验,其中前7次都未成功,后3次都成功的概率是多少?9.设随机变量X服从二项分布B(n,p),则P(X=k)的分布列为多少。
10.现在有10张奖券,其中7张未中奖,3张中奖,某人从中随机无放回地抽取1张奖券,则此人得奖金额的数学期望为多少?11.已知X~B(n,p),E(X)=2,D(X)=1.6,则n和p的值分别为多少?12.袋中有大小相同的5个球,分别标有1、2、3、4、5五个号码,现在在有放回抽取的条件下依次取出两个球,则它们的和的数学期望为多少?1.一个球,设两个球号码之和为随机变量,则所有可能取值的个数是()A。
5B。
9C。
10D。
25.答案:C。
10.2.电灯泡使用时数在1 000小时以上的概率为0.2,则三个灯泡在1 000小时以后最多有一个坏了的概率是()A。
高三数学离散型随机变量的期望值和方差离散型随机变量的期望值和方差一、基本知识概要:1、期望的定义:一般地,若离散型随机变量ξ的分布列为ξx1x2x3...xn...PP1P2P3...Pn...则称Eξ=x1P1+x2P2+x3P3+...+xnPn+...为ξ的数学期望或平均数、均值,简称期望。
它反映了:离散型随机变量取值的平均水平。
若η=aξ+b(a、b为常数),则η也是随机变量,且Eη=aEξ+b。
E(c)= c特别地,若ξ~B(n,P),则Eξ=nP2、方差、标准差定义:Dξ=(x1-Eξ)2・P1+(x2-Eξ)2・P2+...+(xn-Eξ)2・Pn+...称为随机变量ξ的方差。
Dξ的算术平方根=δξ叫做随机变量的标准差。
随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。
且有D(aξ+b)=a2Dξ,可以证明Dξ=Eξ2- (Eξ)2。
若ξ~B(n,p),则Dξ=npq,其中q=1-p.3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。
二、例题:例1、(1)下面说法中正确的是()A.离散型随机变量ξ的期望Eξ反映了ξ取值的概率的平均值。
B.离散型随机变量ξ的方差Dξ反映了ξ取值的平均水平。
C.离散型随机变量ξ的期望Eξ反映了ξ取值的平均水平。
D.离散型随机变量ξ的方差Dξ反映了ξ取值的概率的平均值。
解:选C说明:此题考查离散型随机变量ξ的期望、方差的概念。
(2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是。
解:含红球个数ξ的Eξ=0×+1×+2×=1.2说明:近两年的高考试题与《考试说明》中的"了解......,会......"的要求一致,此部分以重点知识的基本题型和内容为主,突出应用性和实践性及综合性。
高考数学拔高题训练:离散型随机变量的期望与方差学校:___________姓名:___________班级:___________考号:___________一、单选题1.对任意实数x ,有3230123(2)(2)(2)x a a x a x a x =+-+-+-,则2a 的值为()A .6B .9C .12D .212.数学与文学有许多奇妙的联系,如诗中有回文诗“儿忆父兮妻忆夫”,既可以顺读也可以逆读.数学中有回文数,如343,12521等.两位数的回文数有11,22,3,……,99共9个,则在三位数的回文数中偶数的个数是()A .40B .30C .20D .103.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11164.某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为()A .85B .86C .91D .905.已知甲口袋中有3个红球和2个白球,乙口袋中有2个红球和3个白球,现从甲,乙口袋中各随机取出一个球并相互交换,记交换后甲口袋中红球的个数为ξ,则E ξ=A .145B .135C .73D .836.某科技公司生产一批同型号的光纤通信仪器,每台仪器的某个部件由三个电子元件按如图方式连接而成,若元件1或元件2正常工作,且元件3正常工作,则该部件正常工作.由大数据统计显示:三个电子元件的使用寿命(单位:时)均服从正态分布()210000,10N ,且各个元件能否正常工作相互独立.现从这批仪器中随机抽取1000台检测该部件的工作情况(各部件能否正常工作相互独立),那么这1000台仪器中该部件的使用寿命超过10000小时的台数的均值为()A .600B .420C .375D .2707.安排A ,B ,C ,D ,E ,F ,共6名义工照顾甲,乙,丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工A 不安排照顾老人甲,义工B 不安排照顾老人乙,则安排方法共有A .30种B .40种C .42种D .48种8.2020年12月1日,大连市开始实行生活垃圾分类管理.某单位有四个垃圾桶,分别是一个可回收物垃圾桶、一个有害垃圾桶、一个厨余垃圾桶、一个其它垃圾桶.因为场地限制,要将这四个垃圾桶摆放在三个固定角落,每个角落至少摆放一个,则不同的摆放方法共有(如果某两个垃圾桶摆放在同一角落,它们的前后左右位置关系不作考虑)()A .18种B .24种C .36种D .72种二、填空题9.已知随机变量()~,B n p ξ,且6E ξ=,3D ξ=,则n =______.10.在MON ∠的边OM 上有5个异于O 点的点,边ON 上有4个异于O 点的点,以这10个点(含O 点)中的3个点为顶点,可以得到___________个三角形.11.某校周五的课程表设计中,要求安排8节课(上午4节、下午4节),分别安排语文、数学、英语、物理、化学、生物、政治、历史各一节,其中生物只能安排在第一节或最后一节,数学和英语在安排时必须相邻(注:上午的最后一节与下午的第一节不记作相邻),则周五的课程顺序的编排方法共有______.12.一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取1只,每一次取后不放回.若已知第1只是好的,则第2只也是好的的概率是______.三、解答题13.212nx x ⎛⎫+ ⎪⎝⎭的展开式一共有16项.(1)求展开式中二项式系数之和;(2)求展开式中的常数项.14.10张奖券中有3张有奖,甲,乙两人不放回的各从中抽1张,甲先抽,乙后抽.求:(1)甲中奖的概率.(2)乙中奖的概率.(3)在甲未中奖的情况下,乙中奖的概率.15.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.①用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列;②设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.16.某超市每年10月份都销售某种桃子,在10月份的每天计划进货量都相同,进货成本为每千克16元,销售价为每千克24元;当天超出需求量的部分,以每千克10元全部卖出.根据往年销售经验,每天的需求量与当天最高气温(单位:℃)有一定关系:最高气温低于25,需求量为1000千克;最高气温位于[25,30)内,需求量为2000千克;最高气温不低于30,需求量为3000千克.为了制订2020年10月份的订购计划,超市工作人员统计了近三年10月份的气温数据,得到下面的频率分布直方图.以气温位于各区间的频率代替气温位于该区间的概率.(1)求2020年10月份桃子一天的需求量X的分布列;(2)设2020年10月份桃子一天的销售利润为Y元,当一天的进货量为多少千克时,E (Y)取到最大值?17.7本不同的书分给5人,每人至少1本,共有多少种不同的分法?18.随着国家对体育、美育的高度重视,不少省份已经宣布将体育、美育纳入中考范畴.某学校为了提升学生的体育水平,决定本学期开设足球课,某次体育课上,体育器材室的袋子里有大小、形状相同的2个黄色足球和3个白色足球,现从袋子里依次随机取球.(1)若连续抽取3次,每次取1个球,求取出1个黄色足球、2个白色足球的概率;(2)若无放回地取3次,每次取1个球,取出黄色足球得1分,取出白色足球不得分,求总得分X的分布列.参考答案:1.A 【解析】【分析】由33[(2)2]x x =-+,根据二项式定理可得特定项系数.【详解】因为33[(2)2]x x =-+,所以123C 26a =⨯=,故选:A.2.A 【解析】【分析】根据回文数定义,确定首位,再确定中间数,最后根据分步乘法计数原理得结果.【详解】由题意,若三位数的回文数是偶数,则末(首)位可能为2,4,6,8.如果末(首)位为2,中间一位数有10种可能,同理可得,如果末(首)位为4或6或8,中间一位数均有10种可能,所以有41040⨯=个,故选:A 【点睛】本题考查分步计数原理实际应用,考查基本分析求解能力,属基础题.3.A 【解析】【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.4.B 【解析】【分析】根据题意,分三类,第1类,男生甲入选,女生乙不入选,第2类,男生甲不入选,女生乙入选,第3类,男生甲入选,女生乙入选,分别求得其方法数,然后利用分类计数原理求解.【详解】由题意,可分三类:第1类,男生甲入选,女生乙不入选,则方法种数为122133434331C C C C C ++=;第2类,男生甲不入选,女生乙入选,则方法种数为122134343434C C C C C ++=;第3类,男生甲入选,女生乙入选,则方法种数为2112343421C C C C ++=.所以男生甲与女生乙至少有1人入选的方法种数为31+34+21=86.故选:B 5.A 【解析】【分析】先求出ξ的可能取值及取各个可能取值时的概率,再利用1122i i E p p p ξξξξ=+++ +可求得数学期望.【详解】ξ的可能取值为2,3,4.2ξ=表示从甲口袋中取出一个红球,从乙口袋中取出一个白球,故()33925525P ξ==⨯=.3ξ=表示从甲、乙口袋中各取出一个红球,或从甲、乙口袋中各取出一个白球,故()3223123555525P ξ==⨯+=.4ξ=表示从甲口袋中取出一个白球,从乙口袋中取出一个红球,故()22445525P ξ==⨯=.所以9124142342525255E ξ=⨯+⨯+⨯=.故选A.【点睛】求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从二项分布(),B n p ,也可以直接利用公式E np ξ=求期望.6.C 【解析】【分析】计算得出1000台仪器中该部件的使用寿命超过10000小时的台数服从二项分布31000,8B ⎛⎫ ⎪⎝⎭,利用二项分布的期望公式可求得结果.【详解】由题意可知,该部件每个元件正常工作超过10000小时的概率均为12,则该部件正常工作超过10000小时的概率为21131228⎡⎤⎛⎫-⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以1000台仪器中该部件的使用寿命超过10000小时的台数服从二项分布31000,8B ⎛⎫ ⎪⎝⎭,故所求均值为310003758⨯=.故选:C.7.C 【解析】利用间接法求解,首先计算出所有的安排方法,减掉A 照顾老人甲的情况和B 照顾老人乙的情况,再加回来多减一次的A 照顾老人甲的同时B 照顾老人乙的情况,从而得到结果.【详解】6名义工照顾三位老人,每两位义工照顾一位老人共有:2264C C 90=种安排方法其中A 照顾老人甲的情况有:1254C C 30=种B 照顾老人乙的情况有:1254C C 30=种A 照顾老人甲,同时B 照顾老人乙的情况有:1143C C 12=种∴符合题意的安排方法有:9030301242--+=种本题正确选项:C 【点睛】本题考查利用排列组合解决实际问题,对于限制条件较多的问题,通常采用间接法来进行求解.8.C 【解析】分析题意,得到有一个固定点放着两个垃圾桶,先选出两个垃圾桶,之后相当于三个元素分配到三个地方,最后利用分步乘法计数原理,求得结果.【详解】根据题意,有四个垃圾桶放到三个固定角落,其中有一个角落放两个垃圾桶,先选出两个垃圾桶,有246C =种选法,之后与另两个垃圾桶分别放在三个不同的地方有33A 种放法;所以不同的摆放方法共有23436636C A ⋅=⨯=种,故选:C.【点睛】思路点睛:该题考查的是有关排列组合综合题,解题方法如下:(1)首先根据题意,分析出有两个垃圾桶分到同一个地方,有246C =种选法;(2)之后就相当于三个元素的一个全排;(3)利用分步乘法计数原理求得结果.9.12【解析】根据二项分布的期望和方差公式可得出关于n 、p 的方程组,即可求得n 的值.【详解】()~,B n p ξ ,由二项分布的期望和方差公式得()613E np D np p ξξ==⎧⎨=-=⎩,解得1212n p =⎧⎪⎨=⎪⎩.故答案为:12.【点睛】本题考查利用二项分布的期望和方差公式求参数,解答的关键就是得出关于n 和p 的方程组,考查运算求解能力,属于基础题.10.90【解析】【分析】从10个点中任取3个点有310C 种情况,然后减去三点共线的情况即可得答案【详解】先不考虑共线点的问题,从10个点中任取3个点有310C 种情况.其中从边OM 上的6个点(含O 点)中任取3个点为顶点,不能得到三角形,有36C 种情况;从边ON 上的5个点(含O 点)中任取3个点为顶点,也不能得到三角形,有35C 种情况.所以共可以得到3331065C C C 12020--=--1090=个三角形.故答案为:9011.2400种【解析】【分析】分三步,第一步:根据题意从第一个位置和最后一个位置选一个位置安排生物,第二步:将数学和英语捆绑排列,第三步:将剩下的5节课全排列,最后利用分步乘法计数原理求解.【详解】分步排列,第一步:因为由题意知生物只能出现在第一节或最后一节,所以从第一个位置和最后一个位置选一个位置安排生物,有122A =(种)编排方法;第二步:因为数学和英语在安排时必须相邻,注意数学和英语之间还有一个排列,所以有225A 10=(种)编排方法;第三步:剩下的5节课安排5科课程,有55A 120=(种)编排方法.根据分步乘法计数原理知共有2101202400⨯⨯=(种)编排方法.故答案为:2400种12.59【解析】【分析】令A ={第1只是好的},B ={第2只是好的},在A 发生的条件下,盒中仅剩9只晶体管,其中5只是好的,由()1519C C P B A =可求得答案.【详解】解:令A ={第1只是好的},B ={第2只是好的},因为事件A 已发生,所以我们只研究事件B 即可,在A 发生的条件下,盒中仅剩9只晶体管,其中5只是好的,所以()1519C 5C 9P B A ==.故答案为:59.13.(1)152;(2)96096.【解析】【分析】(1)先由21(2n x x+的展开式一共有16项得15n =,即可求得展开式中二项式系数之和;(2)根据展开式的通项153031152r rr r T C x --+=⋅⋅,令3030r -=,即可求出常数项.【详解】(1)由21(2)n x x+的展开式一共有16项得15n =,∴2151(2)x x +得展开式中二项式系数之和为:152;(2)由2151(2x x+得展开式的通项为:()152********15122rrr r r r r T C x C x x ---+⎛⎫=⋅=⋅⋅ ⎪⎝⎭,令3030r -=,得10r =,∴展开式中的常数项为10151015230033296096C -⋅=⨯=.【点睛】本题考查二项式定理及其应用,其中()na b +的展开式通项1C r n rr r n T a b -+=的熟练运用是关键,是基础题.14.(1)310;(2)310;(3)13【解析】【分析】(1)设“甲中奖”为事件A ,根据古典概型的概率公式计算可得;(2)设“乙中奖”为事件B ,则()()()()P B P AB AB P AB P AB =+=+,再求出()P AB ,()P AB ,即可得解;(3)根据条件事件的概率公式计算可得;【详解】解:(1)设“甲中奖”为事件A ,则()310P A =(2)设“乙中奖”为事件B ,则()()()()P B P AB AB P AB P AB=+=+又()32110915P AB =⨯=,()73710930P AB =⨯=所以()()()179315303010P B P AB P AB =+=+==(3)因为()710P A =,()730P AB =所以()()()7130|7310P AB P B A P A ===【点睛】本题考查古典概型的概率公式,条件概率的概率公式的应用,属于基础题.15.(1)3人,2人,2人;(2)①答案见解析;②67.【解析】【详解】(1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(2)①随机变量X 的所有可能取值为0,1,2,3.P (X =k )=34337C C C k k -⋅(k =0,1,2,3).所以,随机变量X 的分布列为X0123P 13512351835435②设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=67.所以,事件A发生的概率为67.16.(1)答案见解析;(2)2000千克.【解析】【分析】(1)由题意知X的可能取值为1000,2000,3000,分别求出相应的概率,由此能求出X的分布列.(2)设一天的进货量为n千克,则1000≤n≤3000,当100≤n<2000时,求出E(Y)=5.2n+2800<13200;当2000≤n≤3000时,求出EY=14000﹣0.4n≤13200,由此能求出当一天的进货量为2000千克时,E(Y)取到最大值.【详解】(1)由题意知X的可能取值为1000,2000,3000,P(X=1000)=(0.0089+0.0311)×5=0.2,P(X=2000)=0.0800×5=0.4,P(X=3000)=(0.0467+0.0333)×5=0.4,∴X的分布列为:X100020003000P0.20.40.4(2)设一天的进货量为n千克,则1000≤n≤3000,①当1000≤n<2000时,若最高气温不低于25,则Y=8n,若最高气温低于25,则Y=1000×8﹣(n﹣1000)×6=14000﹣6n,此时E(Y)=0.8×8n+0.2×(14000﹣6n)=5.2n+2800<13200.②当2000≤n≤3000时,若最高气温不低于30,则Y=8n,若最高气温位于[25,30)内,则Y=2000×8﹣(n﹣2000)×6=28000﹣6n,若最高气温低于25,则Y=1000×8﹣(n﹣1000)×6=14000﹣6n,此时,EY =0.4×8n +0.4×(28000﹣6n )+0.2×(14000﹣6n )=14000﹣0.4n ≤13200,当且仅当n =2000时,取等号,综上,当一天的进货量为2000千克时,E (Y )取到最大值.17.16800(种)【解析】【分析】先将7本不同的书分成5组,每组有1、1、1、1、3本或1、1、1、2、2两种情况,再把这五组分配给5人,运用分步乘法原理可得结果.【详解】解:第一步,先把7本不同的书分成5组,每组有1、1、1、1、3本或1、1、1、2、2两种情况,有31111221117432175321423423140C C C C C C C C C C A A A +=⋅(种)方法.第二步,再把这五组分配给5人有55120A =(种)方法.故共有14012016800⨯=(种)不同的分法.18.(1)35;(2)分布列见解析.【解析】【分析】(1)利用古典概型概率公式即求;(2)由题知X 的取值范围为{}0,1,2,分别求概率,即得.【详解】(1)从袋子里连续抽取3次,每次取1个球,设事件A 为“取出1个黄色足球、2个白色足球”,则()122335C C 3C 5P A ==.(连续抽取3次,每次取1个球,求取出1个黄色足球、2个白色足球的概率问题可转化为从5个足球中选出3个足球,其中有1个黄色足球、2个白色足球的概率问题)(2)X 的取值范围为{}0,1,2,则()33351010===A P X A ,()11232335315C A A P X A ===,()221323353210===C A A P X A .所以总得分X的分布列为:X012P 11035310。
离散型随机变量的期望和方差
离散型随机变量期望和方差是统计学中一个重要的知识点,也是概率论的基础知识。
期望和方差是离散随机变量可以推断出的一些重要数学性质,它们反映了离散随机变量的变化趋势。
在数学表述上,离散型随机变量的期望是指,取值不同的概率乘以该值的积分的平均值,用记号μ (mu)表示。
期望是离散型随机变量的基本特征,它描述了离散型随机变量中最有可能出现的值的程度,它的大小也反映了随机变量的中心位置。
离散型随机变量的方差是指期望和均值之差的平均平方值,用记号σ2 (sigma squared)表示,其中σ (sigma)是标准差。
方差反映了离散型随机变量取值之间的方差,它比较了每一个取值与离散型随机变量在期望上的偏差,表示了离散型随机变量取值分布情况。
运用离散型随机变量的期望和方差可以推断出更多的信息,即对离散随机变量要有更深入的了解,以便于更准确的预测。
可以利用期望和方差的知识来分析一个离散随机变量的发展趋势,以及在分析工具使用中的投资组合。
总之,离散型随机变量的期望和方差是随机变量分析的基础,也是揭示离散随机变量分布情况的重要工具,在众多领域都有重要的应用价值,如统计分析、投资组合设计等等。
以上就是关于离散型随机变量期望和方差的主要内容。
离散随机变量的期望与方差离散随机变量是概率论中的一个重要概念,它在描述随机现象中的离散取值时起到了关键作用。
离散随机变量的期望与方差是两个重要的统计量,对于揭示随机变量的特征及其分布有着重要意义。
本文将详细介绍离散随机变量的期望与方差的计算方法及其应用。
一、离散随机变量的期望离散随机变量的期望指的是随机变量取各个值时的加权平均值,也可以理解为该变量的平均值。
假设离散随机变量X的取值为{x1, x2, x3, ..., xn},相应的概率为{p1, p2, p3, ..., pn},则离散随机变量的期望可用以下公式表示:E(X) = x1*p1 + x2*p2 + x3*p3 + ... + xn*pn其中,E(X)表示离散随机变量X的期望值。
举个例子来说明,假设X表示一枚均匀骰子的点数,它可以取1、2、3、4、5、6这六个值,并且每个值的概率都是1/6。
那么X的期望为:E(X) = 1*(1/6) + 2*(1/6) + 3*(1/6) + 4*(1/6) + 5*(1/6) + 6*(1/6) = 3.5这意味着,如果我们不断地进行均匀骰子的试验,并记录每次试验的点数,那么这些点数的平均值会接近于3.5。
二、离散随机变量的方差离散随机变量的方差是用来衡量随机变量的取值对其期望的偏离程度。
方差的计算方法如下:Var(X) = E((X-E(X))^2) = (x1-E(X))^2*p1 + (x2-E(X))^2*p2 + ... + (xn-E(X))^2*pn其中,Var(X)表示离散随机变量X的方差。
继续以均匀骰子的点数为例,我们计算其方差:Var(X) = (1-3.5)^2*(1/6) + (2-3.5)^2*(1/6) + (3-3.5)^2*(1/6) + (4-3.5)^2*(1/6) + (5-3.5)^2*(1/6) + (6-3.5)^2*(1/6) ≈ 2.92方差的平方根被称为标准差,它度量了离散随机变量的取值波动程度。
1. 离散型随机变量的期望公式是什么,它反映了什么?1122()n n E x x p x p x p =+++L ,离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平.2. 离散型随机变量的方差公式是什么,它反映了什么?2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-L离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度).3. 二项分布的的期望与方差分别是什么?若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.离散型随机变量的期望与方差1. 离散型随机变量的数学期望定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++L ,叫做这个离散型随机变量X 的均值或数学期望(简称期望).离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平.2. 离散型随机变量的方差一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-L 叫做这个离散型随机变量X 的方差.离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度). ()D X ()D x 叫做离散型随机变量X 的标准差,它也是一个衡量离散型随机变量波动大小的量.3. X 为随机变量,a b ,为常数,则2()()()()E aX b aE X b D aX b a D X +=++=,;4. 典型分布的期望与方差:离散型随机变量的期望与方差知识讲解知识回顾(1)二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np .(2)二项分布:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.(3)超几何分布:若离散型随机变量X 服从参数为N M n ,,的超几何分布, 则()nME X N=,2()()()(1)n N n N M M D X N N --=-.题型一 选择填空【例1】 下面说法中正确的是( )A .离散型随机变量ξ的期望()E ξ反映了ξ取值的概率的平均值B .离散型随机变量ξ的方差()D ξ反映了ξ取值的平均水平C .离散型随机变量ξ的期望()E ξ)反映了ξ取值的平均水平D .离散型随机变量ξ的方差()D ξ反映了ξ取值的概率的平均值【例2】 投掷1枚骰子的点数为ξ,则ξ的数学期望为( )A .3B .3.5C .4D .4.5【例3】 已知随机变量X 的分布列为则()D X A .0B .0.8C .2D .1【例4】 随机变量ξ的分布列如下:其中a b c ,,成等差数列,若.3E ξ=则D ξ的值是 .【例5】样本共有五个个体,其值分别为0123a,,,,若该样本的均值为1,则样本方差为()AB.65D.2【例6】某射手射击所得环数ξ的分布列如下:已知ξ的期望()Eξ的值为________.题型二、综合题【例7】编号123,,的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是X.⑴求随机变量X的概率分布;⑵求随机变量X的数学期望和方差.【例8】学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;E X.(Ⅱ)求在2次游戏中获奖次数X的分布列及数学期望()【来源】(2011天津理)【例9】某校组织“上海世博会”知识竞赛.已知学生答对第一题的概率是0.6,答对第二题的概率是0.5,并且他们回答问题相互之间没有影响.(I)求一名学生至少答对第一、二两题中一题的概率;(Ⅱ)记ξ为三名学生中至少答对第一、二两题中一题的人数,求ξ的分布列及数学期望Eξ.【来源】(2011年丰台区期末理)【例10】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是12,且面试是否合格互不影响.求签约人数ξ的数学期望.【例11】某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.【来源】(2008福建)【例12】某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(1)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A;(2)求η的分布列及期望Eη.【例13】在某次测试中,甲、乙、丙三人能达标的概率分别为0.4,0.5,0.8,在测试过程中,甲、乙、丙能否达标彼此间不受影响.(1)求甲、乙、丙三人均达标的概率;(2)求甲、乙、丙三人中至少一人达标的概率;(3)设X表示测试结束后达标人数与没达标人数之差的绝对值,求X的概率分布及数学期望EX.【例14】某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次,令X表示甲、乙两人摸球后获得的奖金总额.求:(1)X的概率分布;(2)X的期望.【例15】 A B ,两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是123A A A ,,,B 队队员是123B B B ,,,按以往多次比赛的统计,对阵队员之间胜负概率如下:队最后总分分别为ξη,.求ξη,的期望.【例16】下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气重度污染的概率;(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【来源】(2013北京高考)【例17】甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率;(Ⅱ)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求乙队得分X的分布列及数学期望.【来源】(2013山东卷理)随堂练习【练1】某班有甲、乙两个学习小组,两组的人数如下:现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测.(Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率;(Ⅱ)记X为抽取的3名同学中男同学的人数,求随机变量X的分布列和数学期望.【来源】(2013西城一模理)【练2】 某班联欢会举行抽奖活动,现有六张分别标有1,2,3,4,5,6六个数字的形状相同的卡片,其中标有偶数数字的卡片是有奖卡片,且奖品个数与卡片上所标数字相同,游戏规则如下:每人每次不放回抽取一张,抽取两次.(Ⅰ)求所得奖品个数达到最大时的概率;(Ⅱ)记奖品个数为随机变量X ,求X 的分布列及数学期望.C .{}35,D .{}45,【来源】(2013东城一模理)【练3】 在某大学自主招生考试中,所有选报II 类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E 五个等级. 某考场考生两科的考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A 的人数;(Ⅱ)若等级A ,B ,C ,D ,E 分别对应5分,4分,3分,2分,1分.(i )求该考场考生“数学与逻辑”科目的平均分;(ii)若该考场共有10人得分大于7分,其中有2人10分,2人9分,6人8分. 从这10人中随机抽取两人,求两人成绩之和的分布列和数学期望.【来源】(2013海淀一模理)【练4】 一个盒子中装有5张卡片,每张卡片上写有一个数字,数字分别是1、2、3、4、5,现从盒子中随机抽取卡片.(Ⅰ)从盒子中依次抽取两次卡片,每次抽取一张,取出的卡片不放回,求两次取到的卡片的数字都为奇数或偶数的概率;(Ⅱ)若从盒子中有放回的抽取3次卡片,每次抽取一张,求恰有两次取到卡片的数字为奇数的概率; (Ⅲ)从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当取到记有奇数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X 的分布列和期望.B .I A B =UC .()I I B A =U ðD .()I I A B =Uð 【来源】(2011昌平二模理16)【题1】同时抛掷两枚相同的均匀硬币,随机变量1ξ=表示结果中有正面向上,0ξ=表示结果中没有正面向上,则Eξ=,Dξ=__________.【题2】已知离散型随机变量X的分布如下表.若()0E X=,()1D X=,则a=________,b=________.X-10 1 2P a b c112【题3】在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮.现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是13,12.两人共投篮3次,且第一次由甲开始投篮.假设每人每次投篮命中与否均互不影响.(1)求3次投篮的人依次是甲、甲、乙的概率;(2)若投篮命中一次得1分,否则得0分.用ξ表示甲的总得分,求ξ的分布列和数学期望.【来源】(2010朝阳一模理)课后作业【题4】口袋里装有大小相同的4个红球和8个白球,甲、乙两人依规则从袋中有放回摸球,每次摸出一个球,规则如下:若一方摸出一个红球,则此人继续下一次摸球;若一方摸出一个白球,则由对方接替下一次摸球,且每次摸球彼此相互独立,并由甲进行第一次摸球;求在前三次摸球中,甲摸得红球的次数 的分布列及数学期望.。
13.2.1 离散型随机变量的期望与方差—期望一.教学目标:1.了解离散型随机变量的期望的意义,会根据离散型随机变量的分布列求出期望.2.理解公式“b aE b a E +=+ξξ)(”,以及“若),(~p n B ς,则np E =ξ”.能熟练地应用它们求相应的离散型随机变量的期望.二.教学重点:离散型随机变量的期望的概念及其求法. 教学难点:离散型随机变量的期望的概念的理解. 三.教学用具:投影仪 四.教学过程: 1.复旧引新(1)离散型随机变量的分布列的概念、性质. (2)离散型随机变量服从二项分布的概念、例子.(3)提出教科书中“某射手射击所得环数ξ的分布列”的例子,可问:我们能否通过计算,预计该射手n 次射击的平均环数?2.提出离散型随机变量ξ的数学期望E ξ的概念及公式E(a ξ+b )=a E ξ+b在复习、思考、计算与讨论的基础上,教师可问:从多名射手中选拔一名参加射击比赛,我们能否根据他们各自射击的平均成绩(数学期望)作为选拔的一项标准?同时概括出:计n 次射击的平均环数。
根据这个射手射击所得的环数ξ的分布列,在n 次射击中,预计大约有P(ξ=4)×n=0.02n 次得4环, P(ξ=5)×n=0.04n 次得5环, P(ξ=6)×n=0.06n 次得6环, ……P(ξ=10)×n=0.22n 次得10环,n 次射击的总环数约等于:4×0.02n+5×0.04n+6×0.06n+……+10×0.22n =(4×0.02+5×0.04+6×0.06+……+10×0.22)n 从而,n 次射击的平均环数约等于4×0.02+5×0.04+6×0.06+……+10×0.22=8.32 类似地,对任一射手,若已知其射击所得的环数ξ的分布列,即已知各个P(ξ=i)(i=1,2,3,…,10),则可预计他任意n 次射击的平均环数是E ξ=0×P(ξ=0)+1×P(ξ=1)+2×P(ξ=2)+……+10×P(ξ=10)我们称E ξ为此射手射击所得的环数ξ的期望,它刻化了随机变量ξ所取的平均值,从另一方面反映了射手的射击水平。
年高考第一轮复习数学离散型随机变量的期望值和方差Last revised by LE LE in 2021离散型随机变量的期望值和方差●知识梳理1.期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.2.方差:称D ξ=∑(x i -E ξ)2p i 为随机变量ξ的均方差,简称方差. D 叫标准差,反映了ξ的离散程度.3.性质:(1)E (a ξ+b )=aE ξ+b ,D (a ξ+b )=a 2D ξ(a 、b 为常数). (2)若ξ~B (n ,p ),则E ξ=np ,D ξ=npq (q =1-p ). ●点击双基1.设投掷1颗骰子的点数为ξ,则ξ=,D ξ=ξ=,D ξ=1235 ξ=,D ξ=ξ=,D ξ=1635 解析:ξ可以取1,2,3,4,5,6.P (ξ=1)=P (ξ=2)=P (ξ=3)=P (ξ=4)=P (ξ=5)=P (ξ=6)=61, ∴E ξ=1×61+2×61+3×61+4×61+5×61+6×61=,D ξ=[(1-)2+(2-)2+(3-)2+(4-)2+(5-)2+(6-)2]×61=65.17=1235. 答案:B2.设导弹发射的事故率为,若发射10次,其出事故的次数为ξ,则下列结论正确的是ξ= ξ=(ξ=k )=·-k(ξ=k )=C k10··-k解析:ξ~B (n ,p ),E ξ=10×=.答案:A3.已知ξ~B (n ,p ),且E ξ=7,D ξ=6,则p 等于 A.71 B.61C.51D.41解析:E ξ=np =7,D ξ=np (1-p )=6,所以p =71.答案:A4.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为.设发病的牛的头数为ξ,则D ξ等于解析:D ξ=10××=. 答案:C5.有两台自动包装机甲与乙,包装重量分别为随机变量ξ1、ξ2,已知E ξ1=E ξ2,D ξ1>D ξ2,则自动包装机________的质量较好.解析:E ξ1=E ξ2说明甲、乙两机包装的重量的平均水平一样.D ξ1>D ξ2说明甲机包装重量的差别大,不稳定.∴乙机质量好.答案:乙 ●典例剖析【例1】 设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、D ξ.ξ -10 1P21 1-2qq 2剖析:应先按分布列的性质,求出q 的值后,再计算出E ξ、D ξ.解:因为随机变量的概率非负且随机变量取遍所有可能值时相应的概率之和等于1,所以⎪⎪⎩⎪⎪⎨⎧≤≤-≤=+-+,1,1210,1212122q p q q 解得q =1-22.于是,ξ的分布列为ξ -11P21 2-123-2 所以E ξ=(-1)×21+0×(2-1)+1×(23-2)=1-2,D ξ=[-1-(1-2)]2×21+(1-2)2×(2-1)+[1-(1-2)]2×(23-2)=2-1. 评述:解答本题时,应防止机械地套用期望和方差的计算公式,出现以下误解:E ξ=(-1)×21+0×(1-2q )+1×q 2=q 2-21.拓展提高既要会由分布列求E ξ、D ξ,也要会由E ξ、D ξ求分布列,进行逆向思维.如:若ξ是离散型随机变量,P (ξ=x 1)=53,P (ξ=x 2)=52,且x 1<x 2,又知E ξ=57,D ξ=256.求ξ的分布列. 解:依题意ξ只取2个值x 1与x 2,于是有E ξ=53x 1+52x 2=57, D ξ=53x 12+52x 22-E ξ2=256.从而得方程组⎪⎩⎪⎨⎧=+=+.1123,723222121x x x x解之得⎩⎨⎧==2,121x x 或⎪⎪⎩⎪⎪⎨⎧==.54,5921x x而x 1<x 2,∴x 1=1,x 2=2.ξ 12P53 52 需交纳保费a 元,被保险人意外死亡则保险公司赔付3万元,出现非意外死亡则赔付1万元.经统计此年龄段一年内意外死亡的概率是p 1,非意外死亡的概率为p 2,则a 需满足什么条件,保险公司才可能盈利剖析:要使保险公司能盈利,需盈利数ξ的期望值大于0,故需求E ξ. ξ a a -30000a -10000P1-p 1-p 2p 1p 21212110000p 2.要盈利,至少需使ξ的数学期望大于零,故a >30000p 1+10000p 2. 评述:离散型随机变量的期望表征了随机变量取值的平均值. 思考讨论本题中D ξ有什么实际意义【例3】 把4个球随机地投入4个盒子中去,设ξ表示空盒子的个数,求E ξ、D ξ.剖析:每个球投入到每个盒子的可能性是相等的.总的投球方法数为44,空盒子的个数可能为0个,此时投球方法数为A 44=4!,∴P (ξ=0)=44!4=646;空盒子的个数为1时,此时投球方法数为C 14C 24A 33,∴P (ξ=1)=6436. 同样可分析P (ξ=2),P (ξ=3). 解:ξ的所有可能取值为0,1,2,3.P (ξ=0)=4444A =646,P (ξ=1)=43324144A C C =6436,P (ξ=2)=422242424244A C C C C +=6421,P (ξ=3)=4144C =641. ξ123P6466436 6421 641 ∴E ξ=6481,D ξ=2641695. 评述:本题的关键是正确理解ξ的意义,写出ξ的分布列. 特别提示求投球的方法数时,要把每个球看成不一样的.ξ=2时,此时有两种情况:①有2个空盒子,每个盒子投2个球;②1个盒子投3个球,另1个盒子投1个球.●闯关训练 夯实基础1.设服从二项分布B (n ,p )的随机变量ξ的期望和方差分别是与,则二项分布的参数n 、p 的值为=4,p = =6,p = =8,p = =24,p = 解析:由E ξ==np ,D ξ==np (1-p ),可得1-p =4.244.1=,p =,n =4.04.2=6. 答案:B2.一射手对靶射击,直到第一次命中为止每次命中的概率为,现有4颗子弹,命中后的剩余子弹数目ξ的期望为解析:ξ=0,1,2,3,此时P (ξ=0)=,P (ξ=1)=×,P (ξ=2)=×,P (ξ=3)=,E ξ=.答案:C3.设一次试验成功的概率为p ,进行100次独立重复试验,当p =________时,成功次数的标准差的值最大,其最大值为________.解析:D ξ=npq ≤n (2q p )2=4n ,等号在p =q =21时成立,此时,D ξ=25,σξ=5.答案: 21 54.甲从学校乘车回家,途中有3个交通岗,假设在各交通岗遇红灯的事件是相互独立的,并且概率都是52,则甲回家途中遇红灯次数的期望为________.解析:设甲在途中遇红灯次数为ξ, 则ξ~B (3,52), 所以E ξ=3×52=.答案:5.一次单元测试由50个选择题构成,每个选择题有4个选项,其中恰有1个是正确答案.每题选择正确得2分,不选或错选得0分,满分是100分.学生甲选对任一题的概率为,求他在这次测试中成绩的期望和标准差.解:设学生甲答对题数为ξ,成绩为η,则ξ~B (50,),η=2ξ,故成绩的期望为E η=E (2ξ)=2E ξ=2×50×=80(分);成绩的标准差为ση=ηD =)2(ξD =ξD 4=22.08.050⨯⨯=42≈(分). 6.袋中有4只红球,3只黑球,今从袋中随机取出4只球.设取到一只红球得2分,取到一只黑球得1分,试求得分ξ的概率分布和数学期望.解:直接考虑得分的话,情况较复杂,可以考虑取出的4只球颜色的分布情况:4红得8分,3红1黑得7分,2红2黑得6分,1红3黑得5分,故P (ξ=5)=473314C C C =354, P (ξ=6)=472324C C C =3518,P (ξ=7)=471334C C C =3512, P (ξ=8)=470344C C C =351,E ξ=5×354+6×3518+7×3512+8×351=35220=744. 培养能力7.一台设备由三大部件组成,在设备运转中,各部件需要调整的概率相应为,和.假设各部件的状态相互独立,以ξ表示同时需要调整的部件数,试求ξ的数学期望E ξ和方差D ξ.解:设A i ={部件i 需要调整}(i =1,2,3),则P (A 1)=,P (A 2)=,P (A 3)=.由题意,ξ有四个可能值0,1,2,3.由于A 1,A 2,A 3相互独立,可见P (ξ=0)=P (1A 2A 3A )=××=;P (ξ=1)=P (A 12A 3A )+P (1A A 23A )+P (1A 2A A 3)=××+××+××=; P (ξ=2)=P (A 1A 23A )+P (A 12A A 3)+P (1A A 2A 3)=××+××+××=; P (ξ=3)=P (A 1A 2A 3)=××=. ∴E ξ=1×+2×+3×=,D ξ=E ξ2-(E ξ)2=1×+4×+9×-=-=.8.证明:事件在一次实验中发生的次数的方差不超过41.证明:设事件在一次试验中发生的次数为ξ,ξ的可能取值为0或1,又设事件在一次试验中发生的概率为p ,则P (ξ=0)=1-p ,P (ξ=1)=p ,E ξ=0×(1-p )+1×p =p ,D ξ=(1-p )·(0-p )2+p (1-p )2=p (1-p )≤(21p p -+)2=41. 所以事件在一次试验中发生的次数的方差不超过41. 探究创新9.将数字1,2,3,4任意排成一列,如果数字k 恰好出现在第k 个位置上,则称之为一个巧合,求巧合数的数学期望.解:设ξ为巧合数,则P (ξ=0)=44A 9=249,P (ξ=1)=4414A 2C ⨯=31,P (ξ=2)=4424A C =41,P (ξ=3)=0,P (ξ=4)=4444A C =241,所以E ξ=0×249+1×31+2×41+3×0+4×241=1. 所以巧合数的期望为1.●思悟小结1.离散型随机变量的期望和方差都是随机变量的重要的特征数,期望反映了随机变量的平均值,方差反映了随机变量取值的稳定与波动、集中与离散的程度.2.求离散型随机变量的期望与方差,首先应明确随机变量的分布列,若分布列中的概率值是待定常数,应先求出这些待定常数后,再求其期望与方差.3.离散型随机变量的期望和方差的计算公式与运算性质:E ξ=∑∞=1i x i p i ,D ξ=∑∞=1i (x i -E ξ)2p i ,E (a ξ+b )=aE ξ+b ,D (a ξ+b )=a 2Dξ.4.二项分布的期望与方差:若ξ~B (n ,p ),则E ξ=np ,D ξ=np (1-p ).5.对求离散型随机变量的期望和方差的应用问题,首先应仔细地分析题意,当概率分布不是一些熟知的类型时,应全面地剖析各个随机变量所包含的各种事件,并准确判断各事件的相互关系,从而求出各随机变量相应的概率.●教师下载中心 教学点睛1.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.ξ表示ξ对E ξ的平均偏离程度,D ξ越大表示平均偏离程度越大,说明ξ的取值越分散.3.要培养学生运用期望与方差的意义解决实际问题的能力. 拓展题例【例1】 若随机变量A 在一次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D ξ的最大值;(2)求ξξE D 12-的最大值. 剖析:要求D ξ、ξξE D 12-的最大值,需求D ξ、E ξ关于p 的函数式,故需先求ξ的分布列.解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而E ξ=0×(1-p )+1×p =p ,D ξ=(0-p )2×(1-p )+(1-p )2×p =p -p 2.(1)D ξ=p -p 2=-(p -21)2+41, ∵0<p <1,∴当p =21时,D ξ取得最大值为41.(2)ξξE D 12-=p p p 1)(22--=2-(2p +p1),∵0<p <1,∴2p +p1≥22. 当且仅当2p =p1,即p =22时,ξξE D 12-取得最大值2-22.评述:在知识的交汇点处出题是高考的发展趋势,应引起重视.【例2】 袋中装有一些大小相同的球,其中有号数为1的球1个,号数为2的球2个,号数为3的球3个,…,号数为n 的球n 个.从袋中任取一球,其号数作为随机变量ξ,求ξ的概率分布和期望.E ξ=1×)1(n n ++2×)1(n n ++3×)1(+n n +…+n ×)1(+n n =)1(2n n +(12+22+32+…+n 2)=312+n .。
离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望1.定义一般地,如果离散型随机变量的分布列为2.意义:反映离散型随机变量取值的平均水平。
nnii3.性质:若X是随机变量,Y=aX+b,其中a,b是实数,则Y也是随机变量,且E(aX+b)=aE(X)+b二、离散型随机变量的方差1.定义一般地,如果离散型随机变量的分布列为则称D(X)=工(x—E(X))2p为随机变量的方差。
iii=12.意义:反映离散型随机变量偏离均值的程度。
3.性质:D(aX+b)=a2D(X)三、二项分布的均值与方差如果X〜B(n,p),则E(X)=np,D(X)=np(1-p)。
题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()A.0.2B.0.1C.-0.2D.0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数§的数学期望为()A.0.6B.1C.3.5D.2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分•小王选对每题的概率为0.8,则其第一大题得分的均值为•【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元•在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X W n)20.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【过关练习】 1.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为E ,则E (勺等于() A .0.765B .1.75 C .1.765D .0.22 2•某射手射击所得环数d 的分布列如下: 3.已知随机变量d 的分布列为贝y x =,P (l W d <3)=,E (d )=. 4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白棕5个,这三种粽子的外观完全相同.从中任意选取3个. (1) 求三种粽子各取到1个的概率; (2) 设X表示取到的豆沙粽个数,求X 的分布列与数学期望. 题型二离散型随机变量方差的计算 【例1】若X 的分布列为 其中p W (0,1),贝%) A .D (X )=p 3B. C .D (X )=p —p 2D. D (X )=p 2 D (X )=pq 2【例2】设随机变量E 的分布列为P (^=k )=cA (^k\i^n-k ,k =o,1,2,…,n ,且E (^)=24,则D ©的值为()A .8 c? C.gB .12 D .16【例3】若D©=1,则D(f-D(f))=.3【例4】若随机变量X]〜B(n,0.2),坞〜2(6,p)X3〜B(n,p),且E(X J=2,D(X^,则6禺)=()A.0.5B.VT3C.、i25D.3.5【例5】根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:求工期延误天数Y 的均值与方差.【过关练习】1.某人从家乘车到单位,途中有3个路口.假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为()A.0.48B.1.2C.0.72D.0.62.设投掷一个骰子的点数为随机变量X,则X的方差为.3•盒中有2个白球,3个黑球,从中任取3个球,以X表示取到白球的个数,n表示取到黑球的个数.给出699下列结论:①E(X)=5,E(n)=5;®E(X2)=E(n);@E(n2)=E(X);④D(X)=D(")=25・其中正确的是.(填上所有正确结论的序号)4•海关大楼顶端镶有A、B两面大钟,它们的日走时误差分别为X]、坞(单位:s),其分布列如下:根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量.课后练习【补救练习】1.若随机变量d〜B(n,0.6),且E(0=3,则P(^=1)的值为()A.2X0.44B.2X0.45C.3X0.44D.3X0.642.已知d〜B(n,p),E(d)=8,D(d)=1.6,则n与p的值分别为()A.100和0.08B.20和0.4C.10和0.2D.10和0.83•有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X甲)=E(X乙),方差分别为D(X甲乙)=11,D(X)=3.4.由此可以估计()ffl甲乙A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为;方差为.【巩固练习】1.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是()A.6B.7.8C.9D.122.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A.2.44B.3.376C.2.376D.2.43•已知随机变量X+Y=8,若X〜B(10,0.6),则E(Y),D(Y)分别是()A.6,2.4B.2,2.4C.2,5.6D.6,5.64.马老师从课本上抄录一个随机变量d的概率分布列如下表:请小牛同学计算d的数学期望.“?”处的数值相同.据此,小牛给出了正确答案E(勺=.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的2概率为3,得到乙、丙两公司面试的概率均为P,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数,若P(X=O)=12,则随机变量X的数学期望E(X)=.6•随机变量E的分布列如下:其中a,b,c成等差数列,若E(0=3,则D(^)=•7•某城市出租汽车的起步价为6元,行驶路程不超出3km时按起步价收费,若行驶路程超出3km,则按每超出1km加收3元计费(超出不足1km的部分按1km计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18,0.20,0.20,0.18,0.12,设出租车行车路程d是一个随机变量,司机收费为"(元),则n=3<—3,求出租车行驶一天收费的均值.8•为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设d为成活沙柳的株数,数学期望E(d)=3,标准差丫苑为g6(1)求n,p的值并写出d的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设E为离散型随机变量,则E(E©_^=()A.0B.1C.2D.不确定2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多21者赢得比赛.假设每局甲获胜的概率为3,乙获胜的概率为3,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).3.A,B两个投资项目的利润率分别为随机变量X1和^•根据市场分析,X]和X2的分布列分别为:(1)在A,B两个项目上各投资100万元,3(万元)和与(万元)分别表示投资项目A和B所获得的利润,求方差D(Y1),D(Y2);⑵将x(0W x W100)万元投资A项目,(100—朗万元投资B项目,沧)表示投资A项目所得利润的方差与投资B 项目所得利润的方差的和.求夬朗的最小值,并指出x为何值时,沧)取到最小值.。
开锁次数的数学期望和方差例 有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差.分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般.解:ξ的可能取值为1,2,3,…,n .;12112121)111()11()3(;111111)11()2(,1)1(nn n n n n n n n P nn n n n n P nP =-⋅--⋅-=-⋅--⋅-===-⋅-=-⋅-====ξξξ nk n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-⋅+-+---⋅--⋅-=+-⋅+----⋅--⋅-== ξ;所以ξ的分布列为:231211=⋅++⋅+⋅+⋅=n n n n n E ξ; n n n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222⋅+-++⋅+-++⋅+-+⋅+-+⋅+-= ξ ⎥⎦⎤⎢⎣⎡⋅+++++++-++++=n n n n n n 22222)21()321)(1()321(1 1214)1(2)1()12)(1(611222-=⎥⎦⎤⎢⎣⎡+++-++=n n n n n n n n n 说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键.次品个数的期望例 某批数量较大的商品的次品率是5%,从中任意地连续取出10件,ξ为所含次品的个数,求ξE .分析:数量较大,意味着每次抽取时出现次品的概率都是0.05,ξ可能取值是:0,1,2,…,10.10次抽取看成10次独立重复试验,所以抽到次品数ξ服从二项分布,由公式np E =ξ可得解.解:由题,()05.0,10~B ξ,所以5.005.010=⨯=ξE .说明:随机变量ξ的概率分布,是求其数学期望的关键.因此,入手时,决定ξ取哪些值及其相应的概率,是重要的突破点.此题k k k C k P --⋅==1010)05.01()05.0()(ξ,应觉察到这是()05.0,10~B ξ.根据分布列求期望和方差例 设ξ 是一个离散型随机变量,其分布列如下表,求q 值,并求ξ ξ D E 、.分析:根据分布列的两个性质,先确定q 的值,当分布列确定时,ξ ξ D E 、只须按定义代公式即可.解: 离散型随机变量的分布满足(1),,3,2,1,0=≥i P i (2).1321=+++P P P 所以有⎪⎪⎩⎪⎪⎨⎧≤≤-≤=+-+.1,1210,1212122q q q q 解得 .211-=q 故ξ 的分布列为⎪⎭⎫ ⎝⎛-⨯+-⨯+⨯-=∴2231)12(021)1(ξ E .2122321 -=-+-= ⎪⎭⎫ ⎝⎛-⨯--+-⨯-+⨯---=223)]21(1[)12()21(21)]21(1[ 222ξ D ⎪⎭⎫ ⎝⎛-+-+⨯-=2232)12(21)22( 32 .12223123622223 -=-+-+-+-=小结:解题时不能忽视条件i i p k P ==)(ξ时,10≤≤i p ,⋅⋅⋅=,2,1i 否则取了1>q 的值后,辛辛苦苦计算得到的是两个毫无用处的计算.产品中次品数分布列与期望值例 一批产品共100件,其中有10件是次品,为了检验其质量,从中以随机的方式选取5件,求在抽取的这5件产品中次品数分布列与期望值,并说明5件中有3件以上(包括3件)为次品的概率.(精确到0.001)分析:根据题意确定随机变量及其取值,对于次品在3件以上的概率是3,4,5三种情况的和.解:抽取的次品数是一个随机变量,设为ξ ,显然ξ 可以取从0到5的6个整数. 抽样中,如果恰巧有k 个(5,4,3,2,1,0=k )次品,则其概率为510059010)(C C C k P k k -⋅==ξ按照这个公式计算,并要求精确到0.001,则有.0)5( ,0)4( ,07.0)3( ,070.0)2( ,340.0)1( ,583.0)0(============ξ ξ ξ ξ ξ ξ P P P P P P 故ξ 的分布列为.501.00504007.03070.02340.01583.00=⨯+⨯+⨯+⨯+⨯+⨯=ξ E由分布列可知,.007.0)3( ,00007.0)3( =≥∴++=≥ξ ξ P P这就是说,所抽取的5件品中3件以上为次品的可能性很小,只有7%.评定两保护区的管理水平例 甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.而两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:甲保护区:乙保护区:分析:一是要比较一下甲、乙两个保护区内每季度发生的违规事件的次数的均值,即数学期望;二是要看发生违规事件次数的波动情况,即方差值的大小.(当然,亦可计算其标准差,同样说明道理.)解:甲保护区的违规次数1ξ的数学期望和方差为:;3.12.032.023.013.001=⨯+⨯+⨯+⨯=ξE;21.12.0)3.13(2.0)3.12(3.0)3.11(3.0)3.10(22221=⨯-+⨯-+⨯-+⨯-=ξD 乙保护区的违规次数2ξ的数学期望和方差为:;3.14.025.011.002=⨯+⨯+⨯=ξE41.04.0)3.12(5.0)3.11(1.0)3.10(2222=⨯-+⨯-+⨯-=ξD ;因为2121,ξξξξD D E E >=,所以两个保护区内每季度发生的违规平均次数是相同的,但乙保护区内的违规事件次数更集中和稳定,而甲保护区的违规事件次数相对分散和波动.(标准差64.0,1.12211≈===ξσξξσξD D 这两个值在科学计算器上容易获得,显然,σξσξ>1)说明:数学期望仅体现了随机变量取值的平均大小,但有时仅知道均值大小还是不够的,比如:两个随机变量的均值相等了(即数学期望值相等),这就还需要知道随机变量的取值如何在均值周期变化,即计算其方差(或是标准差).方差大说明随机变量取值分散性大;方差小说明取值分散性小或者说取值比较集中、稳定.射击练习中耗用子弹数的分布列、期望及方差例 某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹后才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ 的分布列,并求出ξ 的期望ξ E 与方差ξ D (保留两位小数). 分析:根据随机变量不同的取值确定对应的概率,在利用期望和方差的定义求解. 解: 该组练习耗用的子弹数ξ 为随机变量,ξ 可以取值为1,2,3,4,5.ξ =1,表示一发即中,故概率为;8.0)1(==ξ Pξ =2,表示第一发未中,第二发命中,故;16.08.02.08.0)8.01()2(=⨯=⨯-==ξ Pξ =3,表示第一、二发未中,第三发命中,故;032.08.02.08.0)8.01()3(22=⨯=⨯-==ξ Pξ =4,表示第一、二、三发未中,第四发命中,故0064.08.02.08.0)8.01()4(33=⨯=⨯-==ξ Pξ =5,表示第五发命中,故.0016.02.01)8.01()5(44==⋅-==ξ P因此,ξ 的分布列为0016.050064.04032.0316.028.01⨯+⨯+⨯+⨯+⨯=ξ E,25.1008.00256.0096.032.08.0 =++++=0016.0)25.15(0064.0)25.14(032.0)25.13(16.0)25.12(8.0)25.11(22222⨯-+⨯-+⨯-+⨯-+⨯-=ξ D .31.00225.00484.0098.009.005.0 =++++=说明:解决这类问题首先要确定随机变量的所有可能取值,然后再根据概率的知识求解对应的概率.准备礼品的个数例 某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?分析:可能来多少人,是一个随机变量ξ.而ξ显然是服从二项分布的,用数学期望来反映平均来领奖人数,即能说明是否可行.解:设来领奖的人数)3000,,2,1,0(, ==k k ξ,所以k k k C k P --⋅==300003000)04.01()04.0()(ξ,可见()04.0,30000~B ξ,所以,12004.03000=⨯=ξE (人)100>(人). 答:不能,寻呼台至少应准备120份礼品.说明:“能”与“不能”是实际问题转到数学中来,即用数字来说明问题.数字期望反映了随机变量取值的平均水平.用它来刻画、比较和描述取值的平均情况,在一些实际问题中有重要的价值.因此,要想到用期望来解决这一问题.。
1.期望:若离散型随机变量ξ,当ξ=x i的概率为P(ξ=x i)=P i(i=1,2,…,n,…),则称Eξ=∑x i p i为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.Eξ由ξ的分布列唯一确定.2.方差:称Dξ=∑(x i-Eξ)2p i为随机变量ξ的均方差,简称方差.D叫标准差,反映了ξ的离散程度.3.性质:(1)E(aξ+b)=aEξ+b,D(aξ+b)=a2Dξ(a、b为常数).(2)二项分布的期望与方差:若ξ~B(n,p),则Eξ=np,Dξ=npq(q=1-p).Dξ表示ξ对Eξ的平均偏离程度,Dξ越大表示平均偏离程度越大,说明ξ的取值越分散.1.(2013•广东)已知离散型随机变量X的分布列为X 1 2 3P则X的数学期望E(X)=()A.B. 2 C.D. 32.(2010•宁夏)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A. 100 B. 200 C. 300 D. 4003.(2007•四川)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是()A.150.2克B.149.8克C.149.4克D.147.8克4.(2014•浙江二模)李先生居住在城镇的A处,准备开车到单位B处上班,途中(不绕行)共要经过6个交叉路口,假设每个交叉路口发生堵车事件的概率均为,则李先生在一次上班途中会遇到堵车次数ξ的期望值Eξ是()A.B. 1 C.6×()6D. 6×()6 5.从装有颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X,已知E(X)=3,则D(X)=()A.B.C.D.6.有10件产品,其中3件是次品,从中任取两件,若ξ表示取到次品的个数,则Eξ等于()A.B.C.D. 17.某射手射击击中目标的概率为0.8,从开始射击到击中目标所需的射击次数为ξ,则Eξ等于()A.B.C.D.58.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ_________(结果用最简分数表示).9.设离散型随机变量ξ可能取的值为1,2,3,4.P(ξ=k)=ak+b(k=1,2,3,4),又ξ的数学期望Eξ=3,则a+b= _________.10.同时抛掷两枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上,ξ=0表示结果中没有正面向上,则Eξ=_________.11.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是_________.12.(2014•温州一模)现有三个小球全部随机放入三个盒子中,设随机变量ξ为三个盒子中含球最多的盒子里的球数,则ξ的数学期望Eξ为_________.13.从1,2,3,…,n﹣1,n这n个数中任取两个数,设这两个数之积的数学期望为Eξ,则Eξ=_________.14.(2013•闸北区二模)一个袋中装有大小相同的黑球、白球和红球共10个.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.从袋中任意摸出2个球,记得到白球的个数为ξ,则随机变量ξ的数学期望Eξ=_________.15.某班从4名男生、2名女生中选出3人参加志愿者服务,若选出的男生人数为ξ,则ξ的方差Dξ=_________.16.(2013•嘉兴一模)一盒中有6个小球,其中4个白球,2个黑球•从盒中一次任取3个球,若为黑球则放回盒中,若为白球则涂黑后再放回盒中.此时盒中黑球个数X的均值E(X)=_________.17.(2013•虹口区二模)从集合的所有非空子集中,等可能地取出一个,记取出的非空子集中元素个数为ξ,则ξ的数学期望Eξ=_________.18.(2012•台州一模)把2对孪生兄弟共4人随机排成一排,记随机变量ξ为这一排中孪生兄弟相邻的对数,则随机变量ξ的期望Eξ=_________.19.(2012•杭州二模)(理)设整数m是从不等式x2﹣2x﹣8≤0的整数解的集合S中随机抽取的一个元素,记随机变量ξ=m2,则ξ的数学期望Eξ=_________.20.(2011•温州二模)甲、乙两个同学每人有两本书,把四本书混放在一起,每人随机从中拿回两本,记甲同学拿到自己书的本数为ξ,则Eξ=_________.21.一个人随机的将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为ξ,则ξ的期望Eξ=_________.22.设口袋中有黑球、白球共9个球,从中任取2个球,若取到白球个数的数学期望为,则口袋中白球的个数为_________.23.(2011•嘉定区三模)某班从5名班干部(其中男生3人,女生2人)中选3人参加学校学生会的干部竞选.设所选3人中女生人数为ξ,则随机变量ξ的方差Dξ=_________.24.(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.25.(2012•四川)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为和p.(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;(Ⅱ)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.26.(2012•山东)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.27.甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未命中的概率为.(Ⅰ)求乙投球的命中率p;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.28.甲、乙俩人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.(Ⅰ)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望Eξ;(Ⅱ)求乙至多击中目标2次的概率;(Ⅲ)求甲恰好比乙多击中目标2次的概率.29.一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.30.(2014•淄博三模)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分剐为1,2,3,4,从袋中任意取出3个球.(Ⅰ)求取出的3个球编号都不相同的概率;(Ⅱ)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.。
开锁次数的数学期望和方差
例 有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差.
分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般.
解:ξ的可能取值为1,2,3,…,n .
;12112121)111()11()3(;111111)11()2(,1)1(n
n n n n n n n n P n
n n n n n P n
P =-⋅--⋅-=-⋅--⋅-===-⋅-=-⋅-====ξξξ n
k n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-⋅+-+---⋅--⋅-=+-⋅+----⋅--⋅-== ξ;所以ξ的分布列为:
2
31211=⋅++⋅+⋅+⋅=n n n n n E ξ; n n n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222⋅+-++⋅+-++⋅+-+⋅+-+⋅+-
= ξ ⎥⎦
⎤⎢⎣⎡⋅+++++++-++++=n n n n n n 22222)21()321)(1()321(1 1214)1(2)1()12)(1(611222-=⎥⎦
⎤⎢⎣⎡+++-++=n n n n n n n n n 说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键.
次品个数的期望
例 某批数量较大的商品的次品率是5%,从中任意地连续取出10件,ξ为所含次品
的个数,求ξE .
分析:数量较大,意味着每次抽取时出现次品的概率都是0.05,ξ可能取值是:0,1,2,…,10.10次抽取看成10次独立重复试验,所以抽到次品数ξ服从二项分布,由公式np E =ξ可得解.
解:由题,()05.0,10~B ξ,所以5.005.010=⨯=ξE .
说明:随机变量ξ的概率分布,是求其数学期望的关键.因此,入手时,决定ξ取哪些
值及其相应的概率,是重要的突破点.此题k k k C k P --⋅==1010)05.01()05.0()(ξ,应觉察
到这是()05.0,10~B ξ.
根据分布列求期望和方差
例 设ξ 是一个离散型随机变量,其分布列如下表,求q 值,并求ξ ξ D E 、.
分析:根据分布列的两个性质,先确定q 的值,当分布列确定时,ξ ξ D E 、只须按定义代公式即可.
解: 离散型随机变量的分布满足
(1),,3,2,1,0
=≥i P i (2).1321=+++
P P P 所以有⎪⎪⎩
⎪⎪⎨⎧≤≤-≤=+-+.1,1210,1212122q q q q 解得 .211-=q 故ξ 的分布列为
⎪⎭
⎫ ⎝⎛-⨯+-⨯+⨯-=∴2231)12(021)1(ξ E .2122
321 -=-+-= ⎪⎭
⎫ ⎝⎛-⨯--+-⨯-+⨯---=223)]21(1[)12()21(21)]21(1[ 222ξ D ⎪⎭
⎫ ⎝⎛-+-+⨯-=2232)12(21)22( 32 .12223123622223 -=-+-+-+-=
小结:解题时不能忽视条件i i p k P ==)(ξ时,10≤≤i p ,⋅⋅⋅=,2,1i 否则取了1>q 的值后,辛辛苦苦计算得到的是两个毫无用处的计算.
产品中次品数分布列与期望值
例 一批产品共100件,其中有10件是次品,为了检验其质量,从中以随机的方式选取5件,求在抽取的这5件产品中次品数分布列与期望值,并说明5件中有3件以上(包括3件)为次品的概率.(精确到0.001)
分析:根据题意确定随机变量及其取值,对于次品在3件以上的概率是3,4,5三种情况的和.
解:抽取的次品数是一个随机变量,设为ξ ,显然ξ 可以取从0到5的6个整数. 抽样中,如果恰巧有k 个(5,4,3,2,1,0=k )次品,则其概率为
5
100590
10)(C C C k P k k -⋅==ξ
按照这个公式计算,并要求精确到0.001,则有
.
0)5( ,0)4( ,07.0)3( ,070.0)2( ,340.0)1( ,583.0)0(============ξ ξ ξ ξ ξ ξ P P P P P P 故ξ 的分布列为
.501.00504007.03070.02340.01583.00=⨯+⨯+⨯+⨯+⨯+⨯=ξ E
由分布列可知,
.
007.0)3( ,00007.0)3( =≥∴++=≥ξ ξ P P
这就是说,所抽取的5件品中3件以上为次品的可能性很小,只有7%.
评定两保护区的管理水平
例 甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.而两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:
甲保护区:
乙保护区:
分析:一是要比较一下甲、乙两个保护区内每季度发生的违规事件的次数的均值,即数学期望;二是要看发生违规事件次数的波动情况,即方差值的大小.(当然,亦可计算其标准差,同样说明道理.)
解:甲保护区的违规次数1ξ的数学期望和方差为:
;3.12.032.023.013.001=⨯+⨯+⨯+⨯=ξE
;21.12.0)3.13(2.0)3.12(3.0)3.11(3.0)3.10(22221=⨯-+⨯-+⨯-+⨯-=ξD 乙保护区的违规次数2ξ的数学期望和方差为:
;3.14.025.011.002=⨯+⨯+⨯=ξE
41.04.0)3.12(5.0)3.11(1.0)3.10(2222=⨯-+⨯-+⨯-=ξD ;
因为2121,ξξξξD D E E >=,所以两个保护区内每季度发生的违规平均次数是相同的,但乙保护区内的违规事件次数更集中和稳定,而甲保护区的违规事件次数相对分散和波动.
(标准差64.0,1.12211≈===
ξσξξσξD D 这两个值在科学计算器上容易获得,
显然,σξσξ>1)
说明:数学期望仅体现了随机变量取值的平均大小,但有时仅知道均值大小还是不够的,比如:两个随机变量的均值相等了(即数学期望值相等),这就还需要知道随机变量的取值如何在均值周期变化,即计算其方差(或是标准差).方差大说明随机变量取值分散性大;方差小说明取值分散性小或者说取值比较集中、稳定.
射击练习中耗用子弹数的分布列、期望及方差
例 某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹后才能进入下一组练习,若该射手在某组练习中射击命中
一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ 的分布列,并求出ξ 的期望ξ E 与方差ξ D (保留两位小数)
. 分析:根据随机变量不同的取值确定对应的概率,在利用期望和方差的定义求解. 解: 该组练习耗用的子弹数ξ 为随机变量,ξ 可以取值为1,2,3,4,5.
ξ =1,表示一发即中,故概率为
;8.0)1(==ξ P
ξ =2,表示第一发未中,第二发命中,故
;16.08.02.08.0)8.01()2(=⨯=⨯-==ξ P
ξ =3,表示第一、二发未中,第三发命中,故
;032.08.02.08.0)8.01()3(22=⨯=⨯-==ξ P
ξ =4,表示第一、二、三发未中,第四发命中,故
0064.08.02.08.0)8.01()4(33=⨯=⨯-==ξ P
ξ =5,表示第五发命中,故
.0016.02.01)8.01()5(44==⋅-==ξ P
因此,ξ 的分布列为
0016.050064.04032.0316.028.01⨯+⨯+⨯+⨯+⨯=ξ E
,25.1008.00256.0096.032.08.0 =++++=
0016.0)25.15(0064.0)25.14(032.0)25.13(16.0)25.12(8.0)25.11(22222⨯-+⨯-+⨯-+⨯-+⨯-=ξ D .31.00225.00484.0098.009.005.0 =++++=
说明:解决这类问题首先要确定随机变量的所有可能取值,然后再根据概率的知识求解对应的概率.
准备礼品的个数
例 某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?
若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?
分析:可能来多少人,是一个随机变量ξ.而ξ显然是服从二项分布的,用数学期望来反映平均来领奖人数,即能说明是否可行.
解:设来领奖的人数)3000,,2,1,0(, ==k k ξ,所以
k k k C k P --⋅==300003000)04.01()04.0()(ξ,可见()04.0,30000~B ξ,所以,
12004.03000=⨯=ξE (人)100>(人)
. 答:不能,寻呼台至少应准备120份礼品.
说明:“能”与“不能”是实际问题转到数学中来,即用数字来说明问题.数字期望反映了随机变量取值的平均水平.用它来刻画、比较和描述取值的平均情况,在一些实际问题中有重要的价值.因此,要想到用期望来解决这一问题.。